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Mode-Matching Analysis of Lossy SIW Devices

In this paper, the authors present a method for the analysis of lossy Substrate Integrated Waveguide (SIW) structures. The analysis is achieved through the cylindrical-wave mode expansion of the field and a mode matching technique to enforce boundary conditions on the post surfaces. We introduce an approximated formulation of the previous exact procedure, valid in the microwave regime, and numerically examine a number of microwave devices using both approximated and exact analyses. These devices include filters, couplers, phase shifter, etc. Results are presented for the scattering parameters and compared to those obtained with commercial software in terms of accuracy and computational time.
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I. INTRODUCTION

.

, equivalent-width waveguide methods [12],

boundary integral-resonant method [START_REF] Bozzi | Modeling of conductor, dielectric, and radiation losses in substrate integrated waveguide by the boundary integral-resonant mode expansion method[END_REF] and integral-equationbased methods [START_REF] Tomasic | Linear array of coaxially fed monopole elements in a parallel plate waveguide -Part I: Theory[END_REF]- [START_REF] Wu | Hybrid of method of moments and cylindrical eigenfunction expansion to study substrate integrated waveguide circuits[END_REF]. However, most of these methods lack in generality, being applicable mostly to shielded PEC structures mimicking conventional rectangular waveguides [START_REF] Tang | Development of millimeter-wave planar diplexers based on complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities[END_REF], [START_REF] Sadreazami | Analysis of dispersion characteristic of substrate integrated waveguide based on mode matching method[END_REF], [START_REF] Kordiboroujeni | Mode-matching analysis and design of substrate integrated waveguide T-junction diplexer and corner filter[END_REF], dealing with electrically thin cylindrical scatterers [START_REF] Tomasic | Linear array of coaxially fed monopole elements in a parallel plate waveguide -Part I: Theory[END_REF], or operating in the Transverse Magnetic (TM) mode regime [START_REF] Tsang | Modeling of multiple scattering among vias in planar waveguides using Foldy-Lax equations[END_REF]- [START_REF] Kordiboroujeni | Mode-matching analysis and design of substrate integrated waveguide T-junction diplexer and corner filter[END_REF]. This is a hindrance to designing, since one has to consider carefully the effect of all relevant modes [START_REF] Arnieri | Analysis of Substrate Integrated Waveguide Structures Based on the Parallel-Plate Waveguide Green's Function[END_REF]- [START_REF] Albani | Automatic design of CP-RLSA antennas[END_REF], which may be induced at discontinuities in the system under consideration, and, more importantly, since the geometry may in general be irregular and quite complex. Furthermore, the losses were modeled using approximations of severely restricted validity, mostly by effective or empirically determined surface impedances as in [START_REF] Tang | Development of millimeter-wave planar diplexers based on complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities[END_REF] and [START_REF] Deslandes | Accurate modeling, wave mechanisms, and design considerations of a substrate integrated waveguide[END_REF]. In [START_REF] Huang | Multiple scattering among vias in lossy planar waveguides using SMCG method[END_REF], losses were incorporated into an approximate modematching analysis of single-waveguide SIW structures. However, only the basic coaxial feed was used to excite the structures under study, limiting the analysis to the study of TM modes only. Moreover, the coaxial feeds were approximately modeled as magnetic currents radiating into an infinite perfectly electric conductor (PEC) parallel-plate waveguide (PPW). This may be valid when the conductivity of the ground plane is high, but when this is not the case, this approximation yields inaccurate feeding fields as the coaxial feed may induce higher-order modes in the waveguide. Also, the connecting vias were considered to be exclusively PEC, thus avoiding coupling between Transverse Electric (TE) and TM modes, which can be significant when low-conductivity metal is used.

Therefore, one needs a general, reliable and efficient analysis tool that could take into account properly the aforementioned effects and consequently be used in design and optimization. The authors have recently proposed a hybrid Method of Moments (MoM)/Mode-Matching (MM) method [START_REF] Casaletti | Efficient analysis of metallic and dielectric posts in parallel-plate waveguide structures[END_REF], [START_REF] Casaletti | A fullwave hybrid method for the analysis of multilayered SIW-based antennas[END_REF], capable of accurately analyzing stacked planar SIW structures with the possible presence of coupling or radiating slots etched in conducting plates. Here we extend the modematching part, which can be subsequently used as the building block in the MoM framework (e.g., [START_REF] Casaletti | A fullwave hybrid method for the analysis of multilayered SIW-based antennas[END_REF]), to incorporate conductor losses in a rigorous manner. The resulting code provides a reliable full-wave tool to design and optimize SIW devices by rigorously taking into account losses. A significant reduction of computation time and memory usage is achieved with respect to commercial software, especially when large structures are considered and need to be optimized.

The formulation of the problem in terms of lossy eigenfunctions is similar to the one presented in [START_REF] Albani | Rigorous MoM analysis of finite conductivity effects in RLSA antennas[END_REF], where only slots in a PPW are considered in the absence of vertical posts. The formulation has been described with no mathematical details and no results in [START_REF] Casaletti | Rigorous losses evaluation in the numerical analysis of SIW structures[END_REF]. The need of non-orthogonal vertical eigenfunctions in the presence of lossy plates has been introduced in [START_REF] Casaletti | Efficient analysis of lossy substrate integrated waveguide structures[END_REF], together with preliminary numerical results of a structure not shown in this paper. However, details on the actual implementation are discussed here for the first time.

To be more specific, we model both the conductor losses and small metal surface roughness using the Leontovich boundary condition [START_REF] Leontovich | Approximate boundary conditions for electromagnetic field on the surface of conducting bodies[END_REF], granting the description of lossy or rough metal surfaces as surface impedances. This allows one to derive analytically the necessary scalar Green's functions, and, subsequently, a set of scalar potentials from which the PPW dyadic admittance Green's function can be obtained through differentiation [START_REF] Felsen | Radiation and Scattering of Waves[END_REF]. The lossy metal vias are modeled either as lossy-dielectric cylinders, or as surface impedances, whose scattered fields can be found by enforcement of the impedance boundary conditions on their respective surfaces. In addition, we consider the effect of placing a coaxial feed over a lossy plane through the application of the equivalence principle in a rigorous manner.

The paper is organized as follows. Section II gives a brief outline of the derivation of both the necessary Green's functions and the vector wave functions with special emphasis on the underlying mathematical structure.

In Section III, mode coupling in lossy SIW is quantitatively studied, while in Section IV an approximated mode-matching approach is derived, based on previous section results. Section V deals with the definition and computation of input parameters. Finally, in Section VI, we validate the results of numerical analysis by comparison against an FEM-based commercial code in terms of accuracy and computation time. In typical microwave applications, SIW channels are obtained by drilling commercial metalized dielectric substrates, and then filling the holes with conducting materials (or dielectric) in order to implement the cylindrical posts. This procedure leads to structures that use the same kind of metallization for both top and bottom planes. Moreover, at this frequency regime, the roughness of the metallization can be in general neglected. All these considerations lead to the use of the Leontovich equivalent boundary condition for the metallic planes

II. MATHEMATICAL BACKGROUND

( ) ( ) 1 / 2 s s Z j ωµ σ = + ( 1 
)
where σ is the conductivity, ω is the angular velocity and s µ is the permeability. Other type of surfaces (such as thin metals [START_REF] Matick | Transmission Lines for Digital and Communication Networks[END_REF], rough surfaces [30][31] or partially reflecting surfaces [START_REF] Sorrentino | Transverse resonance technique[END_REF]) can be modeled through an equivalent impedance. For the sake of brevity, in this work only lossy metal plates will be considered henceforth.

The structure under analysis consists of a PPW, defined by two horizontal lossy metallic plates placed at a distance h, laterally unbounded, filled by a dielectric medium (see Fig. 1).

Inside the PPW an arbitrary number of vertical cylindrical posts can be placed, either of penetrable or impenetrable medium.

From a computational point of view, it is of paramount importance to choose the most effective representation according to the kind of field. In this view, the cylindrical eigenmode expansion of the field seems to be the appropriate choice [START_REF] Hanson | Operator Theory for Electromagnetics: An Introduction[END_REF]. The fields scattered by these posts can be modeled by linear sums of vector modes with unknown amplitude, while the incident field on the posts can be computed through a Green's function represented in terms of eigenfunctions expansion [START_REF] Hanson | Operator Theory for Electromagnetics: An Introduction[END_REF]. The scattered amplitudes are then found by imposing boundary conditions on the post surfaces.

Vector functions are defined as in [30, Sec.

,

TM TE k   = ∇ Φ     = ∇ ∇ Φ   M r z r N r z r × × × (2) 
referring to the transverse (with respect to z) magnetic field TM z and TE z polarization, respectively. The scalar Φ functions must satisfy the scalar Helmholtz equation. 

,
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with TM/TE t =

, where n J and

(2) n H are n-th order Bessel and second kind Hankel functions describing the radial dependence of fields inside and outside the posts, respectively. 

  + ψ =     (4) 
subject to the following boundary conditions on the conductor plates
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Since the coefficients of the terms in the boundary conditions are complex, this defines a nonself-adjoint Sturm-Liouville problem [START_REF] Morgan | Effects of surface roughness on eddy current losses at microwave frequencies[END_REF]Sec. 5.3]. If we wish to construct complete orthonormal sets based on these solutions in order to construct arbitrary fields, we need normalized eigenfunctions. This can be accomplished through a suitable choice of the coefficients m c 
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where , 
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The field scattered by the posts in the whole SIW structure is thus expressed as a discrete sum of vector cylindrical waves defined as

( ) ( ) ( ) post 1 1 , , , , , , m m m 
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where, for the vector eigenfunctions (2) the Bessel function n J is used for the field inside the posts, while the second kind Hankel function ( )

2 n
H is used elsewhere. Having obtained orthonormal bases for the eigenfunction expansion, we proceed to derive the dyadic magnetic Green's function, given in [START_REF] Felsen | Radiation and Scattering of Waves[END_REF], [START_REF] Albani | Rigorous MoM analysis of finite conductivity effects in RLSA antennas[END_REF] as
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Thus, the incident magnetic field radiated by a magnetic source M J distributed on a surface S ′ is obtained as the convolution of ( 10) with M J , resulting in
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with TM mn mn

= P M , TE mn mn = P N .
For a given source, the expansion coefficients for the field are found through a MM procedure by imposing boundary conditions on the post surfaces, as explained in next Section. Once the dyadic Green's function and vector wave functions are known, one can proceed to the formulation of the MM/MoM problem, since all types of fields (impressed and scattered) on the post surfaces can be described efficiently. A resolvable system of linear equations is obtained by imposing

III. DETERMINATION OF THE COEFFICIENTS OF THE SCATTERED FIELD EXPANSION

x q y q q ρ q a ˆq n TM mnq A TE mnq A Z s ˆq n TM mnq A TE mnq A TM mnq B TE mnq B ( ) ( ) , q q ε µ q ρ
the appropriate boundary conditions.

A. Impenetrable posts

To determine the field scattered by an impenetrable post (Fig. 2a) of radius aq, described by a non-dispersive impedance condition s Z , we impose the following boundary condition on the surface of the post ( ) ( )

TOT TOT ˆˆq q q s q q a a Z ′ ′ - = - = × = × × ρ ρ ρ ρ ρ E r ρ ρ H r ( 13 
)
where ˆq ρ is the radial unit vector directed from the center of the post toward the exterior of the post, and E TOT and H TOT are the total electric and magnetic fields, respectively. For 0 s Z = condition (13) resort to the PEC post case.

The fields are expanded through cylindrical wave functions as in [START_REF] Tang | Development of millimeter-wave planar diplexers based on complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities[END_REF]. From the two scalar components of the vector identity (13) a couple of linear equations is obtained for the unknowns t mnq A . They are expressed as a series of azimuthal modes with linear phase around the q-th cylinder. From the orthogonality of the azimuthal eigenfunctions jn e φ (see [START_REF] Casaletti | Efficient analysis of metallic and dielectric posts in parallel-plate waveguide structures[END_REF])

we can obtain two linear equations for each azimuthal harmonic n ( )

, n TM TE n mnq mnq f A A t φ φ = , ( ) , n TM TE n z mnq mnq z f A A t = (14) 
The two equations come from the φ and the z components of 13) and ( 14) both reduce to the simpler case of a PEC post, where the TE and TM polarizations are decoupled. To determine the field scattered from a penetrable (possibly lossy) post, whose radius is q a and complex dielectric constants are ( ) ( ) , q q r r ε µ , the continuity of the tangential electric and magnetic fields are imposed on the post surface (Fig. 3)
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B. Penetrable posts
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where the superscripts 'PPW', 'Posts', and 'q' stand respectively for the fields excited in the PPW in the absence of the posts, for the fields scattered by all the posts, and for the field inside the q-th post under analysis. The fields in the waveguide are expanded through the Hankel function formulation of ( 9), while the field inside each cylinder is expanded through the Bessel function expression. Note that, if the post is metallic, a null field is retained inside the post, and only the electric field continuity ( 15) is used.

Each equation ( 15)-( 16) can be projected along the φ and the z directions, thus obtaining a system of four scalar equations for the unknown coefficient , and t and s are known quantities depending on the excitation current. The four equations can then be projected on the vertical eigenfunctions ψ in order to obtain a linear system having the same number of equations and unknowns.

Specifically, a careful choice of the eigenfunctions should be done in order to obtain stable solutions even for large losses in the cylinder. In fact, we can have eigenfunctions defined inside the q-th post (where wavenumbers are referred to the post dielectric), namely ( ) q m ψ , and eigenvalues defined in the PPW (where wavenumbers are referred to the PPW dielectric), namely m ψ . It turns out that the best strategy is to project ( 17) and ( 19) on m ψ , and ( 18) and ( 19) on ( )
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We can derive explicit expressions for TM mnl B from ( 21) and for TE mnl B from ( 22), and substitute them into [START_REF] Casaletti | A fullwave hybrid method for the analysis of multilayered SIW-based antennas[END_REF] and [START_REF] Albani | Rigorous MoM analysis of finite conductivity effects in RLSA antennas[END_REF].

Using the bi-orthogonality relationship [START_REF] Ettorre | Leaky-wave slot array antenna fed by a dual reflector system[END_REF] we finally obtain two scalar equations for the unknowns TM Thus, also with a large imaginary part of the argument the terms remain numerically stables.

In order to enforce ( 21)-( 24), the computation of the following scalar products is required

( ) ( ) ( ) ( ) 1 2 1 2 1 2 , , , , , , , , , , , 
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where m ψ is the m-th TM or TE vertical eigenfunction in the dielectric substrate, while ( )

q m
ψ is the eigenfunction relative to the q-th dielectric post.

IV. APPROXIMATED MM FORMULATION

In this section we use an approximation of (25) in order to simplify the MM procedure developed in the previous section.

Starting form analytical expressions [START_REF] Ettorre | Multi-beam multi-layer leakywave SIW pillbox antenna for millimetre-wave applications[END_REF], these products can be calculated rigorously in closed form and approximated as a series expansion for good conductive PPW walls.

In standard microwave applications, good conductors are characterized by small values of the ratio s R η , where ( )

2 s s R ωµ σ =
and η µ ε = . Under this hypothesis, the wavenumbers solution of (8) can be approximated as in [START_REF] Albani | Rigorous MoM analysis of finite conductivity effects in RLSA antennas[END_REF] ( ) ( )
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Using [START_REF] Casaletti | Efficient analysis of lossy substrate integrated waveguide structures[END_REF] in the inner products (25) asymptotic expressions can be obtained for the coupling between different PPW modes for small values of s R η .
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where ∆ depend on physical and geometrical parameters as shown in the appendix. For microwave applications the scalar products [START_REF] Casaletti | Rigorous losses evaluation in the numerical analysis of SIW structures[END_REF] can be safely approximated by the first terms of [START_REF] Leontovich | Approximate boundary conditions for electromagnetic field on the surface of conducting bodies[END_REF]. In other words, [START_REF] Leontovich | Approximate boundary conditions for electromagnetic field on the surface of conducting bodies[END_REF] states that for typical microwave applications the scalar wavefunctions t m ψ of lossy SIW have the same properties as for the case of a lossless SIW. This means that the wave-vectors defined by ( 7) are quasi-orthogonal.

A. Impenetrable posts

The field scattered by an impenetrable post of radius aq, described by a non-dispersive impedance condition s Z under the assumption [START_REF] Leontovich | Approximate boundary conditions for electromagnetic field on the surface of conducting bodies[END_REF] has to verify on the surface the following conditions for every couple of indexes ( ) 
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, Eqs.( 28)-( 29) are valid also for PEC posts ( 0 S Z ϑ = = ). In this particular situation, (28)-( 29) reduce to ( )
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B. Penetrable posts

The field scattered by a penetrable (possibly lossy) post, whose radius is aq and complex dielectric and magnetic constants are ( ) ( ) , q q r r ε µ , have to grant the continuity of the total tangential electric and magnetic fields. These latter conditions, together with ( 27), lead to the following equations
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C. Determination of the expansion coefficients

Let the structure under analysis be composed by N posts.

In order to numerically solve the equations ( 28)-( 32), the number of retained azimuthally and vertical modes N φ and z N , respectively, can be chosen according to [21], [23].

Since vertical modes with different orders m are decoupled, it is possible to cast (28)- [START_REF] Sorrentino | Transverse resonance technique[END_REF] for each value 1, , z m N =  into the following matrix form , , , ,

TM TM TM TE TM TM TE m m m m TE TM TE TE TE m m m +     =         T T A Ω T T A (34) 
where m T are the post interaction coupling matrices, ,

T TM TE m m     A A
is the unknown vector containing all the cylindrical waves coefficients and / TM TE m Ω is the excitation vector. The unknown field coefficients are then found by solving a z N matrix equations (33).

V. INPUT PARAMETERS

In this Section we discuss the definition of excitation ports and the calculation of the input parameters, starting from the results obtained from the procedure described in the previous sections. Source modeling for specific geometries have been proposed in the past as in [START_REF] Casaletti | Efficient analysis of metallic and dielectric posts in parallel-plate waveguide structures[END_REF] [START_REF] Valero-Nogueira | Evaluation of the input impedance of a top-loaded monopole in a parallel-plate waveguide by the MoM/Green's function method[END_REF]. Here we follow the formulation in [START_REF] Casaletti | Efficient analysis of metallic and dielectric posts in parallel-plate waveguide structures[END_REF]. We only outline the differences with the PEC walls case for a waveguide port excitation and a general excitation defined over the impedance walls (coaxial excitation, slots).

A. Waveguide Ports: Computation of the Input Parameters

The computation of the input parameters is performed according to the same approach presented in [START_REF] Casaletti | Efficient analysis of metallic and dielectric posts in parallel-plate waveguide structures[END_REF]. Once the jth input port is fed with the equivalent magnetic current j h , a modal decomposition is performed on the total magnetic field Hi at the i-th port for each i, by projecting Hi on the rectangular waveguide modes hnm (the TE10 fundamental mode is used in the following, being usually sufficient for our scopes). The field Hi can be decomposed in a field , q j q q q j qj w w q q q j j j j q P P P w q q q q P Y j Z Z

dS dS Z dS Y Y ωε = ⋅ ⋅ ⋅ + ⋅ = + ∫ ∫ ∫ h r G r r h r h r H r (35) 
The computation of Y PPW can be performed by moving on the current h the derivatives present in the definition of the Green's function. The details are shown in [START_REF] Casaletti | Efficient analysis of metallic and dielectric posts in parallel-plate waveguide structures[END_REF], while an efficient computation of Y Posts has been presented in [START_REF] Casaletti | A fullwave hybrid method for the analysis of multilayered SIW-based antennas[END_REF].

However, the presence of impedance boundary condition on the PPW plates leads to a different integral expression for Y PPW . In fact in this new structure, since the TM and TE radial wavenumbers are different, the z-derivative of the scalar potential TE S does not cancel out the scalar potential TM S .

Following [START_REF] Albani | Rigorous MoM analysis of finite conductivity effects in RLSA antennas[END_REF], after a lengthy calculation, the final expression for Y PPW is ( ) ˆˆ, q j q j q j PPW w w qj u q u j P P q j w w q j q q j j P P

( ) ( ) ( ) ( ) ( ) ( ) 01 

Z Z

Y h h k S j k S G dS dS Z Z k h G h dS dS j ωµ ωµ ′ ′  = - ∂ ∂ -   ′ ′ ′ + -  ′ ′ - ⋅ ∫ ∫ ∫ ∫ r r r r r r u u r r r r  ( 36 
)
where TE G  is a dual TE Green's function (appearing in [START_REF] Albani | Rigorous MoM analysis of finite conductivity effects in RLSA antennas[END_REF] in connection with slot modeling). It corresponds to the current in a TE equivalent transmission line fed by a unit series voltage generator, as opposed to the conventional G TE Green's function (a voltage in a TE equivalent transmission line fed by a unit shunt current generator) [START_REF] Felsen | Radiation and Scattering of Waves[END_REF].

B. Coaxial Cables and slots: Computation of the Admittance Matrix

Coaxial cables can be described through equivalent currents placed on one of the PPW plates [START_REF] Casaletti | Efficient analysis of metallic and dielectric posts in parallel-plate waveguide structures[END_REF], as shown in Fig. 4a. However, due to the presence of losses, the equivalent input and output magnetic currents are not placed on PEC plates (i.e., short circuits), as required by the definition of the admittance matrix. In order to keep the formulation simpler and similar to that one of PEC case, only the magnetic currents defined over the uniform impedance wall are used as source (Fig. 4b). In a SIW system excited by N coaxial ports (with inner radius j a and outer radius j b ), this particular feeding choice leads to the equivalent network illustrated in Fig. 4c, where further impedances ( )

1 1 1 ln ln 1 2 2 2 j j j L j j b b Z j a a µ ωµ π ε π σ     = = +            
are connected to the input ports. For this reason, once the output currents at each port are determined for each feeding configuration, we need to perform a post processing ready to compute the correct admittance matrix Y of the structure.

Let us feed the i-th port with a voltage Vi, as shown in Fig. 4c. The procedure proposed in [START_REF] Casaletti | Efficient analysis of metallic and dielectric posts in parallel-plate waveguide structures[END_REF] allows computing the output current on the j-th port i 

Z i V j L Z i i I i j I 1 v 1 i I i N I … … … … i L Z N L Z 1 L Z Y ˆi i V 1 ˆi V ˆi N V ˆi j V
We can write ˆL i i i = -+ V Z I V [START_REF] Han | The generalized Chebyshev substrate integrated waveguide diplexer[END_REF] where we have defined the column vectors

1 1 ˆ0 ˆˆ, , 0 ˆi i i i i i i i i i i i N N V I V I V I V                         = = =                                 V I V (39) 
and the diagonal matrix

1 0 0 L L N L Z Z     =       Z   . ( 40 
)
Since for every i î

i = ⋅ I Y V (41)
we can replace ( 38) into (41)

L i i i = - ⋅ + ⋅ I Z Y I Y V
(42) Once N different simulations are performed, one for each excitation, we can define the following matrices

( ) ( ) 1 1 
,

N N = = I I I V V V   (43) 
and the following relation holds 

1 L L - = ⋅ ⋅ -⋅ Y Y V V Z V (45)
If the same excitation is assumed for all the ports,

V = V 1(1
being the identity matrix) and

( )

1 L L L - = ⋅ - Y Y 1 Z Y (46)
An equivalent of the above mentioned procedure could be obtained in terms of equivalent currents, by using the results in [START_REF] Albani | Rigorous MoM analysis of finite conductivity effects in RLSA antennas[END_REF]. A slot excitation can be described only with equivalent magnetic currents allowing the use of the procedure presented in [START_REF] Casaletti | A fullwave hybrid method for the analysis of multilayered SIW-based antennas[END_REF] to study multi-waveguide SIW systems.

VI. NUMERICAL RESULTS

In this section we apply the rigorous and approximated proposed methods for the analysis of SIW microwave devices available in the scientific literature. Four examples have been selected in order to test different features of the method. All the results have been compared with numerical simulation performed with the finite elements commercial software Ansys HFSS TM 15. For the reader's convenience the measured parameters taken from the original articles are also included. The first example is a frequency-selective power combiner/divider [START_REF] Rosenberg | A novel frequency-selective power combiner/divider in single-layer substrate integrated waveguide technology[END_REF]. The structure and the relevant geometrical parameters are given in Fig. 5. The structure is composed by 108 copper posts and is fed by four waveguide ports, each one modeled through an array of PEC posts [START_REF] Casaletti | Efficient analysis of metallic and dielectric posts in parallel-plate waveguide structures[END_REF]. The S-parameters of the structures computed with the rigorous and approximated methods are compared to HFSS TM simulations in Fig. 6. A very good agreement is found among all these methods and the measurements performed in [START_REF] Casaletti | Efficient analysis of metallic and dielectric posts in parallel-plate waveguide structures[END_REF]. The second example is the SIW right-angle corner proposed in [START_REF] Ikeuchi | Honeycomb substrate integrated waveguide (HCSIW) and its application to design of SIW right-angle corner[END_REF]. It consists of 32 copper posts in a corner arrangement and 273 air posts working as an integrated lens. The transition is fed by 2 ports. The top view of the structure is shown in Fig. 7. The interest of this test case is the presence of a large number of dielectric posts. Fig. 8 compares the calculated scattering parameters. A very good agreement is obtained between the simulated transmission parameters S12. Small differences in the reflection parameter S11 are due to the very low level of this parameter.

The third example is a linear phase filter [START_REF] Szydlowski | A linear phase filter in quadruplet topology with frequency-dependent couplings[END_REF] composed by 80 copper posts and 4 rectangular slots acting as reactive loads. The complete structure is shown in Fig. 9. The slots are modeled according to the method of moments approach described in [START_REF] Albani | Rigorous MoM analysis of finite conductivity effects in RLSA antennas[END_REF] by using 5 entire domain basis functions for each slot. The slots admittances are modified according to Section V to rigorously take into account losses. The relevant results are plotted in Fig. 10.

The last example is a large system implementing a generalized Chebychev diplexer [START_REF] Han | The generalized Chebyshev substrate integrated waveguide diplexer[END_REF], composed by 414 copper posts and fed by 3 ports shown in Fig. 11. Also for this last case (see Fig. 12), a very good agreement between scattering parameters is obtained.

We report in Tables I and II the CPU time and used memory for the considered cases and compare them to those of HFSS TM . The data have been generated using a Personal Computer with a 2.8 GHz Intel I7 870 CPU, while the proposed methods have been implemented in Matlab TM . The actual implementation of the codes does not take advantage of multi-core or multi-CPU systems, but it can be parallelized. 7: this method (blue solid lines), rigorous method (green circles), HFSS TM (red dashed lines) and measurements (black dotted lines). Measurements taken from [START_REF] Ikeuchi | Honeycomb substrate integrated waveguide (HCSIW) and its application to design of SIW right-angle corner[END_REF]. These results demonstrate that the proposed algorithm is extremely efficient both in terms of computational and memory requirements. Moreover, since it does not need any meshing, it can play a key-role in design optimization procedures where geometrical parameters are changed. 

   + + -           × = ′   ∆ =    -     - +    - ≠    -    (47) 

Fig. 1 .

 1 Fig. 1. Lateral view of a lossy PPW

k

  are the m-th TM/TE mode transverse propagation constants and the z functions are eigenvalues of the Sturm-Liouville problem ( ) (

  ) 

  the m-th solution (eigenvalues) of the following dispersion equations

Fig. 2 .

 2 Vector eigenfunction expansion of the scattered field from: (a) impenetrable post; (b) penetrable post.

t

  are known quantities depending on the excitation current. For each harmonic n ,[START_REF] Tomasic | Linear array of coaxially fed monopole elements in a parallel plate waveguide -Part I: Theory[END_REF] can then be projected on the m -th adjoint vertical eigenfunction t m ψ in order to obtain a linear system having the same number of equations and unknowns. The obtained equations contains the scalar products between different polarization eigenfunctions: , , ,

Fig. 3 .

 3 Fig. 3. Incident scattered and transmitted field in a penetrable post.

  turns out that with the above-mentioned testing choice, these expressions are composed only by terms having ratio of Bessel/Hankel functions of eigenvalue of the same medium.

  the absence of posts (i.e., computed through the PPW Green's function) and a field H Posts scattered by posts (determined through the mode matching)

Fig. 4 .

 4 Fig. 4. (a) Coaxial excitation's equivalent electric and magnetic currents. (b) Magnetic sources defined over the impedance condition used in the modematching technique. (c) Equivalent Y model of the SIW device under analysis.

  finally obtain a simple expression for the admittance matrix Y ( )

Fig. 5 .

 5 Fig. 5. Geometry of the frequency-selective power combiner/divider [35]. Physical parameters of the substrate: height h = 0.508 mm, relative permittivity εr=2.33, loss tangent tanδ = 0.0012. All dimensions are expressed in millimeters.

Fig. 6 .

 6 Fig. 6. Comparison of the magnitude of the scattering parameters for the test structure represented in Fig. 5: this method (blue solid lines), rigorous method (green circles), HFSS TM (red dashed lines) and measurements (black dotted lines). (a) S1X parameters, (b) S2X parameters, (c) S3X parameters. Measurements taken from [21].

Fig. 7 .

 7 Fig. 7. SIW right-angle corner [36]. Physical parameters of the substrate: height h = 0.508 mm, relative permittivity εr = 4.5, loss tangent tanδ = 0.002. All dimensions are expressed in millimeters.

Fig. 8 .

 8 Fig.8. Comparison of the magnitude of the scattering parameters for the structure represented in Fig.7: this method (blue solid lines), rigorous method (green circles), HFSS TM (red dashed lines) and measurements (black dotted lines). Measurements taken from[START_REF] Ikeuchi | Honeycomb substrate integrated waveguide (HCSIW) and its application to design of SIW right-angle corner[END_REF].

Fig. 9 .

 9 Fig. 9. Geometry of the linear phase filter in quadruplet topology with frequency-dependent couplings [37]. Physical parameters of the substrate: height h=0.762, relative permittivity εr=3.46, loss tangent tanδ=0.0018. All dimensions are expressed in millimeters.

Fig. 10 .Fig. 11 .Fig. 12 .

 101112 Fig.10. Comparison of the magnitude of the scattering parameters for the structure represented in Fig.9: this method (blue solid lines), rigorous method (green circles), HFSS TM (red dashed lines) and measurements (black dotted lines). Measurements taken from[START_REF] Szydlowski | A linear phase filter in quadruplet topology with frequency-dependent couplings[END_REF].

TABLE I CPU

 I SIMULATION TIME ON A XEON E5540 2.83 GHZ WITH 16 GBYTE RAM

	Structure	Metallic / dielectric posts	HFSS Freq. Mesh Point	This paper
	Power combiner	108 / 0	99 s	7 s	1.58 s
	Matched corner	32 / 273	2012 s	585 s	9.04 s
	Linear ph. Filter	80 / 0	585 s	137 s	9.76 s
	Cheb. diplexer	414 / 0	746 s	35 s	10.2 s

TABLE II MEMORY

 II USED ON A XEON E5540 2.83 GHZ WITH 16 GBYTE RAM

	∆	, TM TM , m n	2 =  4 π      	(	( ) 1 ε -ω ε ( ) ( ) ( 2 2 1 h 2 m m n 2 2 h π ω ε -	( ) ) ( ) ) ( 2 1 1 m n m n ε ( ) 2 + = ) m n + + -≠
			2	1 ωµ h	( ) 2		4	1 h	2	( ) ( ) 2 2 1 2 π ω ε µ 2 3 m h	4	( ) ( ) 1 2 2 2 ω ε µ 2 m π	h
		, TE TM , m n		m	2 2 π	h	( ) 1 2 2 ωε h 2 ω ε µ ( ) ( ) 1 2	m n
				2	n	( ) ( ( 2 1 n m n m +	2	)	) 1	h	2 ωµ n 2 π	2	π ωε	( ) 1	m n

The authors would like to thank the Agence Nationale de la Recherche (grant ANR 2010 VERS 001301, grant ANR 12-EMMA-0041-01) and DGCIS (FUI 10, DENOTEIC).

M. Casaletti and G.

VII. CONCLUSION

We have presented here a rigorous approach for the fullwave analysis of lossy SIW devices. A modified boundary Green's function taking into account the losses on the waveguide plates is used. Different kinds of boundary conditions are imposed on the later surface of the posts, according to their nature: good conducting posts are described through a Leontovich condition, while field continuity is imposed on the surface of dielectric posts, possibly lossy. A rigorous calculation of the input parameters is also given, for different kind of excitations. At microwaves regime, an approximated formulation based on the physical properties of these devices has been introduced. Numerical results relevant to real microwave devices making use of metallic and dielectric posts have been presented and validated by fullwave simulations with commercial software (HFSS TM ). An excellent agreement is obtained for all cases with reduced computational time and memory occupation, making this method suitable to be used in optimization procedures.

APPENDIX

In the following the superscripts (1) and (2) refer to media with parameters ( ) ( )