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Measurement of the dependence of the elastic moduli on the strain, i.e., the characterization of

nonlinear elastic properties of solid media, poses intrinsic experimental difficulties. The Dynamic

AcoustoElastic Technique has been recently developed as an efficient tool for the determination of the

modulus in both compression and tension. The goal of the present paper is to discuss the limitations of

the experimental implementation and the interpretation of the measured quantities in terms of nonlinear

parameters. For this purpose, simulation results will be presented for both classical and nonclassical

nonlinear elastic media. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4931917]

I. INTRODUCTION

In order to understand the physical mechanisms responsi-

ble for elastic nonlinearity in solid media, the knowledge of

the dependence of the elastic modulus on strain is needed, to-

gether with the monitoring of its variation when varying physi-

cal properties such as humidity,1 temperature,2 and applied

stress.3 This is particularly true in the case of nonclassical non-

linear elastic media,4 e.g., in the case of rocks,5 concrete,6

damaged metals,7,8 bones,9 and composites.10 In these materi-

als, in fact, hysteretic loops in the stress strain relation,11 condi-

tioning,12 and relaxation13 effects make the understanding of

the dynamic behavior of the system studied highly complex.

In general, the nonlinearity of a material is quantified

introducing the so called nonlinear elastic tensors b and d.

Normally, scalar stress-strain constitutive equations are for-

mulated. Within these formulations, in the case of classical

nonlinearity, stress r is assumed to be cubically dependent

on strain �: r¼ S(�þ b�2þ d�3).14 Here, S is the linear modu-

lus. In this paper, we will discuss the limitations of such sca-

lar formulation and the implications about the physical

interpretation of the results of measurements of the modulus.

In the case of nonclassical media, both tensors are them-

selves strain dependent, as it is evident from the deviation

from the parabolic behavior of the curve of the modulus vs.

�.11 In practice, the problem is generally simplified, with

good accuracy, assuming different nonlinear parameters for

the upgoing (increasing strain) and downgoing (decreasing

strain) branches of the r vs. � curves.15

The measurement of the modulus as a function of strain,

i.e., the determination of the nonlinear parameters, poses

intrinsic difficulties. Quasistatic experiments measure directly

the dependence of the stress on strain.16 These measurements

are difficult to perform, particularly in tension and at low

strain levels (smaller than 10�5).

As an alternative, in the last decades, Static

AcoustoElastic Testing (SAET) has been proposed.17–21 In

this approach, a quasistatic loading is applied and the modu-

lus tested at the given pressure by measuring the speed of

sound of a probing pulse. While a high precision in the deter-

mination of the nonlinear parameters is obtained, it is again

difficult to implement SAET experiments, particularly with a

tensile strain and at low strain levels.

To allow measurements in both tension and compression

at low strain levels, a new technique has emerged in the last

decade, named Dynamic AcoustoElastic Testing (DAET).22–27

The method is very similar to a SAET approach, except that

the loading is induced by a low frequency (LF) sinusoidal

excitation perturbing the material in standing wave condi-

tions. If the time-of-flight (TOF) to traverse the sample is

very short, the probing pulse feels an almost constant confin-

ing pressure along its propagation path. The method allows

one to monitor both tensile and compressive phases and to

excite, at least in principle, arbitrarily small confining strains

in the material.22

Some issues related to the practical implementation of

DAET are, however, still not completely discussed in the lit-

erature and their study is the goal of the present paper. First,

in a DAET experiment, normally only one strain component

is measured and the modulus is shown as a function of this

strain. As a consequence, a scalar value of the nonlinear pa-

rameters �b and �d is in general given.22,28–31 These scalar val-

ues are therefore an estimate of a complex function of the

components of the tensorial nonlinear parameters.

The second issue is mostly linked to the experimental

implementation, and it is discussed in the Supplementary

material,32 where the assumptions linked to the choice of the

pulse frequency and pump amplitude are discussed. As we

will show, normally the configuration adopted is not signifi-

cantly influencing results.

0021-8979/2015/118(12)/124905/9/$30.00 VC 2015 AIP Publishing LLC118, 124905-1
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To analyze the two issues, a numerical analysis is per-

formed. We will use two distinct models for classical and

nonclassical nonlinearities, discussed in Section II. The mod-

els presented are a modification of the models already pre-

sented in Ref. 33, where non tensorial nonlinear effects

(classical and nonclassical) were considered. In Section III,

simulations of both DAET and SAET experiments will be

performed and compared to validate the DAET approach.

Simulation results will be compared with quasistatic predic-

tions, and we will discuss the influence on the measurements

due to the nonlinear dependence of the Poisson ratio � and of

the attenuation coefficient.

II. THEORY

A. Classical nonlinear elasticity model

1. Equation of state

We consider a 2-D system in the general case of an ani-

sotropic material assuming in-plane stress/strain compo-

nents. Thus, all partial derivatives in the out-of-plane

direction are vanishing and the corresponding components of

the modulus are not relevant in the wave equation.

Therefore, assuming orthotropic symmetry, we have to con-

sider only four independent elastic constants that we note:

S1¼ S1111, S2¼ S2222, S3¼ S1122, and S4¼ S1212 and permu-

tations. In the following, the indexes 1 and 2 denote the x
and y directions, respectively. The equation of state, linking

the stress (r) components to the strain (�) components, is

r11 ¼ S1�11 þ S3�22;

r22 ¼ S3�11 þ S2�22;

r12 ¼ S4�12; (1)

where

Sj ¼ Slin
j ð1þ bj1�11 þ bj2�22 þ bj3�12 þ dj1�

2
11 þ dj2�

2
22

þ dj3�
2
12Þ: (2)

Note that additional quadratic terms involving the cross

product of different strain components could also be added

in Eq. (2). Even though they might give contributions of the

same order of magnitudes as the terms considered, including

them explicitly in the formulation is not providing additional

support to the claim that a physical interpretation of DAET

results is possible only when considering proper combina-

tions of nonlinear elastic constants. Thus, to limit the com-

plexity in the mathematical formulation of the problem, we

have omitted them.

2. Equations of motion

In the case of a 2-D system, we discretise the sample as

a set of N1�N2 square elements of size h. Each node of the

grid, with discrete coordinates (i, j), corresponds to a cell

representing a portion of the material of density q. A simpli-

fied approach, with a scalar description of the nonlinear elas-

tic modulus, was already introduced in Ref. 33.

Denoting with u and v the components of the displace-

ment vector of the node (i, j), the following equations of

motion are valid:

q€u� c _u ¼ @lr1l ¼ @lðS1lmn�mnÞ;
q€v� c _v ¼ @lr2l ¼ @lðS2lmn�mnÞ; (3)

where rkl and �mn are the stress and strain components and k,

l¼ 1, 2. The first order time derivative term accounts for vis-

cous attenuation with a dynamic viscosity c, which is

assumed as simple as possible (i.e., without any tensorial de-

pendence) to simplify the discussion. Repeated indexes

imply summation.

If we discretise Eq. (3), using a standard Finite

Difference forward scheme, we obtain an equivalent formu-

lation34 assuming the node i, j as subject to a combination of

volumetric forces ~Fk (forces per unit volume), imposed by

the four adjacent cells (see Fig. 1)

q
€u
€v

� �
� c

_u
_v

� �
¼
X8

k¼1

~Fk: (4)

The 8 applied terms ~Fk, given by the ratio between stresses

and lattice size, can be derived as

~Fk ¼ MkDwk; (5)

where

Mk ¼
0

1

4
S3 þ S4ð Þ

1

4
S3 þ S4ð Þ 0

0
BB@

1
CCA k ¼ 1; 2; 3; 4ð Þ;

Mk ¼

1

2
S1 � 1

4
S3 � S4ð Þ

1

4
S3 � S4ð Þ 1

2
S4

0
BB@

1
CCA k ¼ 5; 7ð Þ;

Mk ¼

1

2
S4

1

4
S3 � S4ð Þ

� 1

4
S3 � S4ð Þ 1

2
S2

0
BB@

1
CCA k ¼ 6; 8ð Þ;

(6)

FIG. 1. Discretization scheme and forces acting on a given node of the grid.
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and

Dwk ¼
1

h

uk � u
vk � v

� �
; (7)

where uk and vk are the components of the displacement vec-

tor of the node in the direction k with respect to (i, j), and we

recall that h is the lattice step. For example, in the case k¼ 5,

it is the displacement vector of the node (iþ 1, j). In the used

notation, Dwk is a strain tensor.

It follows

q€u� c _u ¼
X8

k¼1

ðf ð1;1Þk þ f
ð1;2Þ
k Þ;

q€v� c _v ¼
X8

k¼1

ðf ð2;1Þk þ f
ð2;2Þ
k Þ; (8)

where

f
1;1ð Þ

k ¼ Mk 1; 1ð Þ uk � u

h
f

1;2ð Þ
k ¼ Mk 1; 2ð Þ vk � v

h
;

f
2;1ð Þ

k ¼ Mk 2; 1ð Þ uk � u

h
f

2;2ð Þ
k ¼ Mk 2; 2ð Þ vk � v

h
:

(9)

The components of the matrices M are the moduli (see Eq.

(7)), which are defined by the material equation of state

given by Eq. (2). The strain components in the discrete

scheme are given as

�11 ¼ 0:5ðuiþ1;jþ1 þ uiþ1;j�1 � ui�1;jþ1 � ui�1;j�1Þ=ð2hÞ
�22 ¼ 0:5ðviþ1;jþ1 þ vi�1;jþ1 � viþ1;j�1 � vi�1;j�1Þ=ð2hÞ
�12 ¼ 0:25ðuiþ1;jþ1 � uiþ1;j�1 þ ui�1;jþ1 � ui�1;j�1þ

þviþ1;jþ1 � vi�1;jþ1 þ viþ1;j�1 � vi�1;j�1Þ=ð2hÞ:
(10)

B. Hysteretic model

1. Equation of state

Several models have been proposed in the literature to

describe a hysteretic behavior in the quasistatic equation of

state.35–37 Here, we used a model very similar to that pro-

posed in Refs. 12 and 38, which is adequate to describe the

behavior of rocks and concrete. In other cases, such as when

dealing with bones, the hierarchical structure of the medium

might require different approaches. A simplified similar

model was also used in Ref. 33.

The model is based on a Preisach-Mayergoyz space

approach, in which the macroscopic stress-strain relation is

derived by a proper statistical averaging over a large number

of microscopic elements, called Hysteretic Elements (HE).

In the formulation introduced in Subsection II A, the motion

of each grid points is governed by several springs, which

generate forces in the form f¼ S� (see Eq. (9)). The hyste-

retic behavior of the material is thus simulated replacing

each of these springs with a “scalar” bi-state spring described

heuristically as follows.

We consider as the basic Hysteretic Element a spring

that may be in one of the two states, rigid or elastic. Note

that here we assume a purely elastic state, even though

classical nonlinear terms linked explicitly to b and d
could also be eventually considered. However, the model

proposed accounts for both hysteresis loops and curvature

in the stress-strain dependence. The modulus of the spring

is

~K ¼
k1 ¼ K state 1

k2 ¼ 1 state 2:

�
(11)

The spring resides in one of the two states depending on the

value of a control variable K, which could be any component

of the strain tensor � and switches from one state to the other

when the control variable varies. In particular (see Fig. 2(a)),

if the spring is in state 1 when K<Ko, when K increases

above a threshold value Kc, the spring switches to the rigid

state. When K decreases below Ko, the spring switches back

to the state 1.

We then consider a set of springs arranged in series. For

simplicity, but the generalization is straightforward, we con-

sider all springs with the same elastic constant K and the

same length. On the contrary, to introduce a statistical en-

semble, each spring is characterized by a different couple of

values for the transition parameters (Ko, Kc). It follows that,

for a given value of the strain, the ensemble is characterized

by a set of springs in the rigid and in the elastic state, which

have the following deformations d:

FIG. 2. Description of the nonlinear constitutive equations for hysteretic elasticity. (a) Description of the states of the hysteretic elements and the transition

between states. (b) Example of stress–strain equation derived in the case of hysteretic elements depending only on �22. (c) Modulus as a function of strain

derived from subplot (b).
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delastic ¼ r=K;

drigid ¼ Kc:
(12)

Since the total strain is

� ¼
X
rigid

drigid þ
X

elastic

delastic; (13)

we can derive

r ¼ K=Nelastic ��
X
rigid

drigid

� �
; (14)

where Nelastic is the number of springs that, for the given

value of strain, are in the elastic state.

In conclusions, to calculate the stress, it is sufficient to

keep trace of the states of the springs when the strain varies.

This could be achieved by following the protocol depicted in

Fig. 2(a). An element can be activated by two or more strain

components. To simulate a complex dependence, if we have

R springs, we consider four subsets, such that R ¼
P

ri:

• r1 springs that are permanently in the elastic state, that is

Kc¼1;
• r2 springs that have as a control variable �11;
• r3 springs that have as a control variable �22;
• r4 springs that have as a control variable �12;

The major differences of the present model with respect

to the model discussed in Ref. 33 are the choice of the con-

trol variable and the introduction of a tensorial behavior in

the nonlinear response. Indeed, in the previous model, we

have adopted the choice of the volumetric stress to be the

control variable. This choice did not allow to describe any

anisotropy in the nonlinear response, which is normally

observed in quasistatic experiments for instance in rocks or

materials with localized directional cracks.

In Fig. 2(b), we show a typical stress-strain relation

derived from such implementation and the corresponding de-

pendence of the modulus on �22. For Fig. 2(b), we have

assumed R¼ 100 and r1¼ r3¼ 0.5R, r2¼ r4¼ 0. The modu-

lus has been derived as the partial derivative of r22 with

respect to �22. As already remarked, the hysteretic model

proposed accounts for both curvature and loops in the stress-

strain equation without including explicitly classical terms in

the equation of state for the individual springs.

2. Equations of motion

The derivation of the equations of motion is conceptu-

ally simple, albeit mathematically complex. As mentioned

before, the system is discretized in an N1�N2 grid. Each

cell is subject to 8 forces, which are a proper combination of

the stresses, explicitly defined by Eq. (14). The same combi-

nation as for the classical case is still valid. At a given time

step (in our approach time is also discretized), displacements

for each grid point are known. The strain components are

calculated for each cell and the state of the corresponding

springs is updated. All strains could be derived using Eq.

(14), and the corresponding forces derived and the displace-

ments could be updated to the next time step using Eq. (4).

As mentioned, the degree of mathematical complexity is

high. Indeed, in the most complex case, for each stress com-

ponent (i.e., 5 components), the state of springs belonging to

four classes should be updated. From the numerical point of

view, this implies a significant memory occupation and a

long computational time. The latter is in principle a problem,

unless fast supercomputer is used. Alternative approaches to

finite differences might help to make the code execution

faster keeping the same/similar model description.39

III. INTERPRETATION OF THE DAET PARAMETERS

A. Statement of the problem

1. Implementation of a DAET experiment

In a DAET experiment, a sample is excited with a pump

at LF wave and a probe at high frequency (HF). The pump is

a longitudinal sinusoidal wave in standing wave conditions

(the frequency is usually chosen as the first longitudinal reso-

nance mode to optimize the energy of excitation). The probe

is a short ultrasonic pulse, propagating in a direction orthog-

onal to the pump direction. Within each period of the pump,

several impulse probes are sent into the sample. Each probe

is thus traveling in a medium deformed differently by the

pump. The TOF of the probe signal from the source to the re-

ceiver, normally located on opposite sides of the sample, is

measured and could be plotted as a function of the pump

strain.

The goal of a DAET experiment is to link the TOF to

the modulus of the material and thus extract the dependence

of the modulus from the strain and estimate the nonlinear

coefficients b and d introduced above. Indeed, TOF is linked

to the wave velocity vL, which is linked to the modulus.

Assuming the pulse propagating in the y-direction (dimen-

sion 2), we can define a modulus as

~S2 ¼ v2
Lqð1þ f ðcÞÞ ¼ d2=TOF2qð1þ f ðcÞÞ; (15)

where d is the distance between the HF source and the re-

ceiver. The term f(c) represents an unspecified contribution

due to the attenuation, with a functional form depending on

the kind of attenuation present in the medium. The wave ve-

locity is related to the complex modulus, which in turn

depends on the attenuation coefficient. As a result, the real

part of the velocity is (weakly) dependent on c.40 Normally,

it is assumed f(c)� 1 and the correction is neglected.

Finally, in a DAET experiment, the modulus is calcu-

lated for different values of the pump strain �pump, and it is

normally assumed to have a quadratic dependence29

~S2 ¼ cD þ bD�pump þ dD�
2
pump: (16)

Notice that in experimental papers, usually the modulus vari-

ation (with respect to its linear value) is reported. In that

case, the subscript E is used for the modulus and

cE¼ (cD� Slin)/Slin and similar for b and d.

The three parameters cD, bD, and dD are extracted fitting

the curve of the variation of the time of flight or of the modu-

lus as a function of the strain �pump. If the case, as we will

124905-4 Scalerandi et al. J. Appl. Phys. 118, 124905 (2015)
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also discuss later, the upgoing and downgoing branches of

the modulus vs. strain curve could be fitted independently.

2. Link between DAET and quasistatic nonlinear
parameters

A first major issue in a DAET experiment is the defini-

tion of the strain in Eq. (16). The strain is a tensor, and thus

several components might be independently influencing the

modulus. In the following, we will limit the discussion to the

classical nonlinear case, even though the conclusions are

valid also for other cases, provided the modulus (at least in-

dependently for each branch) could be expanded as a quad-

ratic polynomial. Additional terms in the expansion might be

needed.

The modulus ~S2 estimated from a DAET experiment

should be equivalent to the modulus derived from the consti-

tutive equation, which for the classical case are Eqs. (1) and

(2)

~S2 ¼
@r22

@�22

;

~S2 ¼ Slin
2 1þ b21�11 þ 2b22�22 þ d21�

2
11 þ 3d22�

2
22

�
þ b23�12 þ d23�

2
12� þ Slin

3 b32�11 þ 2d32�22�11½ �: (17)

Notice that, in the geometry of a DAET experiment, a longi-

tudinal stress is applied with symmetry in the y-direction.

Thus, the pump strain is only in the directions 11 and 22

(due to the Poisson effect), while it is zero in the direction

12. Eventual effects due to nonclassical nonlinearities, which

might introduce asymmetries, are in any case higher order

effects with respect to those considered here. In the follow-

ing, to simplify the notations, we will thus omit in all the rel-

evant equations all terms proportional to �12.

Equation (17) deserves a clear discussion. In nonlinear

media, the only quantities with a physical interpretation are

the elastic constants (linear and nonlinear) used in the right

hand side of Eq. (2). The definition in Eq. (17) is only an em-

pirical definition of the nonlinear modulus, which allows us

to consider the material as locally linear elastic, i.e., linear

elastic around given values of the strain components.

However, as we will show numerically, this operational defi-

nition corresponds well to the variable measured in a DAET

experiment. The independent reconstruction from Eq. (17) of

all the physical parameters (components of the nonlinear

elastic tensor) is an issue still to be addressed and should

probably require independent DAET measurements.

Furthermore, we remark that the operational definition

of the modulus measured in a DAET experiment (Eq. (17))

is not equivalent to the definition of Eq. (2). This becomes

particularly relevant when considering nonclassical nonlin-

ear media. Indeed, as remarked, the definition used here is

equivalent to consider a linear elastic medium in a small

interval around the strains induced by the pump. As a conse-

quence, any dependence of the physical components of the

nonlinear elastic tensor on higher order powers of the strain

is simply hidden. In other words, when applying a quadratic

fitting to measurements on nonclassical/hysteretic materials,

the coefficients of the quadratic fitting of Eq. (16) are physi-

cally strain dependent themselves.

Equation (17) is too complex for practical purposes,

since in experiments, only one component of the strain could

in general be measured. To derive an equation similar to Eq.

(16), we should therefore introduce some approximations,

which will be numerically tested in Subsection III B. The

first is to assume that the two strain components are linked

through the Poisson ratio �, defined as the ratio between S3

and S2. In the general linear case, in quasistatic conditions

and for a uni-axial test, we have

�22 ¼ ���11: (18)

This equation, valid only in the quasistatic limit, is applica-

ble to the pump strain only, given the conditions imposed in

a DAET experiment on the pump frequency, which is indeed

equivalent to a uniaxial stress. However, since the pump

strain is much larger than the probe strain, we could assume

it to be approximately valid also when both pump and probe

are propagating.

Assuming � as strain independent, it follows:

~S2 ¼ ½Slin
2 þ ðSlin

2 b21 � 2Slin
2 b22� þ Slin

3 b32Þ�11

þðSlin
2 d21 þ 3Slin

2 d22�
2 � 2Slin

3 d32�Þ�2
11�; (19)

which allows for a comparison with the equation actually

used in the analysis of experimental data.

As a consequence, the bD and dD parameters extracted

from a DAET experiment through Eq. (16) are linked to the

nonlinear parameters of the material by a complex relation

bD ¼ Slin
2 b21 � 2Slin

2 b22� þ Slin
3 b32;

dD ¼ Slin
2 d21 þ 3Slin

2 d22�
2 � 2Slin

3 d32�:
(20)

We remark that several assumptions introduced might

render Eq. (20) only approximate

• we have assumed a linear Poisson ratio �;
• we have neglected the contribution from the attenuation

term;
• the equations are valid only in the assumption of a pump

strain that is constant during the propagation of the probe,

which is not exactly true. Indeed, in experiments, normally

the strain in Eq. (16) is calculated as the averaged strain

during the propagation time. The correct equation should

be

~S2 ¼ cD þ bDh�pumpi þ dDh�2
pumpi;

~S2 � cD þ bDh�pumpi þ dDh�pumpi2:
(21)

In Subsection III B, all these issues will be discussed

using numerical data to validate to which level the men-

tioned approximations are acceptable.

3. Correction due to linear attenuation

Even if we assume the nonlinear dependence of the

attenuation coefficient to be negligible, the effects of linear

attenuation should be considered, even though small. From
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Eq. (15), it is clear that attenuation (if strain independent)

introduces a multiplicative constant (at the given frequency

of the probe) in the definition of the wave velocity. This con-

stant could be derived measuring the TOF in the absence of

the pump wave and used to correct the results. In particular,

in the absence of the pump

katt ¼ v2
Lq=Slin

2 : (22)

Therefore, when performing the analysis using DAET,

we modify Eq. (15) as

~S2 ¼ 1=kattv
2
Lq ¼ 1=kattd

2=TOF2q: (23)

B. Numerical results

1. Numerical experiment

We have considered a 2D rectangular sample (elastically

isotropic) with dimensions 10 cm� 1 cm, with linear elastic

constants similar to those of rocks: S1¼ S2¼ 21 GPa and

S4¼ 8 GPa (S3¼ S1� 2S4). The density is q¼ 2200 kg/m3.

The pump wave is generated from a transducer located on

the surface of the sample x¼ 0 and its frequency is

xLF¼ 7.537 kHz, corresponding to the first longitudinal res-

onance mode. Note that we have assumed forced-free bound-

ary conditions; therefore, the first resonance mode

corresponds to a wavelength that is a quarter of the sample

size. The probe signal is a Gaussian modulated signal with

frequency xHF¼ 1 MHz and duration D¼ 4 ls�TLF/33,

where TLF is the pump period. The probe transducer is

located in x¼ 3.2 cm; y¼ 0. The signal for the analysis is

detected by a receiver in x¼ 3.2 cm; y¼ 1 cm, unless other-

wise specified.

The numerical experiment and data analysis are simulat-

ing exactly the procedure adopted in experiments. In all the

cases considered here, the TOF is sufficiently small with

respect to the LF period. Therefore, the assumption h�2i �
h�i2 is valid.

2. Small classical nonlinearity

The number of independent nonlinear elastic constants

in the classical nonlinear model (Eq. (2)) is large. Since a

DAET experiment is equivalent to a uni-axial test in the

direction 1, no shear strain is expected (�12¼ 0). So, we can

simplify Eq. (2) and keep only the nonlinear parameters

attached to longitudinal strain. Also to reduce the number of

model parameters, we assume b11¼b22¼b1, b12¼b21¼ b2

and similar for d.

In the following, we will consider two simplified cases,

in which only a few nonlinear coefficients are different from

zero:

• CASE A: in the simplest case, we assume only one elastic

modulus is nonlinear. Therefore,

S1 ¼ Slin
1 ; S3 ¼ Slin

3 ; S4 ¼ Slin
4 ;

S2 ¼ Slin
2 ½1þ b2�11 þ b1�22 þ d2�

2
11 þ d1�

2
22�: (24)

• CASE B: in a more general case, we assume

S1 ¼ Slin
1 ½1þ b1�11 þ b2�22 þ d1�

2
11 þ d2�

2
22�;

S2 ¼ Slin
2 ½1þ b2�11 þ b1�22 þ d2�

2
11 þ d1�

2
22�;

S3 ¼ Slin
3 ½1þ b1�11 þ b2�22 þ d1�

2
11 þ d2�

2
22�;

S4 ¼ Slin
4 : (25)

Any nonlinearity in the elastic coefficient S4 does not add

any additional information to the results reported in this pa-

per, and thus, for simplicity of notations we have assumed S4

to be linear. Introducing other components to the nonlinear

moduli will render the theoretically expected link between

DAET results and expected results more complex, but with-

out influencing significantly the accuracy.

a. Case A: Nonlinear S2. This case is simple enough to

allow us to better understand in a simplified case the link

between DAET and quasistatic modulus. Simulations are

performed using the equations described above. The TOF is

calculated and ~S2 is derived using Eq. (23). Finally, the

obtained modulus is plotted as a function of �11, as shown in

Fig. 3, for three different choices of the nonlinear parame-

ters. As expected, a quadratic dependence is found. The the-

oretical solution (i.e., the quasistatic modulus) given by Eq.

(19) is also shown in Fig. 3 (solid line) and the agreement is

excellent.

Furthermore, a SAET experiment has also been per-

formed, and results are reported as empty symbols in Fig. 3.

The SAET experiment was performed replacing the sinusoi-

dal pump wave with a step-like function with varying ampli-

tude, applied to both sides of the sample. The probe was

propagating in the sample once equilibrium for the step-like

function was achieved and then the amplitude of the pump

was varied. In simulations, SAET experiments could be eas-

ily performed in both compression and tension. Results of

the SAET experiment are in excellent agreement with those

of a DAET calculation, as expected.

FIG. 3. Comparison between DAET measured modulus (solid symbols) and

quasistatic modulus (solid line) in case A: S2 is the only nonlinear modulus.

Curves with empty symbols correspond to results obtained simulating a

SAET experiment.
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A quantitative comparison of the nonlinear parameters

estimated using DAET/SAET with the theoretical values

(estimated from quasistatic measurements) demonstrates the

validity of the approach. In fact, errors in the estimation of

the parameters are less than 3% for both b and d, thus well

within the level of accuracy of a DAET laboratory experi-

ment, which was estimated between 10% and 20%.

We can conclude that the nonlinear parameters estimated

using DAET agree well with the quasistatic predictions.

However, no information about the individual components of

the nonlinear modulus can be obtained, except in specific

conditions. In fact, DAET parameters correspond to a proper

combination of nonlinear parameters (Eq. (20)).

b. Case B: Nonlinear S1, S2, and S3. Simulations are per-

formed, ~S2 is derived using Eq. (23), and it is plotted as a

function of �11, as shown in Fig. 4, for three different choices

of the nonlinear parameters (same as those used in Fig. 3).

As expected, a quadratic dependence is found again and

agrees well, even though with less accuracy with respect to

the previous case, with the theoretical solution given by Eq.

(19), reported as a continuous line in Fig. 4. The agreement

with results of SAET simulations (empty symbols) is again

excellent.

A quantitative comparison of the nonlinear parameters

estimated using DAET/SAET with the theoretical values

(estimated from quasistatic measurements) indicates that

errors are increasing up to 8%, although still within the level

of accuracy of a DAET laboratory experiment.

3. Strong classical nonlinearity

In Subsection III A, we have compared the results of

DAET simulations with an approximate solution (Eq. (19)),

which was derived considering the Poisson ratio to be strain

independent, i.e., linear. This is of course not always the

case. For the cases considered above, the difference between

the exact (Eq. (17)) and approximate solutions was very

small. However, when increasing the nonlinearity of the

sample, the agreement becomes poorer.

In Fig. 5, the modulus estimated from DAET (symbols) is

compared with the exact and approximate solutions: subplot

(a) corresponds to case A3, while subplot (b) corresponds to

FIG. 4. Comparison between DAET measured modulus (solid symbols) and

quasistatic modulus (solid lines) when S1, S2, and S3 are nonlinear: case B.

Curves with empty symbols correspond to results obtained simulating a

SAET experiment.

FIG. 5. Comparison between DAET

measured modulus and theoretical pre-

dictions using the approximate (Eq.

(19)) and the exact (Eq. (17)) solu-

tions. (a) Only S2 is nonlinear (case

A3); (b) All moduli are nonlinear (case

B3); (c) same as (b) but with a stronger

nonlinearity (b1=2 and d1=2 are multi-

plied by 5).
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case B3. As noticeable, for both we have an excellent agree-

ment, slightly better with the exact solution. Indeed, in this

case, the Poisson ratio was noticed to be almost completely in-

dependent from the strain.

This is no longer true in the case of a stronger nonlinear-

ity in subplot (c). Here, both b and d have been multiplied by

a factor 5. The Poisson ratio is highly nonlinear and thus the

approximate solution is no longer valid. The agreement with

the exact solution is still excellent, but a significant a priori
knowledge about the material properties is absolutely neces-

sary to provide an interpretation to the parameters measured

with DAET. Therefore, the knowledge/measurement of both

components of the pump strain (�11 and �22) is necessary to

build the exact theoretical solution. Notice that in this case

there is a significant deviation from a quadratic behavior.

In the case of classical nonlinearity, the nonlinear pa-

rameters are usually not huge, and thus the approximate so-

lution can be considered as an excellent choice for most (or

even all) experiments, as clearly shown by subplots (a) and

(b) in Fig. 5. However, this could be not the case when non-

classical nonlinearity is present.

4. Hysteretic nonlinearity

The case of hysteretic nonlinearity provides two signifi-

cant insights: the emergence of a loop in the modulus-strain

relation and a strong contribution due to nonlinear attenua-

tion. Again, simulations have been performed varying the

nonlinearity of the sample, being in all cases S2 the only non-

linear modulus. In particular, we have considered three

cases: a weak and a strong dependence of S2 on �22 and a

strong dependence of S22 on both �11 and �22.

The results are reported in Fig. 6 where the modulus cal-

culated from DAET simulations (red symbols), SAET simu-

lations (cyan symbols), and from a quasistatic numerical

experiment (solid line) are reported. For the quasistatic

experiment, the modulus dependence on strain has been

found implementing Eq. (14) and calculating the partial de-

rivative of the stress vs. strain. The agreement between

DAET and SAET is again very good, while poor agreement

is found with theoretical results. As remarked, we ascribe the

discrepancy to a significant nonlinearity of the attenuation

coefficient. In both experiments29 and simulation results,33 it

has been shown that the attenuation variation, as a function

of strain, is of the same order of magnitude of the variation

of the modulus and its hysteretic loop presents similarities

with that of the modulus. Finally, we wish to observe that

the discrepancy between DAET results and quasistatic

expectations agrees well with experimental observations.

Indeed, the quasistatic analysis highlights a discontinuity in

the modulus dependence on strain in correspondence of the

maximum/minimum of strain, which is never observed in a

DAET experiment, similarly to what reported here.

The analysis of the curves reported in Fig. 6 is more

complex than in the classical case. As already mentioned,

one approach is to fit the upgoing and downgoing branches

independently with a quadratic function, thus extracting two

couple of parameters b6 and d6. Another approach generally

implemented to analyze experimental data is to fit the curve

with a single quadratic function.22,29 The results of such a fit

operated on DAET data is reported in Fig. 6 as a dashed red

line. The agreement with the similar fit operated on quasi-

static results (dashed blue line) is good.

IV. CONCLUSIONS

We have discussed here the difficulties and problems

related to the interpretation of the nonlinear parameters bD

and dD measured in a DAET experiment. For this purpose,

we have limited our analysis to numerical data, since they

allow to have control of the expected solution (i.e., to esti-

mate the quasistatic modulus) and to simulate in both com-

pression and tension SAET experiments, which constitute a

reliable solution to be compared with DAET.

This analysis has allowed us to show how DAET, if per-

formed in proper experimental conditions, is equivalent to

SAET, with the advantage of being faster to implement and

of making it possible an analysis in both tension and com-

pression. However, as expected, the techniques (both DAET

and SAET) allow in general to estimate only a proper combi-

nation of the nonlinear elastic moduli. We have also shown

that some difficulties might be present in the case of materi-

als with a strong nonlinear attenuation and/or with a nonlin-

ear dependence of the Poisson ratio. In these cases, the link

of the DAET/SAET measured modulus with the quasistatic

modulus could be more complex and difficult to predict.

FIG. 6. Comparison between DAET measured modulus, SAET measured modulus, and quasistatic predictions (QS) for different choices of nonclassical non-

linear parameters. The dashed lines represent a fit of the DAET (red) and quasistatic (blue) results, obtained fitting at the same time the upgoing and downgoing

branches of the corresponding curves. (a) r1¼ 75; r2¼ 25; (b) r1¼ 50; r2¼ 50; (c) r1¼ 50; r2¼ 25; r3¼ 25. Only the modulus S2 is nonlinear and the parame-

ters r2 and r3 characterize its dependence on �11 and �22, respectively (see Eq. (14) and following definitions).
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An additional issue to be considered for an accurate

physical interpretation of the measured DAET parameters

should also be noticed. In Eq. (15), it is assumed the pulse to

be a longitudinal wave, which is not the case for anisotropic

media, where Christoffel equations are defining the wave ve-

locity as a combination of complex functions of the linear

moduli. However, if the anisotropy is induced only by nonli-

nearity, given the symmetry of the pump strain, the propaga-

tion direction of the probe is along a principal direction, thus

we are in the case of longitudinal wave propagation. Even

though in our opinion this condition is satisfied in most

cases, care must be taken when applying the DAET method

to test strongly anisotropic media or with strongly localized

and/or directional nonlinearities.

As mentioned, DAET should be implemented in specific

experimental conditions. We have also analyzed the errors

introduced when varying the experimental parameters: am-

plitude of the probe wave, alignment of transducers, and ra-

tio between TOF and pump period. Results are reported in

the supplementary material. In the case of an acceptable

error up to 10%, the experimental configurations could be

considered quite robust: it is acceptable to use probe ampli-

tudes less than 1/10 of the pump amplitude, to align trans-

ducers with a precision of a few mm and to choose a pump

period larger than about 10 times the TOF. Our results indi-

cate that the experimental configuration usually adopted in

the literature is sufficiently robust to allow the development

of DAET based techniques for localized damage detection,

localization, and monitoring.25,31

In our opinion, two main goals have still to be achieved

to make DAET a complete technique. On one side, it is im-

portant to evaluate correctly the role of the attenuation coef-

ficient in the definition of the velocity and to estimate the

correction to be considered when attenuation is strongly

strain dependent. Furthermore, the definition of a combina-

tion of DAET measurements properly coupled is needed in

order to estimate the individual components of the nonlinear

moduli of solid anisotropic media.
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