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Abstract— In this paper, the authors present a method for the 
analysis of lossy Substrate Integrated Waveguide (SIW) 
structures. The analysis is achieved through the cylindrical-wave 
mode expansion of the field and a mode matching technique to 
enforce boundary conditions on the post surfaces. We introduce 
an approximated formulation of the previous exact procedure, 
valid in the microwave regime, and numerically examine a 
number of microwave devices using both approximated and exact 
analyses. These devices include filters, couplers, phase shifter, 
etc. Results are presented for the scattering parameters and 
compared to those obtained with commercial software in terms of 
accuracy and computational time.  
 

Index Terms— conductor losses, Green’s functions, method of 
moments (MoM), SIW 
 

I. INTRODUCTION 
ith an ever-increasing number of micro- and 

millimeter-wave devices being built in substrate-
integrated waveguide (SIW) technology [1]-[4], and their 
inevitably increasing complexity (e.g., [5]-[7]), there is need 
for a fast and accurate method of analyzing and optimizing 
such devices. Moreover, with the shift of applications of this 
attractive technology to higher frequency bands (even as high 
as the D-band [8]), one needs to accurately assess conductor 
losses, which become the dominant loss mechanism in SIW-
based devices at higher frequencies [9], significantly 
degrading the performance of devices, e.g., lowering the gain 
of slotted arrays or increasing the insertion loss of SIW-filters. 
This is especially important when low-cost fabrication 
techniques relying on low-conductivity metals are employed. 
In addition, the conductor roughness, especially of the ground 
plates, starts to play a role in the overall loss, further 
increasing it. This is particularly important for specific 
manufacturing technology as Low Temperature Co-fired 
Ceramic (LTCC) or low cost inkjet processes [10]. 

Over the past years, several methods for the analysis of SIW 
devices have been proposed, ranging from finite-difference 
schemes [11], equivalent-width waveguide methods [12], 
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boundary integral-resonant method [13] and integral-equation-
based methods [14]-[19]. However, most of these methods 
lack in generality, being applicable mostly to shielded PEC 
structures mimicking conventional rectangular waveguides 
[9], [17], [18], dealing with electrically thin cylindrical 
scatterers [14], or operating in the Transverse Magnetic (TM) 
mode regime [15]-[18]. This is a hindrance to designing, since 
one has to consider carefully the effect of all relevant modes 
[20]-[22], which may be induced at discontinuities in the 
system under consideration, and, more importantly, since the 
geometry may in general be irregular and quite complex. 
Furthermore, the losses were modeled using approximations 
of severely restricted validity, mostly by effective or 
empirically determined surface impedances as in [9] and [12]. 
In [16], losses were incorporated into an approximate mode-
matching analysis of single-waveguide SIW structures. 
However, only the basic coaxial feed was used to excite the 
structures under study, limiting the analysis to the study of TM 
modes only. Moreover, the coaxial feeds were approximately 
modeled as magnetic currents radiating into an infinite 
perfectly electric conductor (PEC) parallel-plate waveguide 
(PPW). This may be valid when the conductivity of the ground 
plane is high, but when this is not the case, this approximation 
yields inaccurate feeding fields as the coaxial feed may induce 
higher-order modes in the waveguide. Also, the connecting 
vias were considered to be exclusively PEC, thus avoiding 
coupling between Transverse Electric (TE) and TM modes, 
which can be significant when low-conductivity metal is used. 

Therefore, one needs a general, reliable and efficient 
analysis tool that could take into account properly the 
aforementioned effects and consequently be used in design 
and optimization. The authors have recently proposed a hybrid 
Method of Moments (MoM)/Mode-Matching (MM) method 
[21],[23], capable of accurately analyzing stacked planar SIW 
structures with the possible presence of coupling or radiating 
slots etched in conducting plates. Here we extend the mode-
matching part, which can be subsequently used as the building 
block in the MoM framework (e.g., [23]), to incorporate 
conductor losses in a rigorous manner. The resulting code 
provides a reliable full-wave tool to design and optimize SIW 
devices by rigorously taking into account losses. A significant 
reduction of computation time and memory usage is achieved 
with respect to commercial software, especially when large 
structures are considered and need to be optimized. 

The formulation of the problem in terms of lossy 
eigenfunctions is similar to the one presented in [24], where 
only slots in a PPW are considered in the absence of vertical 
posts. The formulation has been described with no 
mathematical details and no results in [25]. The need of non-
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orthogonal vertical eigenfunctions in the presence of lossy 
plates has been introduced in [26], together with preliminary 
numerical results of a structure not shown in this paper. 
However, details on the actual implementation are discussed 
here for the first time.  

To be more specific, we model both the conductor losses 
and small metal surface roughness using the Leontovich 
boundary condition [27], granting the description of lossy or 
rough metal surfaces as surface impedances. This allows one 
to derive analytically the necessary scalar Green’s functions, 
and, subsequently, a set of scalar potentials from which the 
PPW dyadic admittance Green’s function can be obtained 
through differentiation [28]. The lossy metal vias are modeled 
either as lossy-dielectric cylinders, or as surface impedances, 
whose scattered fields can be found by enforcement of the 
impedance boundary conditions on their respective surfaces. 
In addition, we consider the effect of placing a coaxial feed 
over a lossy plane through the application of the equivalence 
principle in a rigorous manner. 

The paper is organized as follows. Section II gives a brief 
outline of the derivation of both the necessary Green’s 
functions and the vector wave functions with special emphasis 
on the underlying mathematical structure. 

In Section III, mode coupling in lossy SIW is quantitatively 
studied, while in Section IV an approximated mode-matching 
approach is derived, based on previous section results. Section 
V deals with the definition and computation of input 
parameters. Finally, in Section VI, we validate the results of 
numerical analysis by comparison against an FEM-based 
commercial code in terms of accuracy and computation time. 

II. MATHEMATICAL BACKGROUND 

 
Fig. 1. Lateral view of a lossy PPW 
 
In typical microwave applications, SIW channels are 

obtained by drilling commercial metalized dielectric 
substrates, and then filling the holes with conducting materials 
(or dielectric) in order to implement the cylindrical posts. This 
procedure leads to structures that use the same kind of 
metallization for both top and bottom planes. Moreover, at this 
frequency regime, the roughness of the metallization can be in 
general neglected. All these considerations lead to the use of 
the Leontovich equivalent boundary condition for the metallic 
planes 

 ( ) ( )1 / 2s sZ j ωµ σ= +   (1) 

where σ is the conductivity, ω  is the angular velocity and 

sµ is the permeability. Other type of surfaces (such as thin 
metals [29], rough surfaces [30][31] or partially reflecting 
surfaces [32]) can be modeled through an equivalent 
impedance. For the sake of brevity, in this work only lossy 
metal plates will be considered henceforth. 
The structure under analysis consists of a PPW, defined by 
two horizontal lossy metallic plates placed at a distance h, 
laterally unbounded, filled by a dielectric medium (see Fig. 1).  
Inside the PPW an arbitrary number of vertical cylindrical 
posts can be placed, either of penetrable or impenetrable 
medium. 

From a computational point of view, it is of paramount 
importance to choose the most effective representation 
according to the kind of field. In this view, the cylindrical 
eigenmode expansion of the field seems to be the appropriate 
choice [33]. The fields scattered by these posts can be 
modeled by linear sums of vector modes with unknown 
amplitude, while the incident field on the posts can be 
computed through a Green’s function represented in terms of 
eigenfunctions expansion [33]. The scattered amplitudes are 
then found by imposing boundary conditions on the post 
surfaces. 

Vector functions are defined as in [30, Sec. 7.2] 
 

 
( ) ( )

( ) ( )

ˆ ,

1 ˆ ,

TM

TE

k

 = ∇ Φ 

 = ∇ ∇ Φ 

M r z r

N r z r

×

× ×
 (2) 

referring to the transverse (with respect to z) magnetic field 
TMz and TEz polarization, respectively. The scalar Φ
functions must satisfy the scalar Helmholtz equation. 
Assuming a j te ω  time harmonic dependence, it can be solved 
by conventional means, through separation of variables in 
cylindrical coordinates ( ), , zρ φ≡r  (in anticipation of the 
presence of circular cylindrical scatterers), yielding 
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( )
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ρ
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 

r  (3) 

 
with TM/TEt = , where nJ  and (2)

nH  are n-th order Bessel 
and second kind Hankel functions describing the radial 
dependence of fields inside and outside the posts, respectively. 

m

tkρ , 
m

t
zk  are the m-th TM/TE mode transverse propagation 

constants and the z functions are eigenvalues of the Sturm-
Liouville problem 
 

 ( ) ( )
2 2

2 0t t
z

d k z
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 
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 
 (4) 

 
subject to the following boundary conditions on the conductor 
plates 
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Since the coefficients of the terms in the boundary conditions 
are complex, this defines a nonself-adjoint Sturm-Liouville 
problem [30, Sec. 5.3]. If we wish to construct complete 
orthonormal sets based on these solutions in order to construct 
arbitrary fields, we need normalized eigenfunctions. This can 
be accomplished through a suitable choice of the coefficients 

mc . Using the L2-Hermitian inner product the eigenfunctions 
ψ  of the adjoint problem are obtained from a Helmholtz 
operator having a complex conjugate wavenumber and adjoint 
boundary conditions at the conducting plates. 
Since the solutions ψ  to the adjoint TM/TE problems are the 
complex conjugate of ψ , the normalization can be performed 
through the bi-orthogonality relationship as [22, Sec. 5.3]  
 

 ( ) ( )*

0
, ,

ht t t t
m n m n mnz z dz δψ ψ = ψ ψ =∫  (6) 

 
with TM/TEt =  and mnδ  denoting the Kronecker’s symbol 

1mnδ =  when m n=  or 0mnδ =  when m n≠ . 
This procedure leads to  
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where ,m

m

TM TE
m m

TM
z
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z

Z Z
k

k
ωµ

ωε
= =  are the modal impedance of the 

m-th TM/TE mode, respectively and ,
m m

TM TE
z zk k  are the m-th 

solution (eigenvalues) of the following dispersion equations  
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The field scattered by the posts in the whole SIW structure 

is thus expressed as a discrete sum of vector cylindrical waves 
defined as 
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where, for the vector eigenfunctions (2) the Bessel function 
nJ  is used for the field inside the posts, while the second kind 

Hankel function ( )2
nH is used elsewhere. 

Having obtained orthonormal bases for the eigenfunction 
expansion, we proceed to derive the dyadic magnetic Green’s 
function, given in [28],[24] as 
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Thus, the incident magnetic field radiated by a magnetic 
source MJ  distributed on a surface S ′  is obtained as the 
convolution of (10) with MJ , resulting in 
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where 
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with TM
mn mn=P M , TE

mn mn=P N . 
For a given source, the expansion coefficients for the field are 
found through a MM procedure by imposing boundary 
conditions on the post surfaces, as explained in next Section. 

III. DETERMINATION OF THE COEFFICIENTS OF THE 
SCATTERED FIELD EXPANSION 

 
(a)                                                           (b) 

Fig. 2. Vector eigenfunction expansion of the scattered field from: (a) 
impenetrable post; (b) penetrable post. 

 
Once the dyadic Green’s function and vector wave 

functions are known, one can proceed to the formulation of the 
MM/MoM problem, since all types of fields (impressed and 
scattered) on the post surfaces can be described efficiently. A 
resolvable system of linear equations is obtained by imposing 
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the appropriate boundary conditions. 

A. Impenetrable posts 
To determine the field scattered by an impenetrable post 

(Fig. 2a) of radius aq, described by a non-dispersive 
impedance condition sZ , we impose the following boundary 
condition on the surface of the post 

 

 ( ) ( )TOT TOTˆ ˆ ˆ
q q

q s q qa a
Z

′ ′− = − =
× = × ×

ρ ρ ρ ρ
ρ E r ρ ρ H r  (13) 

 

where ˆ qρ  is the radial unit vector directed from the center of 
the post toward the exterior of the post, and ETOT and HTOT are 
the total electric and magnetic fields, respectively. For 0sZ =
condition (13) resort to the PEC post case. 

The fields are expanded through cylindrical wave functions 
as in (9). From the two scalar components of the vector 
identity (13) a couple of linear equations is obtained for the 
unknowns t

mnqA . They are expressed as a series of azimuthal 
modes with linear phase around the q-th cylinder. From the 
orthogonality of the azimuthal eigenfunctions jne φ  (see [21]) 
we can obtain two linear equations for each azimuthal 
harmonic n  
 

 ( ),
n TM TE n

mnq mnqf A A tφ φ= , ( ),
n TM TE n

z mnq mnq zf A A t=  (14) 
 

The two equations come from the φ and the z components of 
(13); nfφ  and n

zf  are linear functions of TM
mnqA  and TE

mnqA , ntφ  

and n
zt  are known quantities depending on the excitation 

current. For each harmonic n , (14) can then be projected on 
the m -th adjoint vertical eigenfunction t

mψ  in order to obtain 
a linear system having the same number of equations and 
unknowns. The obtained equations contains the scalar 
products between different polarization eigenfunctions: 

, , ,TE TM TM TE
m m m m

′ ′ψ ψ ψ ψ .  

If 0sZ = , (13) and (14) both reduce to the simpler case of a 
PEC post, where the TE and TM polarizations are decoupled. 

B. Penetrable posts 

 
Fig. 3. Incident scattered and transmitted field in a penetrable post. 
 

To determine the field scattered from a penetrable (possibly 
lossy) post, whose radius is qa  and complex dielectric 

constants are ( ) ( ),q q
r rε µ , the continuity of the tangential electric 

and magnetic fields are imposed on the post surface (Fig. 3) 
 

   ( ) ( ) ( ) ( )PPW Postsˆ ˆ ˆ
q q

q
q q qa a′− = ′− =

× + × = ×
ρ ρ ρ ρ

ρ E r ρ E r ρ E r   (15) 

 ( ) ( ) ( ) ( )PPW Postsˆ ˆ ˆ
q q

q
q q qa a′− = ′− =

× + × = ×
ρ ρ ρ ρ

ρ H r ρ H r ρ H r   (16) 
 

where the superscripts ‘PPW’, ‘Posts’, and ‘q’ stand 
respectively for the fields excited in the PPW in the absence of 
the posts, for the fields scattered by all the posts, and for the 
field inside the q-th post under analysis. The fields in the 
waveguide are expanded through the Hankel function 
formulation of (9), while the field inside each cylinder is 
expanded through the Bessel function expression. Note that, if 
the post is metallic, a null field is retained inside the post, and 
only the electric field continuity (15) is used. 

Each equation (15)-(16) can be projected along the φ  and 
the z directions, thus obtaining a system of four scalar 
equations for the unknown coefficient /TM TE

mnlA  and /TM TE
mnlB . 

These scalar equations are then projected on the basis of 
harmonic functions describing the azimuthal dependence of 
field around the considered cylinder. For each harmonic n , 
the two equations resulting from the components of (15) are 

 
 ( ),

n TM TM n
mnl mnle A B tφ φ=   (17) 

 ( ), , ,n TM TE TM TE n
z mnl mnl mnl mnl ze A A B B t=   (18) 

 
and the two equations resulting from the components of (16) 
are 
 

 ( ),n TE TE n
mnl mnlh A B sφ φ=   (19) 

 ( ), , ,n TM TE TM TE n
z mnl mnl mnl mnl zh A A B B s=   (20) 

 
where e and h are linear functions of /TM TE

mnlA  and /TM TE
mnlB , and t 

and s are known quantities depending on the excitation 
current. The four equations can then be projected on the 
vertical eigenfunctions ψ  in order to obtain a linear system 
having the same number of equations and unknowns. 

Specifically, a careful choice of the eigenfunctions should 
be done in order to obtain stable solutions even for large losses 
in the cylinder. In fact, we can have eigenfunctions defined 
inside the q-th post (where wavenumbers are referred to the 
post dielectric), namely ( )q

mψ , and eigenvalues defined in the 
PPW (where wavenumbers are referred to the PPW dielectric), 
namely mψ . It turns out that the best strategy is to project 

(17) and (19) on mψ , and (18) and (19) on ( )q
mψ  
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 ( )
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 ( ) ( ) ( )
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 ( ) ( ) ( )
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We can derive explicit expressions for TM
mnlB  from (21) and 

for TE
mnlB  from (22), and substitute them into (23) and(24). 

Using the bi-orthogonality relationship (6) we finally obtain 
two scalar equations for the unknowns TM

mnlA  and TE
mnlA . It turns 

out that with the above-mentioned testing choice, these 
expressions are composed only by terms having ratio of 
Bessel/Hankel functions of eigenvalue of the same medium. 
Thus, also with a large imaginary part of the argument the 
terms remain numerically stables. 

In order to enforce (21)-(24), the computation of the 
following scalar products is required 
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where mψ is the m-th TM or TE vertical eigenfunction in the 

dielectric substrate, while ( )q
mψ  is the eigenfunction relative to 

the q-th dielectric post. 

IV. APPROXIMATED MM FORMULATION 
In this section we use an approximation of (25) in order to 

simplify the MM procedure developed in the previous section.  
Starting form analytical expressions (7), these products can 

be calculated rigorously in closed form and approximated as a 
series expansion for good conductive PPW walls. 

In standard microwave applications, good conductors are 
characterized by small values of the ratio sR η , where 

( )2s sR ωµ σ=  and η µ ε= . Under this hypothesis, the 

wavenumbers solution of (8) can be approximated as in [24] 
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Using (26) in the inner products (25) asymptotic expressions 
can be obtained for the coupling between different PPW 
modes for small values of sR η . 
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where 
3
42 /

j
e

π
α µ ε=  and the amplitudes ,m n∆ depend on 

physical and geometrical parameters as shown in the 
appendix. For microwave applications the scalar products (25) 
can be safely approximated by the first terms of (27). In other 
words, (27) states that for typical microwave applications the 
scalar wavefunctions t

mψ  of lossy SIW have the same 
properties as for the case of a lossless SIW. This means that 
the wave-vectors defined by (7) are quasi-orthogonal. 

A. Impenetrable posts 
The field scattered by an impenetrable post of radius aq, 

described by a non-dispersive impedance condition sZ  under 
the assumption (27) has to verify on the surface the following 
conditions for every couple of indexes ( ),m n  
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  (28) 
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where sZϑ ζ= , and 0 0r rζ µ µ ε ε= . 
Eqs.(28)-(29) are valid also for PEC posts ( 0SZ ϑ= = ). In 
this particular situation, (28)-(29) reduce to 
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B. Penetrable posts 
The field scattered by a penetrable (possibly lossy) post, 

whose radius is aq and complex dielectric and magnetic 
constants are ( ) ( ),q q

r rε µ , have to grant the continuity of the total 
tangential electric and magnetic fields. These latter conditions, 
together with (27), lead to the following equations 
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   (33) 

C. Determination of the expansion coefficients 
Let the structure under analysis be composed by N  posts. 

In order to numerically solve the equations (28)-(32), the 
number of retained azimuthally and vertical modes Nφ  and 

zN , respectively, can be chosen according to [21],[23]. 
Since vertical modes with different orders m are decoupled, 

it is possible to cast (28)-(32) for each value 1, , zm N=   into 
the following matrix form 

 

 
, ,

, ,

TM TM TM TE TM
TM TEm m m
mTE TM TE TE TE

m m m

+   
=   

   

T T A
Ω

T T A
 (34) 

 
where mT  are the post interaction coupling matrices, 

,
TTM TE

m m  A A  is the unknown vector containing all the 

cylindrical waves coefficients and /TM TE
mΩ  is the excitation 

vector. The unknown field coefficients are then found by 
solving a zN matrix equations (33).  

V. INPUT PARAMETERS 
In this Section we discuss the definition of excitation ports 

and the calculation of the input parameters, starting from the 
results obtained from the procedure described in the previous 
sections. Source modeling for specific geometries have been 
proposed in the past as in [21][34]. Here we follow the 
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formulation in [21]. We only outline the differences with the 
PEC walls case for a waveguide port excitation and a general 
excitation defined over the impedance walls (coaxial 
excitation, slots). 

A. Waveguide Ports: Computation of the Input Parameters  
The computation of the input parameters is performed 

according to the same approach presented in [21]. Once the j-
th input port is fed with the equivalent magnetic current jh , a 
modal decomposition is performed on the total magnetic field 
Hi at the i-th port for each i, by projecting Hi on the 
rectangular waveguide modes hnm (the TE10 fundamental mode 
is used in the following, being usually sufficient for our 
scopes). The field Hi can be decomposed in a field 

( ) ( )01PPW TE,q j j j⋅G r r h r  excited in the absence of posts (i.e., 

computed through the PPW Green’s function) and a field 
HPosts scattered by posts (determined through the mode 
matching) 

 

 ( ) ( ) ( )

( ) ( )

01 01

01

PPWTE TE

TE Posts PPW Posts

,
q j

q

q

q j
qj w w

q q q j j j j q
P P

P
w q q q q

P

Y j Z Z

dS dS

Z dS Y Y

ωε=

⋅ ⋅ ⋅

+ ⋅ = +

∫ ∫

∫

h r G r r h r

h r H r

 (35) 

 
The computation of YPPW can be performed by moving on 

the current h the derivatives present in the definition of the 
Green’s function. The details are shown in [21], while an 
efficient computation of YPosts has been presented in [23]. 

However, the presence of impedance boundary condition on 
the PPW plates leads to a different integral expression for 
YPPW. In fact in this new structure, since the TM and TE radial 
wavenumbers are different, the z-derivative of the scalar 
potential TES  does not cancel out the scalar potential TMS . 
Following [24], after a lengthy calculation, the final 
expression for YPPW is 
 

( )

( ) ( )

( ) ( ) ( ) ( )

01 01

01 01

TE TE 2 TM

2 TE TE

TE TE2 TM

,

         , ,

ˆ ˆ ,

q j

q j

q j
PPW w w

qj u q u j
P P

q j
w w

q j q q j j
P P

Z Z
Y h h k S

j

k S G dS dS

Z Z
k h G h dS dS

j

ωµ

ωµ

′ ′= − ∂ ∂ −

′ ′ ′+ − 

′ ′− ⋅

∫ ∫

∫ ∫

r r

r r r r

u u r r r r

  (36) 

 
where TEG is a dual TE Green’s function (appearing in [24] in 
connection with slot modeling). It corresponds to the current 
in a TE equivalent transmission line fed by a unit series 
voltage generator, as opposed to the conventional GTE Green’s 
function (a voltage in a TE equivalent transmission line fed by 
a unit shunt current generator) [28]. 

B. Coaxial Cables and slots: Computation of the Admittance 
Matrix 

Coaxial cables can be described through equivalent currents 
placed on one of the PPW plates [21], as shown in Fig. 4a. 
However, due to the presence of losses, the equivalent input 
and output magnetic currents are not placed on PEC plates 
(i.e., short circuits), as required by the definition of the 
admittance matrix. In order to keep the formulation simpler 
and similar to that one of PEC case, only the magnetic 
currents defined over the uniform impedance wall are used as 
source (Fig. 4b). In a SIW system excited by N coaxial ports 
(with inner radius ja  and outer radius jb ), this particular 
feeding choice leads to the equivalent network illustrated in 
Fig. 4c, where further impedances  

 

 ( )1 1 1ln ln 1
2 2 2

j jj
L

j j

b b
Z j

a a
µ ωµ

π ε π σ
   

= = +      
   

  (37) 

are connected to the input ports. 
For this reason, once the output currents at each port are 

determined for each feeding configuration, we need to perform 
a post processing ready to compute the correct admittance 
matrix Y  of the structure. 

Let us feed the i-th port with a voltage Vi, as shown in Fig. 
4c. The procedure proposed in [21] allows computing the 
output current on the j-th port i

jI . The ratio /i
j iI V  is the ij 

element of the matrix LY . On the other hand, the entries of 

the admittance matrix Y  are defined with respect to the 

voltages ˆ i
iV  at the input of the N-port network, i.e., after each 

impedance LZ . 

 

 

 

(a) (b) 

 
(c) 

 
Fig. 4. (a) Coaxial excitation’s equivalent electric and magnetic currents. (b) 
Magnetic sources defined over the impedance condition used in the mode-
matching technique. (c) Equivalent Y model of the SIW device under 
analysis. 
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We can write 
 ˆ

Li i i= − +V Z I V  (38) 
where we have defined the column vectors 
 

 

1 1
ˆ 0

ˆ ˆ , ,

0ˆ

i i

ii
i i i iii

ii
NN

V I

VIV

IV

          
     
     = = =     
     
         

 



V I V  (39) 

 
and the diagonal matrix 

 

1 0

0

L

L
N
L

Z

Z

 
 =  
  

Z




.  (40) 

 
Since for every i 
 ˆ

i i= ⋅I Y V  (41) 
 
we can replace (38) into (41) 

 Li i i= − ⋅ + ⋅I Z Y I Y V  (42) 
Once N different simulations are performed, one for each 

excitation, we can define the following matrices 
 ( ) ( )1 1,N N= =I I I V V V   (43) 

and the following relation holds 
 ( ) ( ) 1

L L
−= ⋅ − ⇒ = ⋅ −I Y V Z I Y I V Z I  (44) 

By replacing in (44) the simulated results L= ⋅I Y V , we 
finally obtain a simple expression for the admittance matrix Y 

 ( ) 1
L L

−= ⋅ ⋅ − ⋅Y Y V V Z V  (45) 

If the same excitation is assumed for all the ports, V=V 1 (1 
being the identity matrix) and 

 ( ) 1
LL L

−= ⋅ −Y Y 1 Z Y  (46) 
 
An equivalent of the above mentioned procedure could be 
obtained in terms of equivalent currents, by using the results in 
[24]. A slot excitation can be described only with equivalent 
magnetic currents allowing the use of the procedure presented 
in [23] to study multi-waveguide SIW systems.  

VI. NUMERICAL RESULTS 
In this section we apply the rigorous and approximated 

proposed methods for the analysis of SIW microwave devices 
available in the scientific literature. Four examples have been 
selected in order to test different features of the method. All 
the results have been compared with numerical simulation 
performed with the finite elements commercial software 
Ansys HFSSTM 15. For the reader’s convenience the measured 
parameters taken from the original articles are also included. 
The first example is a frequency-selective power 
combiner/divider [35]. The structure and the relevant 
geometrical parameters are given in Fig. 5. The structure is 

composed by 108 copper posts and is fed by four waveguide 
ports, each one modeled through an array of PEC posts [21]. 
The S-parameters of the structures computed with the rigorous 
and approximated methods are compared to HFSSTM 
simulations in Fig. 6. A very good agreement is found among 
all these methods and the measurements performed in [21]. 
The second example is the SIW right-angle corner proposed in 
[36]. It consists of 32 copper posts in a corner arrangement 
and 273 air posts working as an integrated lens. The transition 
is fed by 2 ports. The top view of the structure is shown in Fig. 
7. The interest of this test case is the presence of a large 
number of dielectric posts. Fig. 8 compares the calculated 
scattering parameters. A very good agreement is obtained 
between the simulated transmission parameters S12. Small 
differences in the reflection parameter S11 are due to the very 
low level of this parameter. 

The third example is a linear phase filter [37] composed by 
80 copper posts and 4 rectangular slots acting as reactive 
loads. The complete structure is shown in  

Fig. 9. The slots are modeled according to the method of 
moments approach described in [24] by using 5 entire domain 
basis functions for each slot. The slots admittances are 
modified according to Section V to rigorously take into 
account losses. The relevant results are plotted in Fig. 10. 

The last example is a large system implementing a 
generalized Chebychev diplexer [38], composed by 414 
copper posts and fed by 3 ports shown in Fig. 11. Also for this 
last case (see Fig. 12), a very good agreement between 
scattering parameters is obtained. 

We report in Tables I and II the CPU time and used 
memory for the considered cases and compare them to those 
of HFSSTM. The data have been generated using a Personal 
Computer with a 2.8 GHz Intel I7 870 CPU, while the 
proposed methods have been implemented in MatlabTM. The 
actual implementation of the codes does not take advantage of 
multi-core or multi-CPU systems, but it can be parallelized. 

 
 

 
 

Fig. 5. Geometry of the frequency-selective power combiner/divider [35]. 
Physical parameters of the substrate: height h = 0.508 mm, relative 
permittivity εr=2.33, loss tangent tanδ = 0.0012. All dimensions are expressed 
in millimeters. 
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(a) 

 

 
 
(b) 

 

 
 
(c) 

 
Fig. 6. Comparison of the magnitude of the scattering parameters for the test 
structure represented in Fig. 5: this method (blue solid lines), rigorous method 
(green circles), HFSSTM (red dashed lines) and measurements (black dotted 
lines). (a) S1X parameters, (b) S2X parameters, (c) S3X parameters. 
Measurements taken from [21]. 

 
Fig. 7. SIW right-angle corner [36]. Physical parameters of the substrate: 
height h = 0.508 mm, relative permittivity εr = 4.5, loss tangent tanδ = 0.002. 
All dimensions are expressed in millimeters. 

 

 
 

Fig. 8. Comparison of the magnitude of the scattering parameters for the 
structure represented in Fig. 7: this method (blue solid lines), rigorous method 
(green circles), HFSSTM (red dashed lines) and measurements (black dotted 
lines). Measurements taken from [36]. 
 

 
 
Fig. 9. Geometry of the linear phase filter in quadruplet topology with 
frequency-dependent couplings [37]. Physical parameters of the substrate: 
height h=0.762, relative permittivity εr=3.46, loss tangent tanδ=0.0018. All 
dimensions are expressed in millimeters. 
 
 
These results demonstrate that the proposed algorithm is 
extremely efficient both in terms of computational and 
memory requirements. Moreover, since it does not need any 
meshing, it can play a key-role in design optimization 
procedures where geometrical parameters are changed. 
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Fig. 10. Comparison of the magnitude of the scattering parameters for the 
structure represented in Fig. 9: this method (blue solid lines), rigorous method 
(green circles), HFSSTM (red dashed lines) and measurements (black dotted 
lines). Measurements taken from [37]. 
 

 
 

Fig. 11. Geometry of the generalized Chebyshev SIW diplexer [38]. Physical 
parameters of the substrate: height h= 0.762 mm, relative permittivity εr=3.46, 
loss tangent tanδ = 0.0018. All dimensions are expressed in millimeters. 
 

 
Fig. 12. Comparison of the magnitude of the scattering parameters for the 
structure represented in Fig. 11. This method (blue solid lines), rigorous 
method (green circles), HFSSTM (red dashed lines) and measurements (black 
dotted lines). Measurements taken from [38]. 

TABLE I 
CPU SIMULATION TIME ON A XEON E5540 2.83 GHZ WITH 16 GBYTE RAM 

Structure Metallic / dielectric 
posts  

HFSS 
This 
paper Mesh Freq. 

Point 
Power combiner 108 / 0 99 s 7 s 1.58 s 
Matched corner  32 / 273 2012 s 585 s 9.04 s 

Linear ph. Filter 80 / 0 585 s 137 s 9.76 s 
Cheb. diplexer 414 / 0 746 s 35 s 10.2 s 
 

TABLE II 
MEMORY USED ON A XEON E5540 2.83 GHZ WITH 16 GBYTE RAM 

Structure Metallic/dielect
posts 

HFSS 
This 
paper Mesh Freq. 

Point 
Power combiner 108 / 0 254 MB 252 MB 60 MB 
Matched corner  32 / 273 4.55 GB 4.55 GB 200 MB 

Linear ph. shifter 80 / 0 1.72 GB 1.71 GB 90 MB 
Cheb. diplexer 414 / 0 1.02 GB 1.02 GB 320 MB 

 

VII. CONCLUSION 
We have presented here a rigorous approach for the full-

wave analysis of lossy SIW devices. A modified boundary 
Green’s function taking into account the losses on the 
waveguide plates is used. Different kinds of boundary 
conditions are imposed on the later surface of the posts, 
according to their nature: good conducting posts are described 
through a Leontovich condition, while field continuity is 
imposed on the surface of dielectric posts, possibly lossy. A 
rigorous calculation of the input parameters is also given, for 
different kind of excitations. At microwaves regime, an 
approximated formulation based on the physical properties of 
these devices has been introduced. Numerical results relevant 
to real microwave devices making use of metallic and 
dielectric posts have been presented and validated by full-
wave simulations with commercial software (HFSSTM). An 
excellent agreement is obtained for all cases with reduced 
computational time and memory occupation, making this 
method suitable to be used in optimization procedures. 

APPENDIX 
In the following the superscripts (1) and (2) refer to media 

with parameters ( ) ( )1 1,r rε µ  and  ( ) ( )2 2,r rε µ , respectively.  

The amplitudes ,m n∆  in (27) depend on physical and 
geometrical parameters as follow: 

( ) ( )( )
( )

( )

( )

( )

2 1
,

, 1 21 2

1TE TE
m m

h
µ µ
µ µω µ µ

 
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=

− 
∆   
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21 23 32 2
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2 22

2 12 2 2 2,
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22 2 2
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π ω µ

+
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 (47) 
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