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We evaluate the sensitivity of multimodal nonlinear resonance spectroscopy to torque changes in a
threaded interface. Our system is comprised of a bolt progressively tightened in an aluminum plate.
Different modes of the system are studied in the range 1–25 kHz, which correspond primarily to
bending modes of the plate. Nonlinear parameters expressing the importance of resonance frequency
and damping variations are extracted and compared to linear ones. The influence of each mode
shape on the sensitivity of nonlinear parameters is discussed. Results suggest that a multimodal
measurement is an appropriate and sensitive method for monitoring bolt tightening. Further, we
show that the nonlinear components provide new information regarding the interface, which can be
linked to different friction theories. This work has import to study of friction and to nondestructive
evaluation of interfaces for widespread application and basic research. © 2010 American Institute
of Physics. �doi:10.1063/1.3443578�

I. INTRODUCTION

Our work is aimed at exploring the application of elastic
nonlinear methods to probe the physics of interfaces, and to
study medical and industrial applications. In this study we
focus in a problem that appears simple, the tightening of a
screw or bolt in a metal plate—but turns out to be highly
complex. Widely used in many industrial applications, bolted
structures have been a research domain for many years, from
the conception of these structures to development of quality
control devices of tightening. Ultrasonic methods occupy an
important position in quality control and monitoring. Several
publications appeared in the 1970s applying the variation in
the first compressional resonance mode of the screw to de-
termine the tightening forces on it, either in the time domain
or in the frequency domain.1–4 In the time domain, a pulse
echo system provides the means to measure the time of flight
of a longitudinal wave within a screw. Variation in wave
speed gives information on the tightening forces �acous-
toelastic effect�.2,4

Recently a real-time tightening control was developed
by Nassar and Veeram5 based on the time domain measure-
ment. Similarly, Chaki et al.6 developed a system combining
longitudinal and transversal waves in industrial applications.

Furthermore, many studies have been performed to de-
tect loosening of rivets, widely used in aeronautics. For ex-
ample, the combination of thermography and ultrasound
techniques allows one to detect flawed rivets.7,8 The structure
is excited by ultrasound, which causes heating of flawed riv-
ets by dissipation and thermography is used to detect heated
regions. More generally, methods using Eddy current,9–11

x-radiography,12,13 or magneto-optic interactions14,15 are also
either in progress or already employed for riveted structures.

In the medical domain, Meredith et al.16 developed the

resonance frequency analysis method in 1996 to assess the
stability of a dental implant. A L-shape sensor is fixed to the
dental implant after surgery to monitor bone healing. Indeed,
the first bending resonance of the “sensor-implant” system is
sensitive to stress exerced by bone surrounding the implant.
Similarly, the Periotest© device developed by Dhoedt et
al.17 in 1985 consists of damping measurements of the
implant/bone system by means of a calibrated impact.

Little work has been done applying nonlinear acoustics
on this subject. Very recent publications18,19 reported the
sum-frequency level �f1+ f2� created by exciting bolted joints
with two sinusoidal waves �f1 and f2�, for different torque
levels. More generally, nonlinear acoustics offers sensitive
techniques to detect an isolated and localized microcrack,20

as well as to evaluate the global quantity of microdamage in
materials such as rock,21,22 nickel,23 concrete,24–26 wood,27

bone,28,29 etc. These techniques are primarily based on har-
monic generation,30–32 frequency mixing,33–35

acoustoelasticity,36,37 or shift in the resonance
frequency.26,28,38,39 The latter provides the means to extract
nonlinear elastic and dissipative parameters, associated to
changes in the resonance frequency and damping with level
of excitation, respectively.

The aim of this study is first to evaluate the sensitivity of
nonlinear acoustic resonance spectroscopy to torque changes,
in a system composed of a screw tightened in a plate. From
an application point of view and in comparison with tradi-
tional linear measurements, we expect these nonlinear mea-
surements to bring some complementary information and/or
better sensitivity. Second, the interpretation of these results
will lead to emphasize the physics of some potential inter-
esting models, that could explain the physical process at the
interface.

II. THEORY

In the framework of linear elasticity, stress and strain are
linearly related by a constant elastic modulus. If nonlinearity

a�Electronic mail: jacques.riviere@upmc.fr.
b�Electronic mail: paj@lanl.gov.

JOURNAL OF APPLIED PHYSICS 107, 124901 �2010�

0021-8979/2010/107�12�/124901/9/$30.00 © 2010 American Institute of Physics107, 124901-1

Downloaded 22 Dec 2010 to 134.157.226.1. Redistribution subject to AIP license or copyright; see http://jap.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1063/1.3443578
http://dx.doi.org/10.1063/1.3443578


has to be considered, Landau theory40 allows to describe
“classical” materials, where nonlinearity arises from atomic
scale �nanoscopic scale�. In the case of more complex mate-
rials, either heterogeneous, cracked, or granular �mesoscopic
scales�, and for strain above roughly 10−6,41,42 Landau theory
is no longer valid.43,44 Indeed, some typical behaviors appear
in this case: an hysteresis with cusps is present in the stress-
strain response, odd harmonics are favored, resonance fre-
quency exhibits a linear shift with level of excitation,38 and a
slow dynamic phenomenon appears.45,46 The physical origins
of these phenomena, which are still not completely under-
stood, comes from a rearrangement of grains �dislocations,
rupture, recovery bonds� which can be modeled as friction
and/or clapping, together with a thermoelastic effect.47 The
“hysteretic” regime �except slow dynamics effect� of these
materials has been modeled phenomenologically by Guyer
and McCall,48,49 using the Preisach–Mayergoyz space �PM
space�. We choose the description of this model, as it is one
of the most simple and universal to introduce nonlinear elas-
ticity in diverse materials/systems. This choice will give us a
baseline for our experiment. In the discussion, different
physics-based models and physical origins will be described.
The PM space formalism decomposes materials into hyster-
etic mesoscopic units, which alternatively open and close at
different pressure values. Equation �1� describing the nonlin-
ear elastic modulus K in a one-dimensional case can be de-
rived in the case of small acoustic strain, where a nonlinear
nonclassical �or hysteretic� parameter � has been added to
the nonlinear classical development of Landau �parameters �
and � of first and second order representing the quadratic and
cubic nonlinearities, respectively�

K��, �̇� = K0�1 − �� − ��2 − . . . − ���� + sign��̇���� , �1�

where K0, �, �̇, and �� are the linear modulus, the strain, the
time derivative of strain, and the maximum strain excursion
over a wave cycle, respectively. As the interface studied
�threads� is at a mesoscopic scale, we expect to obtain a
nonlinear hysteretic behavior, where the parameter � domi-
nates over �. In this case, a first order approximation gives
the Eqs. �2� and �3�.50 Equation �2� leads to the nonlinear
elastic parameter � f �shift in the resonance frequency�,
whereas, Eq. �3� leads to the nonlinear dissipative parameter
�� �damping variation�

f − f0

f0
= � f� , �2�

1

Q
−

1

Q0
= 2� − 2�0 = 2�0�V�0

V0�
− 1� = ��� , �3�

where f , �, V, and Q are the resonance frequency, the modal
damping ratio, the voltage amplitude of excitation, and the
quality factor, respectively. The subscript “0” refers to the
value obtained with the lowest amplitude of excitation �con-
sidered as a linear regime value�. � f and �� are both propor-
tional to the parameter � of Eq. �1�. Equation �3� makes the
assumption that strain is inversely proportional to the modal
damping ratio.50 This allows one to extract �� without mea-

suring �, an arduous problem in the frequency domain with a
nonlinear regime.

III. MATERIAL AND METHODS

A. Material

Our system �Fig. 1� is composed of a steel screw �M4,
16 mm long� tightened at different torques in the corner of an
aluminum plate �10�10 cm2�, using a screwdriver. The
torque range chosen is 15–150 N cm. Below 15 N cm, the
screw can be loosened by hand. We tighten until 150 N cm, a
value close to the maximum permissible value for this screw
diameter �250 N cm typically�. The system is suspended by a
string to obtain free boundary conditions. Two piezoelectric
sensors �PZT-5A, 12 mm diameter, 2 mm thick� are bonded
on the plate with glue, one is used as an emitter, the other as
a receiver. The excitation is provided by a 14-bit waveform
generator �Spectrum M2i6012� fed into a Tegam 2350 am-
plifier. The acquisition is performed applying a 14-bit Spec-
trum M2i4022 card.

B. Identification by finite element modeling „FEM…

The frequency range studied is 1–25 kHz. Above 25
kHz, the density of modes is so great that they overlap and it
becomes difficult to perform the measurement on an isolated
mode. These modes are identified with a finite element
model, using an eigenmode study. In this model, all geo-
metrical characteristics are respected, except thread which is
not represented. We model the contact plate/screw and plate/
sensors as perfect �same displacement�. Elastic characteris-
tics included in the model for the aluminum plate, the steel
screw and the PZT sensors are 70 GPa, 900 GPa and 70 GPa,
respectively, for the Young modulus E, 2700 kg /m3,
7850 kg /m3, and 7750 kg /m3, respectively, for the density
�. These values are typical from the literature and have not
been matched to fit experimental resonance frequencies. The
model does not include dissipative charateristics. Then, nu-
merically obtained eigenfrequencies are compared to experi-
mental ones, measured for the maximum torque �150 N cm
in our case�. Eigenmodes present in the range 1–25 kHz
mainly correspond to bending modes of the plate �Fig. 3�.
These bending modes become more and more complex when

FIG. 1. �Color online� Aluminum plate used in the experiment. A M4-screw
is tightened in the upper left. Two piezoelectric sensors are bonded to the
plate.
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frequency increases. Mode nos. 16 and 19 correspond to
modes whose displacement field is in the plane of the plate.
These two modes are not present experimentally, as excita-
tion favors out of plane modes. In Table I, we note that
identification by FEM is efficient, regarding absolute and
relative differences between experiment �Fig. 2� and model-
ing. However, two modes present experimentally at 19.1 and
23.8 kHz are not identified in the modeling �mode nos. 17
and 22 in Table I�. This poor identification can be explained
by the fact that the thread is not modeled at the interface
screw/plate.

C. Measurement

Each mode with linear resonance frequency f0 is excited
by a 1 s long linear frequency sweep, whose starting and
stopping frequencies correspond to f0	5%. The frequency
sweep is then repeated for 30 increasing amplitudes of exci-
tation. The linear parameters f0 and �0 are measured by fit-
ting a lorentzian50 to the resonance curve obtained for the
lowest amplitude �considered as linear elastic�. Resonance
curves at higher amplitudes are fitted by a polynomial inter-
polation, allowing one to extract the resonance frequency f
and the corresponding amplitude. Finally, nonlinear elastic
and dissipative parameters � f and �� are extracted for each
mode, according to Eqs. �2� and �3�. This procedure is then
repeated for increasing torques.

Experiments are performed in a temperature controlled
room �25	1 °C�. The duration time of 1 s for the frequency
sweep has been selected as a compromise between the pos-
sible heating of the system and achieving a steady-state at
each frequency during the sweep. The steady-state is reached
at each frequency.

A waiting time between each excitation is needed to
limit slow dynamics phenomenon from fast dynamics mea-
surement. This waiting time was evaluated at the lowest
torque �the case where nonlinearity is the highest�. The reso-
nance frequency of each mode is first measured with the
weakest amplitude of excitation. Then, the system is excited
with a 1 s long excitation at the highest amplitude used in the
measurement. Just after, the resonance frequency is mea-

TABLE I. Comparison between experiment �fexp� and finite element modeling �fmod�. The quality factor Qexp is
also given as information. All modes are identified except two �nos. 17 and 22� because of model’s lacunae �cf.
text�. Note also that two in-plane modes are obtained by FEM but not excited in the configuration of the
experiment �mode nos. 16 and 19�.

No.
fexp

�Hz�
fmod

�Hz�
	fmod− fexp	

�Hz�

	fmod − fexp	
fexp

�%�
Qexp

�.�

1 1846 1852 6 0.3 600
2 3447 3421 26 0.8 280
3 4665 4707 42 0.9 380
4 4832 4869 37 0.8 140
5 8140 8202 62 0.8 230
6 8373 8375 2 0.0 200
7 8567 8682 115 1.3 130
8 9369 9529 160 1.7 300
9 10 330 10 322 8 0.1 180

10 13 800 13 958 158 1.1 140
11 14 010 14 217 207 1.5 410
12 15 600 15 850 250 1.6 300
13 16 040 16 137 97 0.6 95
14 17 300 17 499 199 1.1 320
15 17 450 17 752 302 1.7 425
16 Not excited 18 402 Not excited
17 19 120 Not detected 90
18 19 380 19 570 190 1.0 500
19 Not excited 20 319 Not excited
20 20 790 20 880 90 0.4 380
21 21 460 21 459 1 0.0 290
22 23 800 Not detected 100
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FIG. 2. Spectrum at 150 N cm in the range 1–25 kHz. Each number corre-
sponds to a mode in Fig. 3 and Tables I and II.
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sured again with the weakest amplitude. Therefore, it appears
that less than 5 s are needed for the system to recover its
original resonance frequency. We make the assumption that
this characteristic time is the worst case �longest duration
slow dynamics� and therefore a 10 s rest time is applied
between each excitation.

IV. RESULTS

Modes in the range 1–10 kHz �nos. 1–9� exhibit weak
nonlinearity and little sensitivity to torque change. Most of
modes in the range 10–25 kHz exhibit higher nonlinearities
at low torques. As an example, Fig. 4 shows typical behavior
of mode no. 11 for 30 amplitudes, and seven torques from 15
to 150 N cm. In this figure, we see qualitatively that the
higher the torque, the higher the resonance frequency. More-
over, increasing torque leads to higher amplitudes and lower
damping. Finally, the frequency shift decreases with applied

torque. Indeed, as a first approximation, if we consider the
most elementary vibrational system �generally termed mass-
spring system�, with a mass m and a stiffness k, the reso-
nance frequency of this system will be f = �1 /2
�
k /m. In

Mode 1 Mode 2 Mode 3 Mode 4

Mode 5 Mode 6 Mode 7 Mode 8

100 200 300 400 500 600 700 800

100

200

300

400

500

600

Mode 9 Mode 10 Mode 11 Mode 12

Mode 13 Mode 14 Mode 15 Mode 16

Mode 18 Mode 19 Mode 20 Mode 21

FIG. 3. �Color online� Eigenmodes obtained by finite element modeling. The position of the screw is shown by the circle for mode 1. The scale indicates the
displacement field: dark zones �or blue on color version� represent a zero displacement �or a maximum strain�, and white zones �red zones on color version�
represent a maximum displacement �or a zero strain�. Corresponding frequencies are shown in Table I. Note that these modes mainly correspond to bending
modes of the plate except modes nos. 16 and 19, which correspond to in-plane modes. Note also the absence of mode nos. 17 and 22, only present in the
experiment.
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FIG. 4. �Color online� Mode No. 11 for 30 increasing amplitudes of exci-
tation and seven torques from 15 to 150 N cm.
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this system, f is proportional to 
k and that is what we ob-
serve when increasing torque: stiffness increases for a same
mass. Likewise, the contact screw/plate is more and more
stressed when increasing torque. Thus, linear dissipation and
elastic nonlinearity are present for low torques, as observed
in Fig. 4, where linear dissipation induces “broader” modes
and lower amplitudes and elastic nonlinearity induces higher
frequency shift with drive amplitude. Quantitatively, these
phenomena are represented from Figs. 5–9. Figure 5, the
relative frequency shift 	f − f0	 / f0 and damping variation 2�
−2�0 are plotted versus voltage amplitude received by the
detector sensor. In this figure, each curve is linearly fitted
and the slope of each fit corresponds to C� f and C��, with C
a constant �the amplitude in volts is proportional to strain�.
This slope decreases dramatically when torque increases,
meaning that the system tends toward a linear regime.

In Figs. 6 and 7, we observe the behavior of nonlinear
elastic and dissipative parameters, respectively, for four
modes. These parameters decrease at low torques and then
become independent of torque level. We can also note that
mode no. 11 is present in the spectrum over the entire torque
range, while modes 20, 21, and 22 appear at torques about 35
N cm, 24 N cm, and 35 N cm, respectively. These modes

appear progressively in the spectrum when increasing torque
and below these torque values, the signal to noise ratio is too
weak to perform a reliable measurement. These three modes,
appearing during tightening, are considered as new events in
the spectrum. In Figs. 6 and 7, we see that parameters � of
mode 22 are much higher than others at low torque.

Figure 8 compares linear and nonlinear elastic param-
eters for the mode no. 11. It appears that nonlinear elastic
parameter is sensitive at the beginning of the torque range
�from 15 to 40 N cm� while linear elastic parameter is sen-
sitive from 15 to 80 N cm. However, when the nonlinear
parameter is sensitive, it is more sensitive than linear one.
We also note that the weak error bars in Figs. 6–8 indicate
that the measurement is consistent and that our system is
only solicited in the elastic domain; the highest torque used
�150 N cm� does not induce plastic deformation at the inter-
face.

Figure 9 displays normalized values of linear and non-
linear elastic parameters for modes 11, 20, 21, and 22. When
sensitive, the nonlinear parameter of each mode is more sen-
sitive than its linear counterpart. Therefore, the addition of
modes implies that the nonlinear method is more sensitive
than the linear frequency change. An equivalent comparison
can be made between linear and nonlinear dissipative param-
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FIG. 5. �Color online� �a� Relative frequency shift 	f − f0	 / f0 of mode no. 11
vs voltage amplitude of detector �proportional to strain� for 28 increasing
torques. Each curve is linearly fitted and the slope obtained corresponds to
the parameter C� f with C a constant. �b� Damping variation 2�−2�0 of
mode no. 11 vs voltage amplitude of detector �proportional to strain� for 28
increasing torques. Each curve is linearly fitted and the slope obtained cor-
responds to the parameter C�� with C a constant.
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FIG. 6. �a� Nonlinear elastic parameter C� f as a function of torque for mode
nos. 11 ���, 20 ���, 21 ���, and 22 ���, where C is a constant. Mode No.
11 is present in the spectrum over the entire torque range, while modes 20,
21, and 22 appear at torque 35 N cm, 24 N cm, and 35 N cm, respectively.
�b� Zoom of �a� on modes 11, 20, and 21.
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eters. The behavior is highly similar, even if modal damping
ratio �linear parameter� is more artifacted by the presence of
adjacent modes.

Nonlinear parameters provide different information to
the system, complementary to linear ones. This point will be
developed more in-depth below.

A variation in nonlinear parameters is observed for most
modes having a nodal line in the region of the screw, corre-
sponding to a maximum strain. This maximum strain �and

stress� at the interface acts as a probing of the threaded in-
terface. Indeed, each bending oscillation will induce a rela-
tive micromotion between the screw and the plate, revealing
and describing the nonlinear nature of the contact. In con-
trast, for modes with maximum displacement at the screw
�corresponding to a zero strain�, the plate and screw move
together without �or with weak� relative micromotion, lead-
ing to small values �, and independent of the torque level.
However, some exceptions are noted. Indeed, mode no. 6 or
8 �around 9 kHz� present a similar nodal line but their pa-
rameters � remain independent of torque. We do not fully
understand this observation but we speculate that these pa-
rameters may be dependent at torques lower than 15 N cm.
Sensitivity results are summed up in the Table II.

V. DISCUSSION

The primary purpose of this study was to show that non-
linear resonance spectroscopy was a useful tool to probe a
threaded interface. In an applied aim, we show that this non-
linear method provide a sensitive parameter �. A comparison
is made between linear and nonlinear parameters. We note
they they measure different physical characteristics. The lin-
ear measures are of complex moduli and density fluctuation;
nonlinearity is a measure of material and interface integrity.
It appears that nonlinear parameters are sensitive over a nar-
rower torque range but are more sensitive than linear param-
eters in this range. Furthermore, by following several modes
in the spectrum and by analyzing modes which are not
present in the entire torque range, we are able to increase the
sensitivity range of the nonlinear approach. This could be
implemented in a future as a “nonlinear modal analysis.” In
terms of basic research this study constitutes one of the first
combining nonlinear acoustic methods with threaded inter-
face. Other nonlinear methods �including frequency mixing
and slow dynamics experiments� may be tested in the future
as well. Both academic and application ways will be dis-
cussed in the following subsections.

A. Physical modeling and nonlinearity origins

For the lowest torques �Fig. 5�, the evolution of the rela-
tive frequency shift and damping variation in mode no. 11
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FIG. 7. �a� Nonlinear dissipative parameter C�� as a function of torque for
mode nos. 11 ���, 20 ���, 21 ���, and 22 ���, where C is a constant. Mode
No. 11 is present in the spectrum over the entire torque range, while modes
20, 21, and 22 appear at torque 35 N cm, 24 N cm, and 35 N cm, respec-
tively. �b� Zoom of �a� on modes 11, 20, and 21.
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does not seem to be linear but rather quadratic. Thus, by
fitting a second order polynomial on these curves, it appears
that a combination of � and � �cubic and hysteretic nonlin-
earities, respectively� is more appropriate, reflecting the co-
existence of classical and hysteretic regimes simultaneously.
Nevertheless, a coarse linear fit allows to compare a same
parameter over the entire torque range.

Furthermore, this study points out a need for a model to
characterize the nonlinear behavior of a threaded interaction
under acoustic wave excitation, and beyond the PM space
formalism presented in part II. The nonlinear behavior of the
system comes from the interface between the screw and the
plate. Indeed, and similarly to rocks where grains �rigid sys-
tem� are interconnected with softer bondings, the interface
screw/plate can be considered as a soft object between two
rigid objects �screw and plate themselves�. The nonlinearity
level will depend on static forces present at the interface, the
roughness of both surfaces, the presence of a liquid, etc.

This model will have to describe �1� the coexistence of
classical and hysteretic regimes at lower torques and �2� a
decrease in both nonlinear parameters with increasing torque
until the linear regime, with a faster decrease for the classical
parameter.

As a starting point, asperities at the interface are usually
modeled as microspheres in contact, and described by a Hert-
zian nonlinearity. Indeed, this model can describe the pres-
ence of classical regime at low torques. This model allows to
describe the contact between two unconsolidated spheres un-
der normal forces, giving a classical nonlinear elasticity.51

Then, models derived from the Hertz–Mindlin theory take

into account both normal and tangential forces and the pos-
sibility of a stick/slip behavior. The latter leads to a hyster-
etic regime52 and could be efficient to describe a threaded
interaction at higher torques. From these previous consider-
ations, we speculate that the ratio “interface area without
stick/slip behavior” over “interface area with stick/slip be-
havior” could be higher at low torque, corresponding to the
evolution from the classical regime to the hysteretic one.

In Figs. 6, 7, and 9, we observe that � f and �� remain
constant or slightly increase for increasing torques around
65–70 N cm, and for three modes �20, 21, and 22�. This
behavior was not expected but does not seem an artifact as it
is present for three different modes. One hypothesis that can
explain this plateau is that the increasing prestress at the
interface �i.e., increasing torque� could be separated in three
different regimes. A first one at low torque where both sur-
faces are only partially in contact, leading to weak contacts
at the interface and high nonlinearity level, a second regime
at high torque where nonlinearity is near zero, reflecting the
fact that both surfaces are in contact, with all asperities
squeezed at the interface, and an intermediate regime at mid-
torque where both surfaces are in contact with asperities not
all squeezed and leading to intermediate nonlinearity levels.
Finally, the plateau observed at mid-torque could be ex-
plained by the fact that asperities, not yet in contact in the
first regime, could produce a second nonlinearity source, by
friction and/or clapping, at a scale �micrometer or less� lower
than in the first regime. This hypothesis, if verified by future
experiments, could be of a potential interest as the linear

TABLE II. Summary of results obtained for each mode. Torque range of sensitivity for � f and �� are displayed, as well as the presence of a nodal line of
displacement on the screw �corresponding to a maximum strain�.

Number
Frequency

�Hz�
Torque range of existence

�N cm�

Torque range
of sensitivity

for � f

�N cm�

Torque range
of sensitivity

for ��

�N cm�
Nodal line
on the bolt

1 1846 15–150 Very weak Very weak No
2 3447 15–150 Very weak Very weak No
3 4665 15–150 Very weak Very weak No
4 4832 15–150 Very weak Very weak Yes
5 8140 15–150 Very weak Very weak No
6 8373 15–150 Very weak Very weak Yes
7 8567 15–150 Very weak Very weak No
8 9369 15–150 Very weak Very weak Yes
9 10 330 15–150 Very weak Very weak No
10 13 800 15–150 Very weak Very weak No
11 14 010 15–150 15–40 15–30 Yes
12 15 600 15–150 15–40 15–40 Yes
13 16 040 15–150 Very weak Very weak No
14 17 300 15–150 Very weak Very weak No
15 17 450 15–150 15–40 15–40 Yes
16 Not excited
17 19 120 15–150 Overlapping with 18 Overlapping with 18 Not detected
18 19 380 15–150 Overlapping with 17 Overlapping with 17 No
19 Not excited
20 20 790 35–150 35–120 35–120 Yes
21 21 460 24–150 24–120 24–120 Yes
22 23 800 35–150 35–110 35–120 Not detected
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corresponding parameters are not influenced during this pla-
teau �see Fig. 9, f0 for modes 20, 21, and 22 increase for
increasing torques�.

Finally, to model the entire sequence of phenomena de-
scribed in part II �for example slow dynamics effect, not
studied here but evaluated in part III, ��5 s��, we highlight
three models that may be applicable. The first one, termed
the “soft-ratchet model,”53 combines a nonlinear fast sub-
system of longitudinal resonance with a second slow sub-
system of ruptured/cohesive intergrain bonds. The fast sub-
system includes a nonlinear stress-strain relation based on
the Mie potential �generally used in micromechanics to de-
scribe intermolecular potentials54� to describe intergrain rela-
tions in rocks. The slow one includes two activation param-
eters, corresponding to bond rupture and restorations. The
second model55 combines the PM space with thermally in-
duced transitions to model conditioning and slow dynamics
effects. Finally, the third one uses a Preisach–Arrhenius
model, derived from the PM space, and which allows to
include dispersion of linear and nonlinear acoustic properties
taking account thermal fluctuations of the system.47 In future
work, we will apply one or more of these models to the
system.

B. Multimodal measurement

This study constitutes one of the rare systematic nonlin-
ear resonance spectroscopy applications in a multimodal
context. Therefore, we remark on several points. Each mode
have to be isolated from adjacent ones to avoid artifacts in
the analysis, especially for dissipative parameters. Hence,
modes at relatively low frequency are generally the most
suitable, as the mode density is low. Moreover, the system
geometry has to be as asymmetric as possible, to avoid sev-
eral eigenmodes around the same frequency. We also observe
that the most suitable configuration to perform a measure-
ment occurs when emittor and detector are placed on a strain
node �or a maximum displacement�, which favors an ener-
getic mode, while the source of nonlinearity is placed on a
displacement node �or a maximum strain�, which favors a
sensitive mode. Also, when the source of nonlinearity re-
mains unknown, sensitivity or insensitivity of different
modes allows one to localize it.39

C. Strain level

The strain level applied by the acoustic wave to thread
remains unknown �nonlinear parameter obtained is not � but
C�, with a constant C�. However, by using piezoelectric
characteristics of sensors used in the experiment, we are able
to obtain an order of magnitude for strain applied to the
system. Indeed, strain applied to the emittor is between 10−6

and 5�10−5 for the lowest and highest amplitudes of exci-
tation, respectively, while the strain received by the detector
is between 5�10−9 and 10−7. This evaluation does not give
strain values received by the threaded interface but values of
this order are speculated.

D. Measurement artifacts

We noted previously that for the highest torques, slopes
are slightly negative in Fig. 5�b�, leading to negative �� val-
ues such as: they correspond to a transparency effect.56

Moreover, when performing the experiment without the
screw in place, the nonlinear dissipative parameter is also
slightly negative and with similar values. We do not find any
physical reasons for this behavior and infer that it arises from
electronic devices, bonding of piezoelectric sensors, and/or
geometric nonlinearity.

VI. CONCLUSIONS

This is the first study presenting results of nonlinear
resonance spectroscopy to a threaded interface, in a multi-
modal way. Nonlinear parameters appear to be a useful tool
to characterize this interface, complementary to linear ones.
We also show that a multimodal study allows to increase the
torque range of sensibility. Beyond the application interest,
these measurements revealed some physical information on
the interface, which can be mainly linked with friction theo-
ries. For better comprehension, other nonlinear methods �in-
cluding frequency mixing and slow dynamics experiments�
may be tested in the future to increase characterization. The
study will be carried on in the future by both academic works
and medical or industrial applications.
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