
HAL Id: hal-01397009
https://hal.sorbonne-universite.fr/hal-01397009v1

Submitted on 15 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Automation and intelligent scheduling of distributed
system functional testing

Lom Messan Hillah, Ariele-Paolo Maesano, Fabio de Rosa, Fabrice Kordon,
Pierre-Henri Wuillemin, Riccardo Fontanelli, Sergio Di Bona, Davide Guerri,

Libero Maesano

To cite this version:
Lom Messan Hillah, Ariele-Paolo Maesano, Fabio de Rosa, Fabrice Kordon, Pierre-Henri Wuillemin,
et al.. Automation and intelligent scheduling of distributed system functional testing. International
Journal on Software Tools for Technology Transfer, 2017, 19 (3), pp.281-308. �10.1007/s10009-016-
0440-3�. �hal-01397009�

https://hal.sorbonne-universite.fr/hal-01397009v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Automation and Intelligent Scheduling of Distributed System
Functional Testing
Model-Based Functional Testing in Practice

Lom Messan Hillah12, Ariele-Paolo Maesano23, Fabio De Rosa3, Fabrice Kordon2, Pierre-Henri Wuillemin2

Riccardo Fontanelli4, Sergio Di Bona4, Davide Guerri4, Libero Maesano3

1 Univ. Paris Ouest Nanterre La Défense, F-92000 Nanterre, France
2 Sorbonne Universités, UPMC Univ. Paris 06, CNRS, LIP6 UMR7606, F-75005 Paris, France

e-mail: {lom-messan.hillah, fabrice.kordon, pierre-henri.wuillemin}@lip6.fr
3 Simple Engineering France, F-75011 Paris, France

e-mail: {ariele.maesano, libero.maesano, fabio.de-rosa}@simple-eng.com
4 Dedalus S.p.A, 50141 Firenze, Italy

e-mail: {riccardo.fontanelli, sergio.dibona, davide.guerri}@dedalus.eu

Received: date / Revised version: date

Abstract. This paper presents the approach to functional test
automation of services (black-box testing) and service archi-
tectures (grey-box testing) that has been developed within the
MIDAS project and is accessible on the MIDAS SaaS. In par-
ticular, the algorithms and techniques adopted for addressing
input and oracle generation, dynamic scheduling, and session
planning issues supporting service functional test automation
are illustrated. More specifically, the paper details: (i) the
test input generation based on formal methods and temporal
logic specifications, (ii) the test oracle generation based on
service formal specifications, (iii) the dynamic scheduling of
test cases based on probabilistic graphical reasoning, and (iv)
the reactive, evidence-based planning of test sessions with on
the fly generation of new test cases. Finally, the utilisation of
the MIDAS prototype for the functional test of operational
services and service architectures in the healthcare industry
is reported and assessed. A planned evolution of the technol-
ogy deals with the testing and troubleshooting of distributed
systems that integrate connected objects (IoT).

1 Introduction

Service orientation is the design and implementation style
most adopted in the digital economy. Cooperation between
organisational entities, systems, applications and connected
objects is carried out through distributed architectures of
service components that: (i) handle a collection of business
and/or technical functions, (ii) are accessible through Appli-
cation Programming Interfaces (APIs), (iii) interact through
service protocols such as REST/XML, REST/JSON [84],
SOAP [62] . . . , (iv) are distributed on different processes
and physical/virtual machines, and (v) are deployed indepen-
dently of each other. In brief, services are loosely coupled and

this feature intrinsically enables agility of the engineering,
delivery and deployment processes.

The Service Oriented Architecture (SOA) [39] approach
has been employed for fifteen years to let heterogeneous
applications cooperate [63]. More recently, systems have
made available their functionalities to browsers and mobile
apps through service APIs. Presently, the internal structures
of applications, once monolithic, are going to be (re)designed
as micro-services architectures [64] that are particularly well
adapted for cloud deployment. With the service orienta-
tion applied to the Internet of Things (IoT) – things as
(micro-)services [73] – there will be billions of services in
the digital ecosystem (trillions in perspective).

The development, integration, delivery and deployment
in the production environment of each component release
can be accomplished independently from one another, if the
service specifications (interfaces and semantics) are imple-
mented consistently. This is the case for corrective main-
tenance – only implementation changes for bug fixing – but
can also be the case of perfective maintenance, when service
specifications evolve in a backward-compatible manner, by
adding new operations without changing the old ones, or
by implementing already planned extensions of input/output
data structures.

The service integration process is a pure testing process.
Integrating a service component with other upstream and
downstream services means testing that the interactions are
accomplished as specified and that they produce the expected
effects. The service integration process is comprised of all
testing activities: functional, security, robustness and perfor-
mance.

Usually, testing activities are placed as stages between the
service build release formation and its delivery in the produc-
tion environment (the service build integration pipeline [1]).
The transition of the service build release from one stage

2 Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing

Fig. 1: Service build integration pipeline.

to the next one is permitted only when the stage tests pass,
otherwise the sequence is interrupted and restarted with the
check-in of the updated code. An example of service build
pipeline is sketched in Fig. 1. The test tasks in each stage
and the chosen sequence of the test stages should maximise
the effectiveness (the fault exposing potential and the trou-
bleshooting efficacy) and the efficiency (the fault detection
rate) of the testing tasks.

A new service build release should be firstly submitted to
acceptance white-box tests. All subsequent test stages target
different aspects of the service external behaviour and are
independent of the service implementation technology. The
service build pipeline can be automated. A single pipeline
stage can be fully automated, if: (i) its internal tasks can
be fully automated and the stage produces automatically
machine-readable outputs, and (ii) the automated tasks can
be invoked through APIs by the pipeline orchestrator (for
instance Jenkins [2]).

This paper illustrates the algorithms and techniques sup-
porting automated generation and scheduling of test cases
for service functional tests; they are the foreground of the
EU FP7 MIDAS project [3]. The MIDAS prototype is a
Software as a Service on the cloud that provides model-
driven automation of test tasks, specifically – unit and end-
to-end testing of services and service oriented architectures.
The MIDAS prototype architecture and utilisation scheme
are sketched in Fig. 2. The user, through APIs and a GUI
(Graphical User Interface), supplies MIDAS with models and
policies that describe the structure and the behaviours of
the Distributed System Under Test (DSUT), in the specific
case, of services and service architecture under test, and
the test objectives, and invokes automated test generation
and execution methods. MIDAS generates test suites and
dynamically schedules and runs test sessions. In the test
session, the MIDAS test system interacts with the DSUT,
whose service components can be deployed anywhere: on
premises, on private clouds and on public clouds.

Section 2 gives the research motivation on the topic and
a short review of the state of the art about service functional
testing. Section 3 presents the proposed techniques and algo-
rithms supporting automated generation and scheduling that
are used within the MIDAS prototype and are provided as-
a-service by the MIDAS SaaS platform. Dedalus, a company
specialised in healthcare systems, and a partner of the MI-
DAS project, has incorporated the functional test automation
services of the prototype in its integration process: this expe-
rience is presented in Section 4. Section 5 relates the Dedalus

team’s evaluation of the experience. Finally, Section 6 dis-
cusses major advantages of the new solution and outlines
future work.

2 Related work

Service testing and, in particular, end-to-end testing of large-
scale service architectures is difficult, knowledge intensive,
time-consuming and costly in terms of labour effort, hard-
ware/software equipment and time-to-market. Since the us-
age of service oriented architectures began, service testing
automation has been a critical challenge for researchers and
practitioners [27][33][86][88]. In particular, tasks such as:
(i) the optimised generation of test inputs [27], (ii) the gen-
eration of test oracles [19][24][74], and (iii) the optimised
management of test suites for different test activities – such as
progression testing, change testing, regression testing [88] –
have not yet found automation solutions that can be applied
to real complex service architectures such as those that are
implemented in the healthcare industry [33].

Model-based testing (MBT) approaches have been
proven to be suitable to address automation issues for test-
ing. They utilise formal models (structural, functional and
behavioural) of the service architecture under test to un-
dertake the automation of the testing tasks [42]. The “first-
generation” of MBT research is essentially focused on test in-
put generation. It uses formal methods, especially SAT/SMT-
based techniques [20][26][44], that allow the exhaustive ex-
ploration of the system execution traces, and efficient test
input generation satisfying constraints that are formal prop-
erties expressed in temporal logic. Most MBT approaches
and tools for testing automation of services are based on spe-
cific service specification languages, the most popular being
WSDL – Web Service Description Language [4], and service
composition languages, the most popular being WS-BPEL
– Web Services Business Process Execution Language [66].
A notable approach based on WSDL is WS-TAXI [25], that
combines the coverage of WS operation with data-driven test
generation. It puts together SoapUI [5], the most popular Web
services black-box testing tool, and TAXI, an application
that automates the generation of XML instances from an
XML schema. TAXI improves SoapUI by adding automated
generation of test inputs starting from the operation data input
specified within the WSDL file. However, it provides limited
generation features (e.g. it does not handle domain-specific
string generation, which is crucial for generating meaningful
business data for the service under test), and only supports
unit testing of services.

Many other approaches have advanced the state of the art
regarding automated model-driven functional testing of Web
services [28][48][52][56][87], and of composition of Web
services through WS-BPEL processes (see [78] for a survey),
but they are limited to unit black-box testing, combined with
the “assisted automation” of either test case generation or
test execution, or test case selection, as currently offered in
available state-of-the-art tools such as SoapUI [5], Oracle

Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing 3

send stimuli
collect outcomes

S1

Distributed System Under Test

S2

S3

S7

S6

S4

S5

Cloud

API gatewayPortal

Test
method
#1
Test

method
#1
Test

method
#1
Test

method
#1

User
Web
Client

User
Corporate
Server

D
S
U
T
gatew

ay

invoke test
generation
& run
methods

via
API

via
GUI

deployed on premises, on private and public clouds

Internet

Internet

Fig. 2: MIDAS utilisation scheme.

SOA Suite [69], and Parasoft [16]. In particular, to the best
of our knowledge, there is no available solution for the full
automation across the spectrum of the critical tasks (test input
and oracle generation, test execution/arbitration, dynamic test
case prioritisation, test planning) of end-to-end testing of
large-scale, multi-stakeholder services architectures.

An interesting approach to supporting testing task au-
tomation for service architectures, specifically for automated
configuration and setting up of testing environments, is pro-
posed by the Genesis project [47]. It provides developers
a framework for generating service-based infrastructures,
allowing them to set up customized SOA testbeds of ser-
vices (that are virtual services). This approach is overall
very manual and places detailed and complex system-level
configuration burdens on the developers. In comparison, the
MIDAS approach shields the developer from complex back-
end set ups. At the front end, the developer only provides
models of the distributed system under test: services, service
architecture, behaviour of each component, and bindings of
behaviours to the components involved in the scenarios to be
tested. At the back end, the developer only needs to provide
the endpoints of services under test (deployed on premises,
on private and public clouds), and redirect endpoint addresses
to the MIDAS DSUT Gateway (Fig. 2) so that requests and
responses can be intercepted. Moreover, in contrast with the
Genesis approach, there is no need of downloading, installing
and configuring any framework in order to start with our
solution. Modelling can be performed with classic IDEs, or
even simple text editors if the developer is comfortable with
the format (XML) of the input models. We are planning to
further improve this step by pushing modelling on-line in
a browser with wizards to assist the developer in checking
structural consistency across the models, behavioural consis-

tency across the scenarios to be tested, and many other useful
modelling-level tasks that will render the whole approach
very easy to use and fast to set up.

Another interesting approach to SOA testing has been
proposed by the WS-Diamond project [34]. It provides a
platform, to be installed in the DSUT production field, for
supporting the self-healing execution of Web Services, that
is, services able to self-monitor, self-diagnose the cause of a
functional failure, and self-recover from those failures. This
project also provides a framework, including methodologies
and tools for services design that guarantee diagnosability
and reparability during their execution. The WS-Diamond
approach is focused on the design, implementation and ex-
ecution of Web Services in a controlled environment. It is
a fully integrated modus operandi and the developers are
obliged to abandon their existing methodologies and tools
if they want to benefit from it. The MIDAS perspective is
different: it is intended to help the developers troubleshoot
any kind of service architectures and requires neither special
tooling or platform set up, nor specific design and develop-
ment methodology.

3 Automating service functional test

In this section we present the unit and end-to-end functional
test stages through an example of a real-world services archi-
tecture, depicted in Fig. 3 (The Calabria Cephalalgic Network
– CCN).

4 Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing

Fig. 3: Calabria Cephalalgic Network.

3.1 Introducing functional testing of services

The Calabria Cephalalgic Network (CCN) [33] is a Web
application that supports the integrated care processes of
the headache chronic disease, effectively coordinating dif-
ferent care settings (general practitioners, specialists, clinics,
labs. . .) in a patient-centred vision. The application has been
designed and developed on a multi-stakeholder services ar-
chitecture (Fig. 3), and its service components are physically
deployed in separate data centres and private clouds. In
particular, Dedalus [6] is in charge of the provision of: (i)
the patient record service – which handles the clinical and
administrative data elements related to the patient; (ii) the
patient identity service – which handles the patient identifiers
and demographic data; (iii) the terminology service – which
manages the complex terminology and the codes involved
in the clinical and administrative processes. These services
implement the HL7/OMG Healthcare Services Specification
Program (HSSP) international standard (respectively RLUS,
IXS, CTS2) [7].

The CCN distributed application is an example of micro-
services architecture: patient identity management, patient
record management, etc., are implemented as loosely coupled
services, each of them being equipped with specialised soft-
ware running on different machines and whose data are stored
in separate databases. Note that these constituent services
have life cycles, in terms of software releases and managed

data, that are independent from each other and also from the
CCN application life cycle.

The CCN back end service consumes the patient record
service, the patient identity service, and other services in or-
der to provide its service. We call these downstream services
that are not consumers of other services terminal services.
Therefore, the CCN Back end service is a non-terminal
service. The service unit test stage includes the following
tasks:

– generation – asynchronously or on the fly – of operation
inputs to be used as test inputs (stimuli);

– generation – asynchronously or on the fly – of test oracles
(the expected outcomes of the service under test);

– deployment and initialisation of the service build release
in an appropriate environment;

– configuration of the test system;
– binding of the test system with the service under test;
– execution of test cases – transmit stimuli, collect and log

outcomes;
– arbitration of the test outcomes against test oracles;
– dynamic scheduling of test runs for test case dynamic

prioritisation, on the basis of the arbitration verdicts;
– reporting of test sessions – building meaningful test ses-

sion summaries from the bulky logs;
– planning of (new) test sessions on the basis of the results

of the current one – reactive planning.

Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing 5

Fig. 4: Unit test environment for a terminal service.

Fig. 5: Unit test environment for a non-terminal service.

An example of test environment architecture for unit test
of terminal services is sketched in Fig. 4. It depicts the unit
test environment of the Patient record service.

The unit test system for terminal services is configured
with a stimulator test component that is able to: (i) transmit
to the service under test (SUT) a test case input taken from
the test suite, (ii) wait for a SUT outcome, (iii) collect the
corresponding test outcome, (iv) compare the outcome with
the test oracle, (v) produce test verdicts, and (vi) choose the
next test case on the basis of the past test verdicts (dynamic
scheduling).

For non-terminal services, such as the CCN Back end
service, the typical unit test environment is depicted in Fig. 5.
The test tasks involved in the stage are the same ones
described for the terminal services, but the test system is
configured with six stubs (virtual services) in addition to
the stimulator. The stubs simulate the downstream service
components. Here, the tester’s objective is to test the single
SUT behaviour.

When a test case includes the interaction with a down-
stream service, the correct behaviour of the SUT is to issue
the expected input towards the service stub. If the stub re-
ceives the input in a finite time interval, it compares this input
with the corresponding oracle, emits a local test verdict and,

if the verdict equals pass, returns the canned response that is
specified for the involved test case. If the input is not received
in the expected time the local test verdict is set to fail.

The architecture of unit test of non-terminal services
allows for highlighting the role of the Test Component
Manager, a component of the test system that coordinates
the actions of the virtualized services (stimulator, stubs)
and manages the test run. The Test Component Manager
collects the local verdicts (that are issued by the virtualised
components), continues or halts the test run and aggregates
the local test verdicts in a compound global test verdict.
The standard values of the test verdicts [68] are: (i) pass –
the test outcome is collected in a predefined interval time
and matches the oracle, (ii) fail – either the test outcome
mismatches the oracle or the related timeout event is raised
that is interpreted as a failure, (iii) error – an error of the test
system or of the SUT configuration has been detected that
could also be a timeout to be attributed to an infrastructure
failure, (iv) inconc – the verdict cannot be pass but the arbiter
is unable to choose between fail and error, and (v) none –
no verdict because the outcome has not yet been produced
and will not be produced in the current run. After a test case
run, a global compound test verdict is established that is the
aggregation of the local test verdicts.

Service virtualisation allows unit testing of systems that
have service dependencies. There are different degrees of
virtualisation. The most advanced currently available com-
mercial tools [15][16][17][18] offer virtualised service con-
structors that allow building empty stub components whose
binding with the service under test is facilitated, but that
must be: (i) programmed by the tester in order to provide
the appropriate canned responses, and (ii) deployed by the
tester in the test environment. The MIDAS solution increases
the test automation by two steps: firstly, the stub canned
responses are automatically produced by the test generator
and part of the test cases and, secondly, at each test session,
the stubs specified in the Test Configuration Model (see
Sect. 3.2) are automatically created, deployed on the cloud
platform, bound to the service under test and configured with
the canned responses specified in the test cases.

In the end-to-end test stage of the service build, the DSUT
is deployed somewhere, with well-identified endpoints. In
the test system, in addition to the stimulator, interceptors
are configured that are able to catch the exchanges (back
and forth) between the deployed services, i.e. between the
CCN back end service and the downstream services, and to
arbitrate them (Fig. 6). Each interceptor waits for and catches
the message issued by the CCN back end and arbitrates it:
if the message is received in time and matches the oracle,
the interceptor transmits it to the target downstream service.
Otherwise, a local fail test verdict is established, the Test
Component Manager halts the test case run and establishes
the compound test verdict. If the test case is still running,
the interceptor waits for and catches the terminal service
response and arbitrates it: if the response is received in time
and matches the oracle, the interceptor transmits the response
back to the CCN back end service, otherwise a local fail test

6 Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing

Fig. 6: End-to-end test of a distributed system.

verdict is set up, the Test Component Manager halts the test
case run and establishes the global compound test verdict.

3.2 Model based automation of service functional testing

Our MBT approach to the automation of the test tasks (test
generation, execution, arbitration, scheduling, reporting and
planning) is based on the following models: (i) the Test
Configuration Model (TCM), (ii) the Service Interface Model
(SIM), and (iii) the Service Behaviour Model (SBM). There-
fore, they are inputs of the functional test method imple-
mented in the MIDAS platform, and are provided by the tester
before starting any test task.

The TCM includes the service architecture (DSUT)
model (the collection of services and links among them), and
the Test System Model (the suite of test components needed
to put in place the test scenarios). The TCM is represented
by a collection of XML documents that are validated against
the standard Service Component Architecture (SCA) XML
schemas [8][29]. The DSUT model is a topological model of
the service architecture under test: it allows for a definition
of the actual components of the architecture, the services that
each component provides and consumes and the actual wires,
i.e. the service dependencies between components. Each ac-
tual component is typed by a participant, i.e. a definition of
a component abstract type as an aggregation of provided and
required service interfaces. The Test System Model defines
the structure of the test system in terms of virtual compo-
nents (stimulators, stubs), their connections with the DSUT
components through virtual wires, and probes on the actual
wires (interceptors). Each virtual component is typed by a
participant. Thus, the TCM is a graph of nodes (actual and
virtual components) and links (actual and virtual wires).

The SIM is a collection of standard definitions of the
services of the DSUT, i.e.: for SOAP services, WSDL 1.1

documents [4]; for REST/XML services either WSDL 1.1
or WSDL 2.0 [9] documents, and for REST/JSON services
Swagger [10] documents. The current implementation of the
MIDAS platform only supports SOAP services specified by
WSDL 1.1. In the next release of the platform, we plan to
support REST/XML and REST/JSON services.

Each TCM virtual and actual component is equipped
with a Protocol State Machine (PSM), that is a Harel stat-
echart [40] modelling the external interaction behaviour of
the component. Each PSM defines the states of the “con-
versation” of the component with its wired interlocutors and
the transitions between these states that: (i) are triggered by
events (i.e. message reception or timeout), (ii) are filtered
by Boolean conditions (guards), and (iii) carry out effects
(i.e. the issuance of a message). The contents of the issued
messages are defined by data-flow transfer functions, i.e.
expressions that calculate the elements of the messages to
be sent as functions of the elements of the received mes-
sages and of data related to the initial state. In the actual
implementation, a PSM is represented through the W3C stan-
dard SCXML [11] formalism. SCXML provides a powerful,
general-purpose and declarative modelling language to de-
scribe the behaviour of timed, event-driven, state-based sys-
tems. A SCXML artefact is executable, i.e. it can be directly
interpreted by a compliant SCXML engine. The SCXML
standard is composed of several modules. The core module
provides the elements of a basic Harel state machine, such as
state, parallel, and transition. The external communication
module provides the means of external event exchange such
as sendand invoke. The script module provides the support
for ECMAScript [37] implementation of executable content
(i.e. actions performed on transitions, entering and leaving
states, emitting events, branching on conditions – if, else,
elseif, updates on the data model – assignment of values,
logging). The PSM data-flow transfer functions are written
in ECMAscript. The data module provides the abstraction
for handling named parts (e.g. arbitrary data payloads in send
events, evaluation of conditional expressions on received data
in events on transitions). The SBM is a collection of PSMs of
the TCM actual and virtual components.

3.3 Automated generation of test cases

Figure 7 sketches the activity diagram of the automated test
case generation. The input objects are:

– the TCM – the collection of XML documents, one for
each participant (component abstract type), plus a de-
scription of the test environment topology (the actual and
virtual component, and the actual and virtual wires that
link the components);

– the SIM – the collection of documents that describe the
service interfaces;

– the SBM – the collection of PSM/SCXML documents,
one for each actual and virtual component;

– a collection of test input templates – optionally, templates
for the test inputs (stimuli) can also be supplied by the

Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing 7

Fig. 7: Automated generation of test cases

user to guide the test case generation. This is useful for
focusing on relevant ranges of business data values for the
invoked operations, instead of using randomly-generated
values;

– a set of test generation directives – in order to configure
the behaviour of the test case generator; for instance,
the test generation can be focused on specific types of
messages to enable the exploration of specific logical
and “physical” regions of the behaviour of the service
architecture under test.

The outputs produced by the generation task are:

– Test Scenario Definition (TSD) model – the test scenario
definition is an XML document that represents the ab-
stract interaction paths that are the results of the simulated
execution of the collection of PSMs.

– Test Suite (TS) files – one or more test suites – a Test Suite
file is a collection of test cases; each test case instantiates
a TSD interaction path. A test case is a collection of
messages (input, oracles) in the partial order dictated by
the interaction path.

The test case generation uses model checking techniques
provided by the TLA+ framework [50] that “implements”
the well-known TLA formal specification language based on
temporal logic. By providing a mathematics-based formal
specification language with set theory and predicates, TLA+
allows for reasoning regarding the behaviour of a system
from its specifications (i.e. description of the system model).
Describing a system model using TLA+ enables a designer
to specify all possible behaviours, or execution traces, of the
system.

TLA stands for Temporal Logic of Action, a simple form
of temporal logic that allows specifying temporal formulas
F that are assertions about behaviours. When a behaviour σ
satisfies F , then F is true of σ. A temporal formula that is

satisfied by all behaviours is a theorem, or a true formula.
Hence a property P of a specification S is specified as a
temporal formula. A specification S is said to satisfy P iff
S =⇒ P is a theorem, meaning that P is true for all
behaviours in S.

Model checking [31] is a mechanised formal verification
technique that checks that a given logic formula holds on
a given model. The model checking problem M(L) for a
temporal logic L is the problem of deciding, for any input
S (a Kripke structure) and temporal formula ϕ, whether
S � ϕ (S satisfies ϕ). A Kripke structure over a set A =
{P1, P2, . . .} of atomic propositions, as defined in [77], is a
tuple S = 〈Q,R, l, I〉 where:

– Q = {q, r, s, . . .} is a set of states representing the
configurations of the system;

– R ⊆ Q×Q is a transition relation between pairs of states
in Q. It is generally assumed, for simplification, that R is
total, i.e. for any q ∈ Q, there exists q′ such that q R q′;

– l : Q → 2A labels states with propositions. P ∈ l(q)
means that P holds in state q;

– I ⊆ Q is a non-empty set of initial states (or configura-
tions).

The Kripke structure represents the state space of the
system. A Kripke structure S is finite when Q is finite.
According to [77], the model checking problem M(L) is
decidable for the great majority of propositional temporal
logics, and the cost of deciding whether S � ϕ is a function
of the sizes |S| and |ϕ| (both in space and run-time; we
refer the interested reader to [77] for more details). |S| is
the sum of the number of nodes and edges of the Kripke
structure, and |ϕ| is the number of symbols in |ϕ| (seen
as a string). The size of the transition system grows expo-
nentially in the number of concurrent components (e.g. the
composition of N components, each of size k, yields kN

states), or in the number of program variables for program

8 Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing

graphs. This well-known challenge is called the state explo-
sion problem [32]. Model checkers, like the Temporal Logic
Checker (TLC) component provided by the TLA+ frame-
work, combine different techniques to tackle this problem,
such as partial order reduction (if in the order of execution
the interleaving is not relevant, not all possible combinations
are examined), symbolic verification (where variables of the
verification algorithm denote sets of states rather than single
states, using decision diagrams), abstraction techniques (e.g.
partitioning the states of S into clusters, and handling those
as abstract states), and bounded model checking (given a
bound k, generates a formula that is satisfiable iff the property
can be disproved by a counterexample of length k; if no
counterexample, the bound k is incremented).

TLA+ also allows the specification of correctness proper-
ties, mainly safety and liveness properties. A safety property
asserts that nothing bad happens during the execution of the
system. It can be violated by a single step in the behaviour,
or the first state of the running system. A liveness property
asserts that something good eventually happens (e.g. an al-
gorithm eventually terminates). The entire behaviour of the
system must be observed before one can conclude that the
liveness property is violated. For example, if you want to
check the liveness property that eventually x equals y in a
program you need to see the entire behaviour of the program
to know that x is never equal to y [50].

TLA+ has been successfully used in practice, for instance
in checking cache-coherence protocols [46], describing and
verifying web service composition [82], and recently in
particular by Amazon Web Services to strengthen the im-
plementation and coordination of fault-tolerant distributed
algorithms for their Simple Storage Service (S3) [60][61].

Each step of the test generation activity depicted in Fig. 7
is described hereafter.

Preprocessing. The Preprocessing phase enables the con-
sistency checking across all input artefacts, the symbolic
binding of the actual and virtual components through actual
and virtual wires, and the construction of a parallel state
machine which combines all individual component PSMs.

Translation. During the translation phase (Translation activ-
ity in Fig. 7), the PSMs are translated into a PlusCal [51]
program. PlusCal is a TLA+ companion algorithmic lan-
guage close to C-style or pseudo-code programming, that is
supported by the TLA+ framework. PlusCal is utilised for
writing formal specifications of algorithms, in a style that is
more convenient for readability and easier to understand than
TLA+, and it can be compiled into a TLA+ specification that
can be checked with the TLA+ tools, in our case the TLC
model checker. The translation follows these steps:

1. Capture all ECMAScript expressions manipulating
SOAP data in the PSM, extract the manipulated fields and
use their declarations from the WSDLs to declare them as
variables in TLA.

2. If possible values for some fields have been refined in the
message templates (for example as enumerations), refine
their declaration in TLA.

3. Translate the state machine in TLA.

Data that are declared in the PSM, but not referenced in any
ECMAScript expressions are considered irrelevant, so they
are ignored (i.e. treated as constants).

Compilation. The model obtained in PlusCal from the trans-
lation activity is then compiled into the TLA+ core language,
by using the compiler provided in the TLA+ toolkit (Com-
pilation activity in Fig. 7). TLA+ is backed by the TLC
model checker to exhaustively check correctness properties
across all possible executions of the system. At this stage we
generate, from the generation directives, one safety property.
Through assertions, execution traces of the system satisfying
the safety property – for instance the negation of “messages
of some specific types are exchanged” – are requested to the
model checker (Model checking activity in Fig. 7). Hence, the
TLC model checker achieves the generation of the execution
traces by checking the assertion and producing counterex-
amples if it is violated. For the use case reported in Sect. 4
regarding the prototype usage, a typical TLA+ specification
for a complete scenario was 600 lines long.

Test input generation, parallel PSM execution, and oracle
generation. The safety property to be checked can be indi-
rectly specified by the user in the test generation directives,
or automatically by the dynamic test scheduler (described
in Sect. 3.4). The directives specify generation requirements
like the requested number of test cases to generate, the
timeout for the test generation, and the set of message types
that should be involved in the execution traces of the system.
This latter directive is translated into a safety property to be
checked by the TLC model checker. For instance, the user
of the test cases generator might be looking for test cases
where the message type input of the operation createIden-
tityFromEntity exposed by the service POCDPatientMQSer-
vice of the actual component mpi.ixs.component in the DSUT
standardportal.saut can be observed. This example has been
used for testing the Healthcare Pilot described in Sect. 4. All
these test generation directives are specified in a simple XML
configuration file alongside the files of the TCM, SIM, and
SBM.

Driven by the test generation directives and the tem-
plates for the payloads provided by the tester, the test case
generator can focus on interesting specific ranges of values
for the test case payloads. Discrete data domains (num-
bers, enumerations, booleans) from the definition (WSDL
file) of SOAP message fields are handled well by the TLC
model checker. Although TLC also handles strings and can
generate arbitrary ones, we allow regular expressions to be
able to generate arbitrary meaningful business values on
the fly during the execution of the PSM, like for example
2.16.840.1.113883.2.9.3.12.4.1 in the case of
the CCN healthcare system.

Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing 9

There is no optimization for the selection of the number n
of test cases from the entire solution space, which is left to the
model checker. According to the generation directive about
the requested message types to observe, the scheduler does
not care whether there are only m ≤ n (m > 0) test cases
satisfying the directive. According to its scheduling policy
and the outcome of executed test cases, or if there are no
test case satisfying the directive, the scheduler will request
on the fly the generation of new test cases, by updating the
directive. We are working on the implementation of other
generation strategies such as: (i) random sampling of infinite
discrete data domains, (ii) boundary values, and (iii) domain
partitioning by analysing the data-flow transfer functions in
the PSMs.

Input data are then extracted from the execution traces
(Test input generation activity in Fig. 7). The obtained test
inputs are supplied one by one to the SCXML parallel state
machine built as a composition of the individual PSMs (one
for each component) and the SCXML execution engine is
invoked (Parallel PSM execution activity in Fig. 7). The
execution of the parallel state machine, which works as an
executable specification of the entire DSUT, is monitored and
all generated events and messages are collected, allowing the
test generator to produce: (i) one test suite definition (TSD)
encoding the interaction path extracted from the execution,
(ii) for each test case input the corresponding oracles, the test
case being compliant with the interaction path defined in the
TSD.

Our test generation approach combines both the data-
centered and the logic-centered approaches, as described by
Mayer et al. [56]. In the data-centered approach, fixed SOAP
data is used. Incoming data is compared against predefined
SOAP message, and outgoing data is also predefined. The
messages are, for example, stored in XML files on disk, and
referenced from the SCXML/DATAMODEL/DATA construct in
the PSMs. This approach is simple, but not very flexible and
expressive. In the logic-centered approach, a fully-fledged
programming language is used for expressing the test logic.
A program taking arbitrary steps can be applied on incoming
messages to test the data. Likewise, outgoing data is created
by the program. It is a very flexible and expressive approach
which requires considerable implementation effort from the
test developer. In our approach, it is seamlessly handled by
the SCXML execution engine that supports executable con-
tent in ECMAScript expressed in the PSM, such as actions
on transitions, in entering and leaving states, emitting events,
branching on conditions, testing incoming data, creating out-
going data – possibly by precisely modifying specific fields
in the SOAP messages skeletons or directly on incoming data
(transfer functions), and logging.

The additional requirement of automation is fully met and
tool support is partially met in our approach: the specification
is unambiguous, machine-readable and executable, and the
test logic can be as sophisticated as the test developer wishes.
However, the creation of the test specification is not yet
supported by wizards that will help in checking structural
consistency across the different types of input models, or

checking behavioural consistency across the PSMs, automat-
ically.

Discussion on the modelling approach for the TCM and the
PSMs. It is clear that TCM and SBM building is a modelling
effort that requires the test designer to have knowledge of: (i)
the topology of the DSUT; (ii) the external behaviour of the
services under test; (iii) the capability to express this knowl-
edge in terms of test configuration model, protocol state
machines and data flow transfer functions. Conversely, this
activity requires neither knowledge of the implementations
of the service components nor advanced testing skills. There
is no size limitation for the SBM models. Moreover, the main
SCXML constructs supported in the current implementation
of the MIDAS prototype are the following:

– The top-level SCXML wrapper element of a SCXML doc-
ument. The actual state machine consists of its children
elements.

– The elements SCXML/STATE (for atomic states), SCXM-
L/FINAL (for final states). Atomic and final states can
occur zero or more times. A state is active if it has
been entered by a transition and has not subsequently
been exited. The state machine must always be in only
one active state. The SCXML processor must terminate
processing when the state machine reaches a final state.

– The element SCXML/DATAMODEL that is a wrapper (that
occurs zero or one time) encapsulating any number of
SCXML/DATAMODEL/DATA children elements, each of
which defines a single data object. The exact nature
of the data object depends on the data model language
used. Supported data model languages are ECMAScript
and XML/XPATH [12]. In the MIDAS prototype, those
data elements refer to (through their src attribute) SOAP
message skeletons or predefined SOAP messages with
specific data. These messages are stored in XML files.

– The element STATE/TRANSITION, for outgoing transi-
tions from states. The event attribute of a transition al-
lows for the designation of the event that enables this
transition. In the MIDAS prototype, it must explicitly
refer to the service interface provided or required, the
operation, and operation type (input, output or fault), as in
the following example: POCDPatientMQService::
findIdentitiesByTraits::input where a re-
quest is awaited. The cond attribute of a transition allows
for specifying any boolean expression that guards the
firing of the transition. A boolean expression can refer-
ence data in the content of the event (built-in _event.data
object), and the data model (i.e. SCXML/DATAMODEL/-
DATA). When there is no condition, an enabled transition
is always fired. The target attribute references the target
state.
Effects are transition sub-elements that contain expres-
sions that are evaluated when the transition is fired. Al-
lowed effects in the MIDAS prototype are:
– TRANSITION/ASSIGN which modifies the data model

through its location attribute which designates the
location to be filled with the result of the evaluation

10 Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing

of a functional expression hold in its expr attribute.
The value of the location can pinpoint a specific field
in the SOAP message referenced by the data model.

– TRANSITION/SEND which sends an event through
its eventexpr attribute, and the associated data
through its namelist attribute, to another PSM.
A send operation thus creates an event specified
by the eventexpr attribute. That event is used
as a trigger by the receiving PSM transition in
its event attribute. For example, the sent event
POCDPatientMQReference::
findIdentitiesByTraits::input matches
the expected event POCDPatientMQService::
findIdentitiesByTraits::input. The
message content sent through namelist is referenced
in the built-in _event.data object on the receiving
end. Hence, the value of the namelist attribute
is the reference to a SCXML/DATAMODEL/DATA
element which references a SOAP message that could
have been modified by the TRANSITION/ASSIGN
beforehand.

The SBM representation approach and formalism – PSMs
expressed in an easy and standard XML format, and data-flow
transfer functions expressed in ECMAScript, are the most
general and easy-to-use choices for service developers and
testers. In fact, as a respected professional service developer
states: “Whether you choose to become a REST ninja, or
stick with an RPC-based mechanism like SOAP, the core
concept of the service as a state machine is powerful” [64].
Developers and testers of Web services are comfortable with
XML and are obliged to work with XML if they want to
understand in detail the match/mismatch between the actual
payloads and the oracles underlying the pass/fail verdicts.
Moreover, JavaScript is one of the most popular and utilised
programming languages that allows easy manipulation of
XML structures, native access to JSON structures and whose
“functional” flavour is perfectly adapted to express the data-
flow transfer functions expressions [41].

3.4 Automated test execution with dynamic scheduling

The MIDAS platform provides functionalities to dynamically
schedule executions and arbitrations of generated test cases
(Fig 8).

Test case prioritisation, i.e. scheduling test case execu-
tions in an order that attempts to increase their effectiveness at
meeting some desirable properties, is a powerful approach to
maximise the value of a test suite and to minimise the testing
cost. There are two general families of test prioritisation
techniques: (i) coverage-based [21][22][30][57], and (ii) fault
exposing potential (FEP) based [38][65][81]. Our approach
to the prioritisation of test cases is entirely original [55]: it is
based on the usage of probabilistic graphical models [71] to
dynamically choose the next test case to run on the basis of
the preceding verdicts. It accommodates both the coverage-
based, the FEP-based and other approaches by simply spec-

Fig. 8: Automated test run with dynamic scheduling.

Fig. 9: Conceptual schema of the automated schedule/exe-
cute/arbitrate cycle.

ifying scheduling policies and beliefs. Moreover, the proba-
bilistic inference is able to establish a dynamic relationship
between test case prioritisation and the model-driven gener-
ation of new test cases, by supplying evidence-driven direc-
tives based on the previous verdicts to the generator on the fly.
More specifically, the test session management component
handles the schedule/execute/arbitrate cycle (see Fig. 9) as
follows: (i) the scheduler either chooses a test case to perform
on the basis of an inference step and communicates it to the
executor, or stops the test session; (ii) the executor runs the
test case completely or until some halting condition is met,
then collects the outcomes and communicates these outcomes
to the arbiter; (iii) the arbiter evaluates the outcomes, sets up
the local verdicts, establishes the compound global verdict
and communicates it to the scheduler. The schedule/exe-
cute/arbitrate cycle either continues until there are no more
test cases to perform, or stops when some halting condition
is met.

The scheduling component carries out the dynamic
prioritisation of test cases in order to meet different
objectives, such as improving the fault detection rate (the

Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing 11

discovery of the greatest number of failures in the smallest
number of test runs), the quick localisation of faulty elements
(troubleshooting), the test coverage of the DSUT, etc. These
objectives are attained by specifying different scheduling
policies .

The dynamic prioritisation of test cases for distributed
system testing is typically a matter of decision under
uncertainty, for which the probability theory is considered a
powerful framework for representation and treatment [72].

Probability theory exhibits well-known advantages:

– modelling a complex reality, for which the exact inference
is intractable, with a minimum number of parameters and
the greatest accuracy,

– mathematically well-defined mechanism for representa-
tion [36],

– explicit modelling of uncertainty,
– management of multiple hypotheses about the state of the

system.

In particular, the graphical approach (Bayesian Net-
works) [71], allows modelling conditional independences and
stochastic relations between system properties and inferring
the probability changes of these properties according to ob-
servations. In addition, the inference results are knowledge-
able, in contrast to other approaches, such as Neural Net-
works, which act as black boxes. Furthermore, the Bayesian
Network (BN) approach does not present the combinato-
rial problems of other methods such as Decision Trees. In
their position paper at FSE/SDP workshop on the future of
software engineering research (2011), Namin and Sridharan
make the following claim: Bayesian reasoning methods pro-
vide an ideal research paradigm for achieving reliable and
efficient software testing and program analysis [59].

Rees, Wooff and colleagues [75][85] present a seminal
work about the use of probabilistic inference based on a BN
framework to support input partitioning test methods that
are aimed at understanding which kind of stimuli are more
appropriate to reveal software failures.

Regression testing is a target of choice for prioritisation
of test cases on the basis of specific criteria. Mirarab and
Tahvildari [58] present an approach based on probability to
prioritising test cases in order to enhance the fault detection
rate. They utilise Bayesian Networks to incorporate source
code changes, software fault-proneness, and test coverage
data into a unified model.

The dynamic scheduler algorithm, referred in Fig. 10 as
inf4sat, builds a Bayesian Network model from (i) the Test
Configuration Model (TCM), (ii) the Test Scenario Definition
(TSD) and the Test Suite (TS), and (iii) the (optional) user
initial beliefs. It then compiles the Bayesian Network (BN)
into an Arithmetic Circuit (AC), that is the data structure
employed within the inference cycle. The objectives of the
compilation and of the final representation technique are the
reduction of the size and time complexity of the BN infer-
ence, in particular the size complexity of the data structure

representing the graphical network and the time complexity
of the inference cycle [55]. In the first version of the MI-
DAS prototype, the algorithm tried to compile the BN into
the smallest AC. The compilation cost of the extreme size
optimisation was proven later to be only partially rewarded
by the added gain in inference speed. Hence, the compilation
algorithm has been parametrised by adjusting the degree
of size optimisation. This approach speeds the compilation
phase without a significant increase of the inference time.

Figure 10 shows the inf4sat average inference time mea-
sured in a number of trials with random generated Bayesian
Networks as well as its comparison with two classic inference
techniques (Lazy propagation [54] and Gibbs [70]). In these
trials the inf4sat compilation’s degree is the most relaxed.
The time improvement is measured in terms of orders of
magnitude.

A schematic representation of the Bayesian Network for
test scheduling as a Direct Acyclic Graph (DAG) is sketched
in Fig. 12. The DAG nodes represent Boolean stochastic
variables and the DAG edges the classic BN relationships
depends on (the relationship direction is the reverse of the
arrow direction, e.g. in Fig. 12 S depends on A1, A2, ...).
These variables are classified in six categories:

– DSUT (S) – the S variable “represents” the DSUT and is
the DAG bottom node; the intuitive meanings of the S
variable values are (0 = faultless / 1 = faulty); S is instan-
tiated to 1 (faulty) in the initialisation phase, allowing the
inference process to begin with the hypothesis that there
is at least one failure in the system;

– Actual Components (A) -– there is an A variable for each
DSUT actual component; the intuitive meanings of the
A variable values are (0 = faultless / 1 = faulty); in
the initialisation phase the A variables can be affected
with external values (user beliefs) in order to drive the
inference;

– Issuing Interfaces (I) – there is an I variable for each
component required interface and for each component
provided (request/response) interface; the intuitive mean-
ings of the I variable values are (0 = faultless / 1 = faulty);
in the initialisation phase the I variables can be affected
with external values (user beliefs) in order to drive the
inference;

– Message Types (T) – there is a T variable for each mes-
sage type whose instances can be issued by an issuing
interface; the intuitive meanings of the T variable values
are (0 = faultless / 1 = faulty); in the initialisation phase
the T variables can be affected with external values (user
beliefs) in order to drive the inference;

– Messages (M) – the M variables are the DAG top vari-
ables; there is a M variable for each message instance cor-
responding to an oracle in the Test Suite file; the intuitive
meanings of the M variable values are (0 = pass / 1 = fail);
in the initialisation phase, the M variables are affected
with prior probabilities that are parametrisable; moreover,
the M variables are observable: if the local verdict on the
corresponding outcome is pass or fail, the corresponding

12 Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing

Fig. 10: Comparison of the average inference computation time between inf4sat and Lazy Propagation algorithm (left) and
Gibbs sampling algorithm (right).

Fig. 11: Scheduling cycle.

M variable is instantiated with the corresponding value
(respectively 0 or 1), otherwise – the verdict is inconc,
error or none – the variable value is not changed;

– Test Cases (C) – there is a C variable for each test case
of the Test Suite file; each C variable depends on the
M variables corresponding to its oracles; the intuitive
meanings of the C variable values are (0 = OK / 1 = KO);
if the global compound verdict of an executed test case
equals pass (all the local verdicts equal pass) the variable
is set to 0 (OK), otherwise (at least one of the local
verdicts does not equal pass) the variable is set to 1 (KO).
The intuitive meaning of the C probability distribution is
the failure discovery potential of the not yet executed test
case, which grows with the KO probability.

At each test run, the local verdicts, when equal pass or
fail, are inserted as evidences in the AC (by instantiating
the corresponding M variables with the corresponding val-
ues). The subsequent inference re-calculates the BN variable
values, in particular the values of the not yet observed C
variables. At each test case run cycle, the scheduler re-
calculates the fitness of the remaining test cases. The test case
with the maximum fitness, or a test case randomly chosen
among the test cases with the same maximum fitness, is
selected for the next test run cycle. The current fitness of a
test case is a function of the current probability distribution
of the corresponding C stochastic variable that is defined by
the scheduling policy. The two basic scheduling policies are:

Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing 13

Fig. 12: Scheme of the Bayesian Network that drives the test scheduling.

– max-entropy policy – the max-entropy policy can be de-
scribed roughly as “the least informed, the first”. The test
cases are ordered by the Shannon entropy [49] of the
C variable, the maximum entropy being the nearest to
fifty/fifty probability distribution. The max-entropy pol-
icy performs a breadth-first search in the DSUT topology
that is driven by ignorance: the scheduler chooses the
test case that targets the elements of the DSUT (actual
components, issuing interfaces, message types) on whose
“health” the test system has the minimum information;

– max-potential policy – the max-potential policy can be
described roughly as “the max failure discovery potential,
the first”. The test cases are ordered by their failure
discovery potential, i.e. the KO probability. In principle,
the max-potential policy increases the fault detection rate.
If, for example, in the past test run a message verdict
equals fail, the probability of failure of the other messages
of the same type grows and the scheduler will choose
in all likelihood a test case that includes a message of
the same type. This policy focuses on DSUT elements
(actual components, issuing interfaces, message types)
whose faulty probability is growing and looks for the
maximum information about these elements that can be
gathered by the execution of the test cases.

Other scheduling policies can be defined: for instance, a
policy that mixes those mentioned above. Moreover, the
inference cycle can be driven by the user beliefs that can be
attributed to some A, I, T and M variables at the initialisation
phase (replacing the default values). Every new session starts
with the generation of a new inference engine (AC) extracted
from a new BN. This new engine is untouched by previous

executions. The user can influence the new session schedul-
ing with a priori probabilities that are optionally evaluated
taking into account the execution history.
The test session management is driven by the scheduler
through the halting policy. There are four basic halting poli-
cies: (i) n-KO-halt policy – the scheduler stops the test session
after the n-th C variable is set to 1 (KO); (ii) n-OK-halt
policy – the scheduler stops the test session after the n-th C
variable is set to 0 (OK); (iii) entropy-threshold-halt policy
– the scheduler stops the test session when all the Shannon
entropies of a selected group of A, I and T variables are
lower than a given threshold; (iv) no-halt policy (default) –
the scheduler stops the test session only when all the test
cases have been executed.
The next steps in the development of the scheduler compo-
nent will concern the improvement of the BN model and
inference engine, allowing a more accurate and indicative
portrait of the state beliefs over the DSUT components and
the test cases. To do this, much can be adapted from existing
work in the field of diagnostics and troubleshooting [35][76].
These developments will be strongly influenced by the exten-
sive trials that will be conducted within the early adopter free
trial programme (see Sect. 5.4), in which we will experience
with our users the policy modules and use those results to
tune current policies and eventually develop new ones driving
new strategies. As of yet, it is really difficult to evaluate
the multiple policies outside of multiple real-world cases
scenarios.

14 Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing

Fig. 13: Automated, evidence-based, reactive planning of test
sessions.

3.5 Automated evidence-based reactive planning of test
sessions

The proposed approach to automated functional testing
uses the probabilistic graphical reasoning capabilities of the
scheduler to drive not only the dynamic prioritisation of the
set of existing test cases, but also to enable the focused
generation of new test cases and their execution in a new
test session. When invoking the evidence-based reactive plan-
ning test method, the user can: (i) either provide an initial
(previously generated) TSD/TS file – for instance, the initial
test suite can be utilised for change tests, regression tests or
for smoke tests (preliminary tests aimed at revealing some
failures severe enough to reject a candidate service build
release); (ii) or invoke the evidence-based reactive planning
test method without any test suite, with a generation policy
that provokes a first generation – for instance, for progression
tests (Fig. 13).

The dynamic scheduler working within the evidence-
based reactive planning test method is augmented with a
generation policy module (Fig. 14). Within the test session
in progress, on the basis of evidences (verdicts) accumulated
from the past test runs, the generation policy module re-
calculates at each cycle the degree of ignorance (Shannon en-
tropy) on all the DSUT elements and, possibly, recommends
the generation of new test cases whose execution would
diminish this ignorance – for example by including test cases
that trigger scenarios involving scarcely tested or untested
message types, issuing interfaces, and actual components. If
the recommendation is followed by the test session manager,
the current test session is terminated and the test generator
is invoked with appropriate generation directives. The newly
generated test cases (the new TS file and, possibly, the new
TSD) are taken into account with the re-initialisations of the

scheduler and the executor, and a new scheduled test session
is started with the new test suite.

In summary, the augmented scheduler of the evidence-
based reactive planning test method drives the current test
session with three request types (addressed to the test session
manager):

1. Request the execution of the next test case in the current
test session;

2. Request the termination of the current test session and
supply a test session coverage report;

3. Request the termination of the current test session, supply
the test session coverage report, and request the genera-
tion of a new test suite and the start of a new test session.

Even for service architectures with low complexity, the
generation of a full coverage test suite can be considered
a very difficult task and the result is certainly not scalable.
Therefore, the approach that has been taken is to sequentially
conduct test sessions whose search for failures is driven by
the scheduler probabilistic reasoning. For this reason, the
generation policy module is built to keep a broader view
and a trace of the previous test sessions execution data. This
module is initialised with the knowledge of all the message
types, the issuing interfaces and the actual components that
are described in the TCM and the SIM, not only of those
involved in the test cases of the particular TS file of a specific
test session. Thus, for each test session, the module keeps
track of test execution information for each actual compo-
nent, issuing interface and message type involved. It is able
to supply the coverage report of the test session with respect
to all of the testable DSUT elements. This coverage report
is accompanied by a set of directives about testing message
types, issuing interfaces and actual components of the DSUT
to be tested. If, on the basis of the current SBM, the generator
is able to satisfy to a certain degree the requested coverage, it
generates the new test suite and the test session manager starts
a new test session. Otherwise, the session is terminated and
the user shall upgrade the SBM in order to run new testing
sessions with specific coverage objectives on the basis of the
previous test session coverage reports.

The evidence-based planning approach proposes a so-
lution of the test coverage problem for a complex services
architecture on the basis of troubleshooting heuristics driven
by probabilistic reasoning. It pushes the test automation very
far, but is still in an experimental phase. We need experience
feedback on real-world case studies in order to tune, refine
and improve the approach.

The general sequence diagram of the implementation of
the evidence-based reactive planning is shown in Fig. 15. It
shows four main phases.

The initial request from the front-end service follows an
invocation by the end user through the MIDAS Web portal,
or through direct program invocation using the front-end
service API. The initialisation phase sets up the scheduler.
The scheduler initiates the first generation of test cases by
providing the generation directives to the test generator. A

Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing 15

Fig. 14: Scheduling and planning cycle.

test scheduling request initiates the schedule/execute/arbi-
trate cycle. The scheduler returns the selected next test case
to execute according to the scheduling policy and the state
of the inference engine. The test executor/arbiter runs the
test and returns the verdict that is notified to the scheduler
through a subsequent test scheduling request. The scheduler
decides whether it will return the next test case to execute,
or request another generation of test cases. We call this cycle
of interactions evidence-driven generation of test cases. The
workflow ends when the scheduler returns an empty response
to the test scheduling request – no more interesting case to
test in the explored state space, or user-specified stopping
conditions have been met. The reporting phase ends the
workflow by reporting the collection of verdicts, the high-
lighted differences between expected and actual payloads,
and the test coverage report. The report is displayed on a
dashboard that is described in Sect. 4.

4 Prototype usage with real-world use cases

We have initial feedback of the usage of the functional test
methods from the MIDAS pilots that have been deployed by
the MIDAS partners Dedalus and ITAINNOVA. The MIDAS
pilots are two real-world distributed and service-based archi-
tectures in the healthcare and logistics industries.

Dedalus has deployed standard HSSP services – RLUS,
IXS, CTS2 – that had been developed and are operational
in the context of different business and research projects.
The Healthcare Pilot has made available a number of these
services as test targets of the MIDAS prototype. In partic-
ular, these services are utilised in the Calabria Cephalalgic
Network (CCN) distributed application depicted in Sect. 3,
Fig. 3.

ITAINNOVA – Instituto Tecnológico de Aragón – is a
public research and technological organisation (RTO) sup-
ported by the Industry and Innovation Department of the
Government of Aragon. Its mission is to “help companies,
technology leaders, institutions and anyone who shapes our
society towards achieving a new future through innovation
and technological development”. The Aragon Region hosts

an important Supply Chain Management industrial district
and ITAINNOVA has defined a service architecture for sup-
ply chain management and logistics, has built a reference
implementation of the architecture and is helping local com-
panies and institutions to put in place services in the logistic
domain and to test them with the MIDAS test methods [23].

In this paper we give some details of the usage of the
MIDAS prototype for testing the Healthcare Pilot.

4.1 Testing the Healthcare Pilot

Dedalus utilised a custom-built framework for service unit
testing that had already significantly shrunk the effort of
manually producing and executing test cases and test suites.
The major limitations of this custom-built framework have
been identified as: (i) the test case overhead, (ii) the limitation
to unit testing, (iii) the lack of planning and scheduling
features, and (iv) reduced usability and manageability. The
test case overhead issue relates to the necessity of creating a
huge amount of test cases since the services to be tested (such
as RLUS) are specified as generic and the payload structure
varies according to the different instantiations of the service.
In addition, the typical content transferred in the healthcare
industry accommodates very complex data structures with
several thousands of atomic data types.

Figure 16 depicts the test environment of the Dedalus
Pilot. It consists of one virtual component and four actual
components, each exposing a service as described in Sect. 3.
Figure 17 shows a scenario that was tested on the presented
architecture. In this scenario, the virtual portal looks for a
patient record (findIdentitiesByTraits) that, if not found, is
created (createIdentityFromEntity) and retrieved (findIden-
titiesByTraits). The auxiliary services are used to trigger
ancillary state operations such as resetState, setState, and
getState.

The whole specification of the system is composed of the
following documents:
– five TCM XML documents describing the components

types, of length between 13 and at most 37 lines for the
longest describing the virtual component. The contents
of the TCM documents of the Virtual Portal and MPI-
IXS components are shown in Appendices A.1 and A.2,
respectively;

– one TCM XML document (47 lines) describing the topol-
ogy of the test environment depicted in Fig. 16. Its content
is shown in Appendix A.3;

– five SBM documents (PSM/SCXML) describing the ex-
ternal behaviour of each component (PSM), of length
between 30 and 101 lines, the longest of which describes
the virtual component which initiates the scenario de-
picted in Fig. 17. The contents of the SBM documents
of the Virtual Portal and MPIIXS components are shown
in Appendices B.1 and B.2, respectively;

– one SIM document (WSDL/XSD) for each service ex-
posed by the components, along with the XSD files
defining the data structures of the SOAP messages; there
are 8 WSDL documents and 31 XSD documents;

16 Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing

Fig. 15: Sequence diagram of the evidence-based reactive planning.

Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing 17

Fig. 16: TCM scheme of the Healthcare Pilot.

Fig. 17: Test scenario of the Healthcare Pilot.

– a few templates for the exchanged payloads; the length of
the templates varies between 6 and 40 lines;

– a configuration file with parameters and policies (e.g. the
stopping conditions for the functional testing such as the
maximum number of failed tests). Its content is shown in
Appendix C;

– an optional initial test generation directive file, that can
be provided by the end user, but is not necessary since the
scheduler will produce the directives as needed during the
test session. It is mentioned here for the sake of complete-
ness and to reference its content, shown in Appendix D.

The TCM and the SBM are specific to this test environ-
ment and campaign. The SIM, i.e. the collection of WSDL
and XSD files, is exactly the same as that of the system in
production. The templates have been generated with SoapUI
[5], then configured with specific sets of values or with reg-

ular expressions. The usage of templates is vital for reducing
the generation search space with the huge payloads that are
typical of the healthcare industry.

Figure 18 shows an overview of the dashboard (in a
browser) of the Healthcare Pilot at the end of a test session.
In the following we will address the widgets by their (x,
y) coordinates, with the origin of the axes at the top-left
corner of the dashboard. For this execution, the stopping
condition of at most one execution cycle has been met (green
branch of the tree in widget(4, 3), and widget(4, 2)). Ten
tests have passed (widget(5, 1)), one has failed (widget(4,
1)), and there are no inconclusive tests (widget(3, 1)). The
tester can navigate through each of these three test verdict
widgets to access more detailed information about each in-
dividual verdict, including the comparison between expected
and actual payloads. The widget at (5, 3) displays the number
of generated tests for each request from the scheduler. The
widget at (1, 3) shows the coverage metric on the operations
of the services that have been invoked in the scenario.

4.2 Impact of the MIDAS prototype on the Dedalus testing
process

The automated generation of test cases brought by the
MIDAS prototype reduces dramatically the effort that was
formerly dedicated to test case handwriting. Moreover, the
Dedalus custom-built test framework is able to support only
service unit testing. End-to-end tests of service compositions
with MIDAS require only the drafting of the appropriate
TCM and SBM, which is a challenging task, but is accom-
plished once the models are relatively stable and the genera-
tion/run of test suites that evolves following the maintenance
process (the cycle test/debug for progression tests, re-tests,
regression tests) can be performed in an optimised manner
by using features such as prior probabilities and beliefs and
scheduling/generation policies.

With the potentially unlimited amount of large test cases
that can be produced, the optimisation of the test sessions is
a must. The Dedalus custom-built test framework does not
have any support for test case prioritisation and optimisation
of test case generation. The MIDAS intelligent scheduler
and evidence-based planning facility propose solutions to the
optimisation problem that are technically operational, poten-
tially very powerful and whose usage has been experienced
by the Dedalus users. We and, above all, our users shall
constitute assets of experience and know-how in testing using
advanced features such as the test generation based on formal
methods, test prioritisation, scheduling and planning based on
probabilistic graphical reasoning in different testing contexts.

Last but not least, with the Dedalus custom-built test
framework, every change in the deployed DSUT (IP ad-
dresses, ports, URIs, parameterisations) requires a significant
effort of reconfiguration by hand of each individual test case,
practically preventing any routinisation of the test tasks and,
consequently, any continuous integration approach. With the
MIDAS prototype, the TCM, the SBM and the generated test
suites are independent of the DSUT endpoint locations that

18 Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing

Fig. 18: Dashboard of the Healthcare Pilot test session.

are indicated as configuration parameters to be instantiated at
test run time.

4.3 Drawbacks and limitations of the MIDAS prototype

Current known drawbacks of the MIDAS prototype concern
manageability and usability issues. We plan to develop pro-
ductivity tools such as wizards for the Test Configuration
Model and the Service Behaviour Model, to improve the
consoles and dashboards for test generation and execution
and also to implement a Test Data Management System
(including version management) that allows for storage and
query of all models, policies, test suites, logs, reports and
other artefacts (as well as all links between these artefacts)
that are consumed and produced by each test generation and
each test running session.

In terms of matching test outcomes with oracles, the
current approach performs a complete matching over the
corresponding SOAP messages (active oracles). However, it
is also convenient to check only the value of specific fields in
the messages, thus ignoring the other values (passive oracles).
Furthermore, it is also important to allow conditional expres-
sions in the outputs of the oracles to be computed against
previous outputs in the same scenario in order to strengthen
the computation of the verdict against false negatives with re-
spect to generated data by the transfer functions in the PSMs.
Passive oracles and conditional expressions are planned in the
next releases.

We are also enhancing the treatment of timeouts. We will
provide a collection of timer types to be instantiated in the
PSMs in order to enable the user to specify: (i) reply timers

– that are set on responses to requests that must be obtained
in specified time intervals; (ii) causality timers – that are set
on actions that have been caused by previous interactions and
must be effected in specified time intervals; (iii) delay timers
– that are set on actions that must not be taken before defined
time intervals. These timers allow extensively testing time
constrained service behaviour.

Quiescence [80] is not explicitly handled in the MIDAS
prototype. Quiescence explicitly represents the fact that no
output is provided in some system states. For example, an
ATM’s state after having delivered the requested amount of
money should be quiescent: it should not produce any other
output until further input is given, meaning it should not
deliver the money twice. On the contrary, the state before
delivering the money should not be quiescent. When a system
under test has quiescent and non-quiescent states, the test
system must decide whether the verdict should be pass, fail,
inconclusive, error or none. In the MIDAS prototype, if a
response to a request is emitted twice, it is silently ignored on
the receiving end. Therefore, a state that must be quiescent is
not explicitly checked for that property. A timeout is triggered
when facing a quiescent state that should not be quiescent,
producing a fail verdict. Quiescence testing will be provided
in the next releases.

Controllability is not handled as such. We understand
controllability as the ability of an external input to move the
internal state of a service from an initial state to a final state
in a finite time interval. In a grey-box testing approach, the
observability of a service under test is limited to the exchange
of messages with its interlocutors. Since its internal states are
not observable, they are not controllable any more. We can

Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing 19

only test the view of the internal state that is provided as
a resource that can be read, set and reset with the ancillary
operations getState, setState and resetState anywhere in a
test scenario (a PSM). The PSM author defines the resource
structure and content and implements the ancillary operations
on the service under test allowing testing post-conditions
on the service operations defined not only on the type and
content of the response, but also on the content of the read
state resource. Conversely, controllability in the sense of
whether a Web service has compatible partners [53] is not
considered in this approach.

WS-BPEL [66] is a scripting language that allows quickly
implementing Web service orchestrators, i.e. service com-
ponents that centralise the control and data flow between
the other components of a services architecture. Note that
WS-BPEL scripts orchestrate only SOAP services. As such,
white-box testing of WS-BPEL scripts can provide valuable
feedback on the correctness of the end to end interaction
scenarios between the components of an orchestrated Web
services architecture. White-box test methods for WS-BPEL
orchestrators are not currently implemented in the MIDAS
prototype. An academic partner external to the MIDAS
project has implemented a BPEL verification and white-
box test method [26]. The MIDAS prototype is not only a
SaaS, but also an open PaaS that enables researchers and
practitioners to upload, register, install and try out on the
MIDAS SaaS custom-built test methods and tools, and invoke
them through the MIDAS generic API and GUI. We are
working with our partner to include its WS-BPEL test method
in the MIDAS test method catalogue.

5 Evaluation of the MIDAS prototype

Dedalus has carried out a study to assess the interest of the
prototype after having run several test sessions. To analyse
the impact of the MIDAS prototype on the efficacy and effi-
ciency of the testing process, Dedalus has defined indicators
in the following categories: (i) cost, (ii) performance, and (iii)
quality.

5.1 Cost indicators

The cost indicators are related to: (i) the staff training effort,
(ii) the cumulated efforts of both the building of the test
campaigns and the test campaign result analysis. The effort
is measured in terms of person/days spent by the R&D team
to accomplish the involved tasks.

In terms of the training effort, it took approximately 6
days to train one software analyst to support the phases of
test planning, design and analysis, and approximately 4 days
to train one software tester/developer to put in place the test
implementation, execution and reporting phases. Note that
there does not yet exist packaged training courses, and the
training process has been conducted mainly on-the-job with
the remote support of a tutor. These costs are acceptable to

Dedalus with respect to the expectation of improving the
overall quality and reducing costs and delays of the software
development process.

The cumulated effort spent for the test campaigns (build-
ing and analysis) amounts to 50 person/days. It is important
to note that this cost has been measured starting from the
availability of a running and stable version of the MIDAS
prototype and does not take into account any iterations during
the MIDAS project due to the deployment of alpha and
beta versions of the prototype and the beta testing activity
performed by the Dedalus team on the prototype itself. This
measure of the costs in terms of person/days is objective and
has supported a more general re-assessment of the costs of
installing and deploying a software product of the complexity
of the Healthcare Pilot, and of the expected revenue and
profit, in a situation in which the MIDAS testing technology
was available. This assessment can be completed only by
considering the performance indicators as well.

5.2 Performance indicators

The considered key performance indicators (KPI) are:

– Efficiency – degree of optimization of the engineering
process from the development up to the delivery and
maintenance phases;

– Effectiveness – number of defects that can be discovered
and the distribution of the discovery in the phases of the
engineering cycle (the earlier in the cycle, the higher the
effectiveness indicator).

The CCN project is a typical Dedalus customer project. In
its study, Dedalus has compared its Economic Evaluation
Sheet with other three customer provisions using similar tech-
nology (X1.V1, the Dedalus software product implementing
the aforementioned services [13]) and the same economic
quotation. In all of these scenarios the estimated costs for the
configuration, distribution, installation and operation of the
solution sum up to 50% of the total value of the provision
itself and the corresponding effort amounts to about 550 per-
son/days. More precisely, the activities that contribute to this
cost are: (i) software tuning and configuration, (ii) integration
with third party software (target of the MIDAS technology),
(iii) internal testing, (iv) integration testing of the overall ar-
chitecture (target of the MIDAS technology), (v) training, and
(vi) delivery and operation. The integration testing activity
evaluates to around 15% and the corresponding effort is about
80 person/days. When compared to the aforementioned cost
of 50 person/days, the reduction of more than 35% for this
activity is significant. Effective model driven and automated
SOA testing approaches also have an impact on the costs for
the integration with third party software, which is evaluated to
35% of the total cost with a corresponding effort of about 190
person/days. In a conservative assumption of reducing the
costs of this phase by around 20% (corresponding to about
35 person/days), the total reduction of the cost of the overall
provision would be around 13%.

20 Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing

On the other hand, it is important to stress that, in the
evaluation of the MIDAS prototype, Dedalus has taken into
account two critical aspects regarding the supply of its X1.V1
solutions:

– In the tenders, Dedalus conservatively increases, in the
Economic Evaluation Sheets, the costs estimation for
customisations, as well as the integration and testing of
SOA solutions. The marketing department faces the usual
dilemma: either increase the total fee of the provision
(which for public tenders results in huge competitive
disadvantages) or increase the company investment risk.

– Licensing and maintenance costs are always over-
estimated because of the unpredictable cost of “in produc-
tion” maintenance activities. With more effective testing,
the maintenance costs could be stabilised and business
models could significantly change by allowing innovative
models like pay-per-use and pay-per-performance.

These two aspects are even more relevant in terms of scal-
ability of the provision value and confidence in the return
on investment. This is especially true for a platform like
X1.V1 which Dedalus aims at becoming the corner-stone of
complete, end-to-end SOA solutions whose volume of trans-
actions, actors, users, accesses has the potential to increase
exponentially and so does the possibility for revenues. For
the Effectiveness KPI, the most important point is to find, as
early as possible, the largest amount of bugs, inconsistencies,
defects or issues in the software system to be deployed in the
provisions. In order to evaluate the impact of MIDAS on this
fundamental KPI, Dedalus has considered the following two
indicators:

– number of generated tests for the testing campaign;
– number of revealed true defects (not false positives).

While in the past engineers have been able to manually write
a few tens of tests for every interface using Dedalus custom-
built testing framework, and considering that the focus is on
very complex “service data models”, the ability to increase
the number of test cases by two orders of magnitude (around
5000) and achieving this automatically at a very early stage
is an important advantage. During the development of the
HSSP IXS and RLUS services – which preceded the MIDAS
project by two years – a Dedalus partner of the CCN project
conducted a manual black-box testing campaign concerning
functionalities related to a few CRUD (Create, Read, Up-
date, Delete) operations on resources and reported 10 testing
issues. Out of those issues, seven were false positives and
three were related to actual failures. The small amount of
failures compared to the false positives can be explained by
the fact that the most complex elements in the requests are
query expressions that require rather good knowledge of the
XML based semantic signifiers (CDA2, XDW), as well as
of the XPath language [12]. These issues were related to an
incorrect use of the expression language in the RLUS query
operations. When using the MIDAS prototype for testing, of
thousands of test cases, only one edge case which turned out
to be a false positive was revealed (the result of a "hole" in

the PSM specifications). This demonstrates that the proposed
technology based on test massive generation and dynamic
prioritisation allows for covering a high number of cases
that can hardly be foreseen or even imagined with data
payloads of this complexity, thus maximising testing efficacy
and efficiency.

5.3 Quality indicators

The quality indicators taken into account are: (i) the con-
fidence in software quality; (ii) the capability to reveal the
majority of failures not later than the integration testing
phase; (iii) the reduction of delays.

In terms of confidence in software quality, Dedalus esti-
mates that the use of the MIDAS technology would increase
the level of trustworthiness to “very confident” in about 90%
of cases, considering that the “confident” level is necessary
to embrace novel and less conservative business models.

In the past a great number of failures were discovered
during the user acceptance phase or while the software was
already in production. Dedalus estimates that the MIDAS
technology has the firm potential to concentrate the discovery
of defects in the early stages, and to significantly reduce the
cost of late defect discovery.

In terms of reduction of delays, the critical factor is the
ability to employ the technology from the start of the devel-
opment cycle. Dedalus estimates that the MIDAS technology
allows for the adoption of a continuous DevOps model.
However, on this point experience feedback on new projects
is still needed.

5.4 Licensing

As the MIDAS prototype is a SaaS, there is no specific
licensing issue for the user as it would be for traditional
software installed on premises. The end user basically has
two access points to MIDAS: through a Web application
accessible from a browser, or through APIs (today SOAP
Web services). An industrial SaaS, simplyTestify, is being
developed by Simple Engineering, a start-up partner of the
MIDAS project that will run an early adopter free trial
programme beginning the last quarter of 2016 [14], and the
fully accessible commercial offer, on a pay-as-you-go basis
including free tier, in the course of 2017.

6 Conclusion

The collection of functional test automation methods of the
MIDAS prototype covers all the service functional test tasks,
including the most “intelligent” and knowledge-intensive
ones. These test methods bring solutions to tough functional
test automation problems such as: (i) the configuration of the
automated test execution system against large and complex
services architectures, (ii) the test input generation based
on formal methods and temporal logic, (iii) the test oracle

Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing 21

generation based on formal functional and behavioural spec-
ification of services, (iv) the intelligent dynamic scheduling
of test cases, and (v) the intelligent, evidence-based, reactive
planning of test sessions. Furthermore, the test automation
methods are provided as services, allowing the MIDAS user
to invoke them individually, to easily combine them in com-
plex procedures and to routinise their usage in automated
service integration and delivery processes. The MIDAS pro-
totype has been utilised and evaluated by the MIDAS pi-
lot partners on real-world use cases in the healthcare and
logistics industries. New trials for assessing and refining
advanced features such as model-based generation, dynamic
scheduling and reactive planning for progression testing, re-
testing and regression testing are in progress on other real-
world operational services architectures.

There are several improvements of the core technology
that are already planned, but the most important evolution/ex-
tension is the testing of distributed systems that integrate con-
nected objects (IoT). The challenge is to apply the MIDAS
approach of "extreme" automation of functional testing to the
new large-scale distributed architectures involving systems,
services/APIs, mobile and stationary connected objects. We
shall extend the portfolio of the observed interaction pro-
tocols, beyond SOAP, HTTP/XML, HTTP/JSON, to Web
sockets [83], MQTT [67], CoAP [43] etc., and adapt the test
generation, execution, scheduling and planning mechanisms
of the current MIDAS prototype to these new distributed
architectures. Moreover, the deployment of the MIDAS test-
ing technology on cloud allows for facing the scalability
challenge. In particular, we plan to enhance, for large scale
hw/sw distributed systems, the probabilistic methods that
have been proved in the past to be particularly well adapted to
the testing and troubleshooting of complex systems [45][79]
and are currently utilised for scheduling and planning within
the MIDAS prototype.

7 Acknowledgement

This research has been conducted in the context of the
MIDAS project (EC FP7 project number 318786) partially
funded by the European Commission.

References

1. http://martinfowler.com/bliki/
DeploymentPipeline.html.

2. https://jenkins-ci.org/.
3. http://www.midas-project.eu.
4. http://www.w3.org/TR/wsdl.
5. https://www.soapui.org/.
6. http://www.dedalus.eu/.
7. https://hssp.wikispaces.com/.
8. https://en.wikipedia.org/wiki/Service_

Component_Architecture.
9. http://www.w3.org/TR/wsdl20/.

10. http://swagger.io.
11. http://www.w3.org/TR/scxml/.
12. https://www.w3.org/TR/xpath/.
13. http://www.dedalus.eu/x1v1.cfm?chg_lang=

eng.
14. http://blog.simplytestify.com.
15. IBM Rational Service Tester for SOA Quality: Func-

tional testing. http://www-03.ibm.com/software/
products/fr/servicetest.

16. Parasoft: Api testing, service virtualisation, test environment
and data management. https://www.parasoft.com.

17. Soasta: Load and performance testing. https://www.
soasta.com/.

18. Tricentis: Risk-based testing, model-based test automation and
test data management. http://www.tricentis.com.

19. Saswat Anand, Edmund K. Burke, Tsong Yueh Chen, John A.
Clark, Myra B. Cohen, Wolfgang Grieskamp, Mark Harman,
Mary Jean Harrold, and Phil McMinn. An orchestrated survey
of methodologies for automated software test case generation.
Journal of Systems and Software, 86(8):1978–2001, 2013.

20. Paolo Arcaini, Angelo Gargantini, and Elvinia Riccobene. Op-
timizing the Automatic Test Generation by SAT and SMT Solv-
ing for Boolean Expressions. In Proceedings of the 2011 26th
IEEE/ACM International Conference on Automated Software
Engineering, ASE ’11, pages 388–391, Washington, DC, USA,
2011. IEEE Computer Society.

21. A. Askarunisa, K. A. J. Punitha, and A. M. Abirami. Black box
test case prioritization techniques for semantic based composite
web services using OWL-S. In Recent Trends in Information
Technology (ICRTIT), 2011 International Conference on, pages
1215–1220. IEEE, June 2011.

22. B. Athira and P. Samuel. Web services regression test case
prioritization. In Computer Information Systems and Industrial
Management Applications (CISIM), 2010 International Confer-
ence on, pages 438–443. IEEE, October 2010.

23. M. A. Barcelona, L. García-Borgoñón, and G. López-Nicolás.
Practical experiences in the usage of MIDAS in the logistics.
International Journal on Software Tools for Technology Trans-
fer, pages 1–15, 2016.

24. E.T. Barr, M. Harman, P. McMinn, M. Shahbaz, and Shin Yoo.
The Oracle Problem in Software Testing: A Survey. Software
Engineering, IEEE Transactions on, 41(5):507–525, May 2015.

25. Cesare Bartolini, Antonia Bertolino, Eda Marchetti, and Andrea
Polini. WS-TAXI: A WSDL-based Testing Tool for Web
Services. In Second International Conference on Software Test-
ing Verification and Validation, ICST 2009, Denver, Colorado,
USA, April 1-4, 2009, pages 326–335. IEEE Computer Society,
2009.

22 Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing

26. Lina Bentakouk, Pascal Poizat, and Fatiha Zaïdi. Checking
the Behavioral Conformance of Web Services with Symbolic
Testing and an SMT Solver. In TAP, volume 6706 of Lecture
Notes in Computer Science, pages 33–50. Springer, 2011.

27. Mustafa Bozkurt, Mark Harman, and Youssef Hassoun. Test-
ing and verification in service-oriented architecture: a survey.
Softw. Test. Verif. Reliab., 23(4):261–313, June 2013.

28. T. D. Cao, P. Felix, R. Castanet, and I. Berrada. Online Testing
Framework for Web Services. In 2010 Third International
Conference on Software Testing, Verification and Validation,
pages 363–372, April 2010.

29. Allen Chan. Encyclopedia of Database Systems, chapter
Service Component Architecture (SCA), pages 2632–2633.
Springer US, Boston, MA, 2009.

30. Lin Chen, Ziyuan Wang, Lei Xu, Hongmin Lu, and Baowen Xu.
Test Case Prioritization for Web Service Regression Testing. In
Service Oriented System Engineering (SOSE), 2010 Fifth IEEE
International Symposium on, pages 173–178. IEEE, June 2010.

31. Edmund M. Clarke, Orna Grumberg, and Doron A. Peled.
Model checking. MIT Press, 2001.

32. Edmund M. Clarke, William Klieber, Milos Novácek, and Paolo
Zuliani. Model Checking and the State Explosion Problem. In
Bertrand Meyer and Martin Nordio, editors, Tools for Practical
Software Verification, LASER, International Summer School
2011, Elba Island, Italy, Revised Tutorial Lectures, volume
7682 of Lecture Notes in Computer Science, pages 1–30.
Springer, 2011.

33. D. Conforti, M. C. Groccia, B. Corasaniti, R. Guido, and
R. Iannacchero. EHMTI-0172. Calabria Cephalalgic Network:
innovative services and systems for the integrated clinical man-
agement of headache patients. The Journal of Headache and
Pain, 15(Suppl 1):D12, 2014.

34. Luca Console and Mariagrazia Fugini. WS-DIAMOND: An
Approach to Web Services – DIAgnosability, MONitoring and
Diagnosis, volume 4 of Information and Communication Tech-
nologies and the Knowledge Economy. IOS Press, Amsterdam,
October 2007.

35. Johan de Kleer and Brian C. Williams. Diagnosing multiple
faults. Artificial Intelligence, 32(1):97–130, April 1987.

36. Rina Dechter. Bucket Elimination: a Unifying Framework for
Processing Hard and Soft Constraints. Constraints, 2(1):51–55,
April 1997.

37. ECMA International. Standard ECMA-262 - ECMAScript
Language Specification 5.1 Edition. http://www.ecma-
international.org/ecma-262/5.1/Ecma-262.pdf, June 2011.

38. S. Elbaum, A. G. Malishevsky, and G. Rothermel. Test Case
Prioritization: a Family of Empirical Studies. Software Engi-
neering, IEEE Transactions on, 28(2):159–182, February 2002.

39. Thomas Erl. Service-Oriented Architecture: Concepts, Technol-
ogy, and Design. Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2005.

40. David Harel. Statecharts: a visual formalism for complex
systems. Science of Computer Programming, 8(3):231 – 274,
1987.

41. M. Haverbeke. Eloquent JavaScript: A Modern Introduction to
Programming. No Starch Press Series. No Starch Press, 2011.

42. Robert M. Hierons, Kirill Bogdanov, Jonathan P. Bowen, Rance
Cleaveland, John Derrick, Jeremy Dick, Marian Gheorghe,
Mark Harman, Kalpesh Kapoor, Paul Krause, Gerald Lüttgen,
Anthony J. H. Simons, Sergiy Vilkomir, Martin R. Woodward,
and Hussein Zedan. Using Formal Specifications to Support
Testing. ACM Comput. Surv., 41(2):9:1–9:76, February 2009.

43. IETF. The Constrained Application Protocol (CoAP) - RFC
7252. https://tools.ietf.org/html/rfc7252, June 2014.

44. Seema Jehan, Ingo Pill, and Franz Wotawa. Functional SOA
testing based on constraints. In 8th International Workshop
on Automation of Software Test, AST 2013, San Francisco, CA,
USA, May 18-19, 2013, pages 33–39, 2013.

45. Finn V. Jensen, Uffe Kjærulff, Brian Kristiansen, Helge
Langseth, Claus Skaanning, Jirí Vomlel, and Marta Vomlelová.
The SACSO methodology for troubleshooting complex sys-
tems. AI EDAM, 15:321–333, September 2001.

46. Rajeev Joshi, Leslie Lamport, John Matthews, Serdar Tasiran,
Mark R. Tuttle, and Yuan Yu. Checking Cache-Coherence
Protocols with TLA+. Formal Methods in System Design,
22(2):125–131, 2003.

47. Lukasz Juszczyk, Hong Linh Truong, and Schahram Dustdar.
GENESIS - A Framework for Automatic Generation and Steer-
ing of Testbeds of Complex Web Services. In ICECCS, pages
131–140. IEEE Computer Society, 2008.

48. Kathrin Kaschner and Niels Lohmann. Automatic Test Case
Generation for Interacting Services. In ICSOC Workshops,
volume 5472 of Lecture Notes in Computer Science, pages 66–
78. Springer, 2008.

49. A. Ya. Khinchin. Mathematical foundations of information
theory. Dover, 1957.

50. Leslie Lamport. Specifying Systems, The TLA+ Language and
Tools for Hardware and Software Engineers. Addison-Wesley,
2002.

51. Leslie Lamport. Theoretical Aspects of Computing - ICTAC
2009: 6th International Colloquium, Kuala Lumpur, Malaysia,
August 16-20, 2009. Proceedings, chapter The PlusCal Algo-
rithm Language, pages 36–60. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2009.

52. Leonidas Lampropoulos and Konstantinos F. Sagonas. Auto-
matic WSDL-guided Test Case Generation for PropEr Testing
of Web Services. In WWV, volume 98 of EPTCS, pages 3–16,
2012.

53. Niels Lohmann and Karsten Wolf. Realizability Is Controlla-
bility. In WS-FM, volume 6194 of Lecture Notes in Computer
Science, pages 110–127. Springer, 2009.

54. Anders L Madsen and Finn V Jensen. Lazy propagation:
a junction tree inference algorithm based on lazy evaluation.
Artificial Intelligence, 113(1):203–245, 1999.

55. Ariele-Paolo Maesano. Bayesian dynamic scheduling for ser-
vice composition testing. Ph.D. Thesis, Université Pierre et
Marie Curie - Paris VI, January 2015.

56. Philip Mayer and Daniel Lübke. Towards a BPEL unit testing
framework. In TAV-WEB, pages 33–42. ACM, 2006.

57. Lijun Mei, W. K. Chan, T. H. Tse, and Robert G. Merkel. XML-
manipulating test case prioritization for XML-manipulating
services. Journal of Systems and Software, 84(4):603–619,
April 2011.

58. Siavash Mirarab and Ladan Tahvildari. A Prioritization Ap-
proach for Software Test Cases Based on Bayesian Networks.
In Matthew Dwyer and Antónia Lopes, editors, Fundamental
Approaches to Software Engineering, volume 4422 of Lecture
Notes in Computer Science, pages 276–290. Springer Berlin /
Heidelberg, 2007.

59. Akbar S. Namin and Mohan Sridharan. Bayesian reasoning
for software testing. In Proceedings of the FSE/SDP workshop
on Future of software engineering research, FoSER ’10, pages
349–354, New York, NY, USA, 2010. ACM.

60. Chris Newcombe. Why Amazon Chose TLA +. In Yamine Aït
Ameur and Klaus-Dieter Schewe, editors, Abstract State Ma-

Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing 23

chines, Alloy, B, TLA, VDM, and Z - 4th International Con-
ference, ABZ 2014, Toulouse, France, June 2-6, 2014. Proceed-
ings, volume 8477 of Lecture Notes in Computer Science, pages
25–39. Springer, 2014.

61. Chris Newcombe, Tim Rath, Fan Zhang, Bogdan Munteanu,
Marc Brooker, and Michael Deardeuff. How Amazon Web
Services Uses Formal Methods. Commun. ACM, 58(4):66–73,
March 2015.

62. E. Newcomer. Understanding Web Services: XML, WSDL,
SOAP, and UDDI. Independent technology guides. Addison-
Wesley, 2002.

63. E. Newcomer and G. Lomow. Understanding SOA with Web
Services. Independent technology guides. Addison-Wesley,
2005.

64. Sam Newman. Building microservices : designing fine-grained
systems. O’Reilly, 2015.

65. C. D. Nguyen, A. Marchetto, and P. Tonella. Change Sensitivity
Based Prioritization for Audit Testing of Webservice Composi-
tions. In Software Testing, Verification and Validation Work-
shops (ICSTW), 2011 IEEE Fourth International Conference
on, pages 357–365. IEEE, March 2011.

66. OASIS. Web Services Business Process Execution Language
Version 2.0. http://docs.oasis-open.org/wsbpel/2.0/wsbpel-
v2.0.pdf, April 2007.

67. OASIS. MQTT Version 3.1.1. http://docs.oasis-
open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html, October
2014.

68. Object Management Group (OMG). Uml testing profile, ver-
sion 1.2. http://www.omg.org/spec/UTP/1.2/.

69. Oracle. Automating Testing of SOA Composite Applications.
http://bit.ly/2bhzr5F, 2016.

70. Simon Parsons. Probabilistic Graphical Models: Principles and
Techniques by Daphne Koller and Nir Friedman, MIT Press,
1231 pp., ISBN 0-262-01319-3. The Knowledge Engineering
Review, 26(02):237–238, 2011.

71. Judea Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1988.

72. Judea Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1988.

73. Charith Perera, Arkady B. Zaslavsky, Peter Christen, and Dim-
itrios Georgakopoulos. Sensing as a Service Model for Smart
Cities Supported by Internet of Things. CoRR, abs/1307.8198,
2013.

74. Mauro Pezzè and Cheng Zhang. Automated Test Oracles: A
Survey. Advances in Computers, 95:1–48, 2015.

75. K. Rees, F. P. A. Coolen, M. Goldstein, and D. A. Wooff.
Managing the uncertainties of software testing: a Bayesian
approach. Qual. Reliab. Engng. Int., 17(3):191–203, 2001.

76. Raymond Reiter. A theory of diagnosis from first principles.
Artificial intelligence, 32(1):57–95, 1987.

77. Philippe Schnoebelen. The Complexity of Temporal Logic
Model Checking. In Philippe Balbiani, Nobu-Yuki Suzuki,
Frank Wolter, and Michael Zakharyaschev, editors, Advances in
Modal Logic 4, papers from the fourth conference on "Advances
in Modal logic," held in Toulouse (France) in October 2002,
pages 393–436. King’s College Publications, 2002.

78. Ebrahim Shamsoddin-Motlagh. A survey of service oriented
architecture systems testing. arXiv preprint arXiv:1212.3248,
2012.

79. Claus Skaanning, Finn V. Jensen, and Uffe Kjærulff. Printer
Troubleshooting Using Bayesian Networks. In Rasiah Lo-
gananthara, Günther Palm, and Moonis Ali, editors, Intelligent

Problem Solving. Methodologies and Approaches, volume 1821
of Lecture Notes in Computer Science, pages 367–380. Springer
Berlin Heidelberg, 2000.

80. Gerjan Stokkink, Mark Timmer, and Mariëlle Stoelinga. Talk-
ing quiescence: a rigorous theory that supports parallel compo-
sition, action hiding and determinisation. In MBT, volume 80
of EPTCS, pages 73–87, 2012.

81. W. T. Tsai, Yinong Chen, R. Paul, H. Huang, Xinyu Zhou,
and Xiao Wei. Adaptive testing, oracle generation, and test
case ranking for Web services. In Computer Software and
Applications Conference, 2005. COMPSAC 2005. 29th Annual
International, volume 1, pages 101–106 Vol. 2. IEEE, July
2005.

82. Hongbing Wang, Qianzhao Zhou, and Yanqi Shi. Describing
and Verifying Web Service Composition Using TLA Reason-
ing. In 2010 IEEE International Conference on Services
Computing, SCC 2010, Miami, Florida, USA, July 5-10, 2010,
pages 234–241. IEEE Computer Society, 2010.

83. Web Hypertext Application Technology Working Group
(WHATWG). Web sockets, in HTML Living Standard.
https://html.spec.whatwg.org/multipage/comms.html#network,
August 2016.

84. Erik Wilde and Cesare Pautasso, editors. REST: From Research
to Practice. Springer, 2011.

85. D. A. Wooff, M. Goldstein, and F. P. A. Coolen. Bayesian
graphical models for software testing. Software Engineering,
IEEE Transactions on, 28(5):510–525, May 2002.

86. Franz Wotawa, Marco Schulz, Ingo Pill, Seema Jehan, Philipp
Leitner, Waldemar Hummer, Stefan Schulte, Philipp Hoenisch,
and Schahram Dustdar. Fifty Shades of Grey in SOA Testing. In
2013 IEEE Sixth International Conference on Software Testing,
Verification and Validation, Workshops Proceedings, Luxem-
bourg, Luxembourg, March 18-22, 2013, pages 154–157. IEEE
Computer Society, 2013.

87. Ching-Seh Wu and Yen-Ting Lee. Automatic SaaS test cases
generation based on SOA in the cloud service. In CloudCom,
pages 349–354. IEEE Computer Society, 2012.

88. S. Yoo and M. Harman. Regression testing minimization, selec-
tion and prioritization: a survey. Software Testing, Verification
and Reliability, 22(2):67–120, 2012.

24 Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing

A TCM documents of Virtual Portal and MPIIXS
components

This section shows the contents of the Test Configuration
Model XML documents of the Virtual Portal and MPI-
IXS components, and of the complete topology depicted in
Fig. 16.

A.1 TCM document of Virtual Portal

1 <?xml version="1.0" encoding="UTF-8" standalone="
no"?>

2 <sca:composite xmlns:sca="http://docs.oasis-open.
org/ns/opencsa/sca/200903" xmlns:wsdli="http
://www.w3.org/ns/wsdl-instance" name="portal.
composite" targetNamespace="urn:dedalus:
sca4saut:portal">

3

4 <sca:component name="portal.component">
5

6 <sca:reference name="POCDPatientMQReference">
7 <sca:interface.wsdl interface="http://www.omg.

org/spec/IXS/201212#wsdl.porttype(
IXSMgmtAndQueryInterface)"/>

8 <sca:binding.ws wsdlElement="http://www.omg.
org/spec/IXS/201212#wsdl.port(
POCDPatientMQService)" wsdli:wsdlLocation
="http://www.omg.org/spec/IXS/201212
POCDPatientMQService/midasixsmqpocdpatient
.wsdl"/>

9 </sca:reference>
10

11 <sca:reference name="RLUSCDA2ReportReference">
12 <sca:interface.wsdl interface="urn:dedalus:

rlus:cda2report#wsdl.porttype(RLUSPortType
)"/>

13 <sca:binding.ws wsdlElement="urn:dedalus:rlus:
cda2report#wsdl.port(RLUSService)" wsdli:
wsdlLocation="urn:dedalus:rlus:cda2report
RLUSCDA2ReportService/midasrluscda2report.
wsdl"/>

14 </sca:reference>
15

16 <sca:reference name="RLUSAuxReference">
17 <sca:interface.wsdl
18 interface="urn:dedalus:rlus:aux#wsdl.

porttype(RLUSAuxInterface)" />
19 <sca:binding.ws wsdlElement="urn:dedalus:rlus:

aux#wsdl.port(RLUSService)"
20 wsdli:wsdlLocation="urn:dedalus:rlus:aux

RLUSAuxService/midasaux_rlus.wsdl" />
21 </sca:reference>
22

23 <sca:reference name="IXSAuxReference">
24 <sca:interface.wsdl
25 interface="http://www.omg.org/spec/IXS

/201212#wsdl.porttype(IXSAuxInterface)"
/>

26 <sca:binding.ws
27 wsdlElement="http://www.omg.org/spec/IXS

/201212#wsdl.port(IXSAuxService)"
28 wsdli:wsdlLocation="http://www.omg.org/spec/

IXS/201212 IXSAuxService/midasaux_ixs.
wsdl" />

29 </sca:reference>
30 </sca:component>
31

32 <sca:reference multiplicity="0..1" name="
POCDPatientMQReference" promote="portal.
component/POCDPatientMQReference"/>

33 <sca:reference multiplicity="0..1" name="
RLUSCDA2ReportReference" promote="portal.
component/RLUSCDA2ReportReference"/>

34 <sca:reference multiplicity="0..1" name="
RLUSAuxReference" promote="portal.component/
RLUSAuxReference" />

35 <sca:reference multiplicity="0..1" name="
IXSAuxReference" promote="portal.component/
IXSAuxReference" />

36

37 </sca:composite>

A.2 TCM document of MPIIXS

1 <?xml version="1.0" encoding="UTF-8" standalone="
no"?>

2 <sca:composite xmlns:s4s="http://www.midas-project
.eu/xmlns/sca4saut" xmlns:sca="http://docs.
oasis-open.org/ns/opencsa/sca/200903" xmlns:
wsdli="http://www.w3.org/ns/wsdl-instance"
name="mpi.ixs.composite" targetNamespace="urn:
dedalus:sca4saut:mpiixs">

3

4 <sca:component name="mpi.ixs.component">
5

6 <sca:service name="POCDPatientAdminService">
7 <sca:interface.wsdl interface="http://www.omg.

org/spec/IXS/201212#wsdl.porttype(
IXSAdminEditorInterface)"/>

8 <sca:binding.ws wsdlElement="http://www.omg.
org/spec/IXS/201212#wsdl.port(
POCDPatientAdminService)" wsdli:
wsdlLocation="http://www.omg.org/spec/IXS
/201212 POCDPatientAdminService/
midasixsadminpocdpatient.wsdl"/>

9 </sca:service>
10

11 <sca:service name="POCDPatientMQService">
12 <sca:interface.wsdl interface="http://www.omg.

org/spec/IXS/201212#wsdl.porttype(
IXSMgmtAndQueryInterface)"/>

13 <sca:binding.ws wsdlElement="http://www.omg.
org/spec/IXS/201212#wsdl.port(
POCDPatientMQService)" wsdli:wsdlLocation
="http://www.omg.org/spec/IXS/201212
POCDPatientMQService/midasixsmqpocdpatient
.wsdl"/>

14 </sca:service>
15

16 <sca:service name="IXSMetadataService">
17 <sca:interface.wsdl interface="http://www.omg.

org/spec/IXS/201212#wsdl.porttype(
IXSMetaDataInterface)"/>

18 <sca:binding.ws wsdlElement="http://www.omg.
org/spec/IXS/201212#wsdl.port(IXSMetadata)
" wsdli:wsdlLocation="http://www.omg.org/
spec/IXS/201212 IXSMetadataService/
midasixsmeta.wsdl"/>

19 </sca:service>
20

21 </sca:component>
22

23 <sca:service name="POCDPatientMQService" promote
="mpi.ixs.component/POCDPatientMQService"/>

24

25 </sca:composite>

Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing 25

A.3 TCM document of the complete topology

1 <?xml version="1.0" encoding="UTF-8" standalone="
no"?>

2 <sca:composite
3 xmlns:mpi="urn:dedalus:sca4saut:mpiixs"
4 xmlns:auxixs="urn:dedalus:sca4saut:auxixs"
5 xmlns:repo="urn:dedalus:sca4saut:repositoryrlus"
6 xmlns:auxrlus="urn:dedalus:sca4saut:auxrlus"
7 xmlns:portal="urn:dedalus:sca4saut:portal"
8 xmlns:sca="http://docs.oasis-open.org/ns/opencsa/

sca/200903"
9 xmlns:xs="http://www.w3.org/2001/XMLSchema"

10 xmlns:wsdli="http://www.w3.org/ns/wsdl-instance"
11 xmlns:s4s="http://www.midas-project.eu/xmlns/

sca4saut"
12 name="standardportal.saut"
13 targetNamespace="urn:dedalus:sca4saut:

standardportal.saut">
14

15 <sca:property name="saut" />
16

17 <sca:component name="virtual_portal">
18 <sca:property name="virtual" />
19 <sca:property name="init" />
20 <sca:implementation.composite name="portal:

portal.composite" />
21 <sca:reference name="POCDPatientMQReference"

target="mpiixs/POCDPatientMQService" />
22 <sca:reference name="RLUSCDA2ReportReference"

target="reporlus/RLUSCDA2ReportService" />
23 <sca:reference name="RLUSAuxReference" target="

auxrlus/RLUSAuxService" />
24 <sca:reference name="IXSAuxReference" target="

auxixs/IXSAuxService" />
25 </sca:component>
26

27 <sca:component name="mpiixs">
28 <sca:implementation.composite name="mpi:mpi.ixs

.composite" />
29 <sca:service name="POCDPatientMQService"/>
30 </sca:component>
31

32 <sca:component name="auxixs">
33 <sca:implementation.composite name="auxixs:

auxiliary.ixs.composite" />
34 <sca:service name="IXSAuxService"/>
35 </sca:component>
36

37 <sca:component name="reporlus">
38 <sca:implementation.composite name="repo:

repository.rlus.composite" />
39 <sca:service name="RLUSCDA2ReportService"/>
40 </sca:component>
41

42 <sca:component name="auxrlus">
43 <sca:implementation.composite name="auxixs:

auxiliary.rlus.composite" />
44 <sca:service name="RLUSAuxService"/>
45 </sca:component>
46

47 </sca:composite>

B SBM documents of Virtual Portal and MPIIXS
components

This section shows the contents of the Service Behaviour
Model XML documents of the the Virtual Portal and MPIIXS
components, depicted in Fig. 17.

B.1 SBM document of Virtual Portal

1 <?xml version="1.0" encoding="UTF-8"?>
2 <scxml xmlns:xsi="http://www.w3.org/2001/XMLSchema

-instance" xmlns="http://www.w3.org/2005/07/
scxml" xsi:schemaLocation="http://www.w3.org
/2005/07/scxml http://www.w3.org/2011/04/SCXML
/scxml.xsd" initial="initial" name="b0portal.
psm" version="1.0">

3

4 <datamodel>
5 <data id="stimulus_payload" src="

resetRequestIXS.xml"/>
6 <data id="aux_get_request_ixs" src="

getRequestIXS.xml"/>
7 <data id="aux_reset_request_rlus" src="

resetRequestRLUS.xml"/>
8 <data id="aux_reset_request_ixs" src="

resetRequestIXS.xml"/>
9 <data id="aux_set_request_rlus" src="

setRequestMarcoRLUS.xml"/>
10 <data id="aux_get_request_rlus" src="

getRequestRLUS.xml"/>
11 <data id="rlus_put_request" src="

putRequestMarco.xml"/>
12 <data id="findIdentitiesByTraits_input" src="

findIdentitiesByTraitsMarcoReq.xml"/>
13 <data id="createIdentityFromEntity_input" src="

createIdentityFromEntityMarcoReq.xml"/>
14 </datamodel>
15

16 <state id="initial">
17 <transition target="ixs_reset">
18 <log expr="’Initial stimulus for reset of IXS

’"/>
19 <send eventexpr="’IXSAuxReference::reset::

input’" namelist="stimulus_payload"/>
20 </transition>
21 </state>
22

23 <state id="ixs_reset">
24 <transition target="rlus_reset" event="

IXSAuxReference::reset::output">
25 <log expr="’Reset of IXS’"/>
26 <send eventexpr="’RLUSAuxReference::reset::

input’" namelist="aux_reset_request_rlus
"/>

27 </transition>
28 </state>
29

30 <state id="rlus_reset">
31 <transition target="patient_not_found" event="

RLUSAuxReference::reset::output">
32 <log expr="’Reset of RLUS’"/>
33 <send eventexpr="’POCDPatientMQReference::

findIdentitiesByTraits::input’" namelist="
findIdentitiesByTraits_input"/>

34 </transition>
35 </state>
36

37 <state id="patient_not_found">
38 <transition target="patient_created" event="

POCDPatientMQReference::
findIdentitiesByTraits::output">

39 <log expr="’Patient not found’"/>
40 <send eventexpr="’POCDPatientMQReference::

createIdentityFromEntity::input’" namelist
="createIdentityFromEntity_input"/>

41 </transition>
42 </state>
43

44 <state id="patient_created">

26 Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing

45 <transition target="ixs_checked" event="
POCDPatientMQReference::
createIdentityFromEntity::output">

46 <log expr="’Patient created’"/>
47 <send eventexpr="’IXSAuxReference::get::input

’" namelist="aux_get_request_ixs"/>
48 </transition>
49 </state>
50

51 <state id="ixs_checked">
52 <transition target="rlus_initialized" event="

IXSAuxReference::get::output">
53 <log expr="’IXS checked’"/>
54 <send eventexpr="’RLUSAuxReference::set::input

’" namelist="aux_set_request_rlus"/>
55 </transition>
56 </state>
57

58 <state id="rlus_initialized">
59 <transition target="patient_found" event="

RLUSAuxReference::set::output">
60 <log expr="’RLUS initialized’"/>
61 <send eventexpr="’POCDPatientMQReference::

findIdentitiesByTraits::input’" namelist="
findIdentitiesByTraits_input"/>

62 </transition>
63 </state>
64

65 <state id="patient_found">
66 <transition target="report_stored" event="

POCDPatientMQReference::
findIdentitiesByTraits::output">

67 <log expr="’Patient found"/>
68 <send eventexpr="’RLUSCDA2ReportReference::put

::input’" namelist="rlus_put_request"/>
69 </transition>
70 </state>
71

72 <state id="report_stored">
73 <transition target="rlus_checked" event="

RLUSCDA2ReportReference::put::output">
74 <log expr="’Report stored’"/>
75 <send eventexpr="’RLUSAuxReference::get::input

’" namelist="aux_get_request_rlus"/>
76 </transition>
77 </state>
78

79 <state id="rlus_checked">
80 <transition target="ixs_final_reset" event="

RLUSAuxReference::get::output">
81 <log expr="’RLUS checked’"/>
82 <send eventexpr="’IXSAuxReference::reset::

input’" namelist="stimulus_payload"/>
83 </transition>
84 </state>
85

86 <state id="ixs_final_reset">
87 <transition target="rlus_final_reset" event="

IXSAuxReference::reset::output">
88 <log expr="’Report stored, IXS reset.’"/>
89 <send eventexpr="’RLUSAuxReference::reset::

input’" namelist="aux_reset_request_rlus
"/>

90 </transition>
91 </state>
92

93 <state id="rlus_final_reset">
94 <transition target="final" event="

RLUSAuxReference::reset::output">
95 <log expr="’RLUS finally reset’"/>
96 </transition>
97 </state>

98

99 <final id="final"/>
100

101 </scxml>

B.2 SBM document of MPIIXS

1 <?xml version="1.0" encoding="UTF-8"?>
2 <scxml initial="initial" name="mpi.ixs.psm"

version="1.0"
3 xmlns="http://www.w3.org/2005/07/scxml"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"
5 xsi:schemaLocation="http://www.w3.org/2005/07/

scxml http://www.w3.org/2011/04/SCXML/scxml.
xsd">

6

7 <datamodel>
8 <data id="findIdentitiesByTraits_input" src="

findIdentitiesByTraitsMarcoReq.xml"/>
9 <data id="

findIdentitiesByTraits_output_NOTFOUND" src
="findIdentitiesByTraitsMarcoResp_NOTFOUND.
xml"/>

10 <data id="findIdentitiesByTraits_output" src="
findIdentitiesByTraitsMarcoResp.xml"/>

11 <data id="createIdentityFromEntity_input" src="
createIdentityFromEntityMarcoReq.xml"/>

12 <data id="createIdentityFromEntity_output" src
="createIdentityFromEntityMarcoResp.xml"/>

13 </datamodel>
14

15 <state id="initial">
16 <transition event="POCDPatientMQService::

findIdentitiesByTraits::input" target="
creation">

17 <log expr="’[IXS] First lookup of patient
failed’" />

18 <send eventexpr="’POCDPatientMQService::
findIdentitiesByTraits::output’"
namelist="
findIdentitiesByTraits_output_NOTFOUND
"/>

19 </transition>
20 </state>
21

22 <state id="creation">
23 <transition event="POCDPatientMQService::

createIdentityFromEntity::input" target="
find">

24 <log expr="’[IXS] Creation of the patient
record’"/>

25 <send eventexpr="’POCDPatientMQService::
createIdentityFromEntity::output’"
namelist="createIdentityFromEntity_output
"/>

26 </transition>
27 </state>
28

29 <state id="find">
30 <transition event="POCDPatientMQService::

findIdentitiesByTraits::input" target="
final">

31 <log expr="’[IXS] Second lookup of patient
succeeded’"/>

32 <send eventexpr="’POCDPatientMQService::
findIdentitiesByTraits::output’" namelist
="findIdentitiesByTraits_output"/>

33 </transition>
34 </state>

Lom Messan Hillah et al.: Automation and Intelligent Scheduling of Distributed System Functional Testing 27

35

36 <final id="final"/>
37 </scxml>

C Configuration file

This section shows the content of the configuration file for
the Healthcare Pilot experiment described in Sect. 4.1.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <!-- Service WSDLs are in subdirectories inside

the wsdl directory, with their skeletons -->
3 <!-- Stimulus payloads are in the same directory

as the WSDL of the called service -->
4 <!-- Each binding associates a unique psm file to

a unique composite file -->
5 <!-- Resources files for the PSMs data models (

SOAP message skeletons declared in data) may
not have a path (only their file names). In
this case, the preprocessor will bind those
resources to their concrete path. -->

6

7 <sauts>
8 <saut name="standardportal.saut.composite">
9 <sautDirectory>sauts</sautDirectory>

10 <psmDirectory>psms</psmDirectory>
11 <compositeDirectory>atomicparticipants</

compositeDirectory>
12 <wsdlDirectory>services</wsdlDirectory>
13 <binds>
14 <bind psm="mpi.ixs.psm.scxml" composite="mpi.

ixs.composite" />
15 <bind psm="auxiliary.ixs.psm.scxml" composite

="auxiliary.ixs.composite" />
16 <bind psm="auxiliary.rlus.psm.scxml" composite

="auxiliary.rlus.composite" />
17 <bind psm="b0portal.psm.scxml" composite="

portal.composite" />
18 <bind psm="repository.rlus.psm.scxml"

composite="repository.rlus.composite"
/>

19 </binds>
20 <stimuli>
21 <stimulus id="stimulus_payload" action="

stimulus_action == reset" payload="
resetRequestIXS.xml" />

22 </stimuli>
23 <stopOn>
24 <or>
25 <nbMaxExec>0</nbMaxExec>
26 <nbMaxFail>5</nbMaxFail>
27 </or>
28 </stopOn>
29 </saut>
30 </sauts>

D Test Generation Directive

This section shows the content of a typical test generation
directive, as can be issued by the dynamic scheduler or the
end user upon first upload of the archive containing all the
DSUT modelling artefacts onto the MIDAS platform, before
invoking the functional test method.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <TestGenSampleInputInfoset>
3 <generationDirective id="

MethodID_TaskID_GenDirective_0">
4 <!-- Pluscal designates the use of model

checking through TLA+ -->
5 <genStrategy>Pluscal</genStrategy>
6 <defaultTestCaseNumber>3</defaultTestCaseNumber

>
7 <!-- units allowed are : sec, min, hour, day-->
8 <timeout unit="sec">600</timeout>
9 <selectionDirective>

10 <messagetypes>
11 <!-- One or more -->
12 <!-- sautID/participantID/sendingPortID/

operationName/[input|output|fault/
faultType] -->

13 <messagetype>standardportal.saut/mpi.ixs.
component/POCDPatientMQService/
createIdentityFromEntity/input</
messagetype>

14 </messagetypes>
15 </selectionDirective>
16 </generationDirective>
17 </TestGenSampleInputInfoset>

