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Wolf H. Fridman1,2,3 and Aurélien de Reyniès4*

Abstract

We introduce the Microenvironment Cell Populations-counter (MCP-counter) method, which allows the robust
quantification of the absolute abundance of eight immune and two stromal cell populations in heterogeneous
tissues from transcriptomic data. We present in vitro mRNA mixture and ex vivo immunohistochemical data that
quantitatively support the validity of our method’s estimates. Additionally, we demonstrate that MCP-counter
overcomes several limitations or weaknesses of previously proposed computational approaches. MCP-counter is
applied to draw a global picture of immune infiltrates across human healthy tissues and non-hematopoietic human
tumors and recapitulates microenvironment-based patient stratifications associated with overall survival in lung
adenocarcinoma and colorectal and breast cancer.
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Background
The abundance of tissue-infiltrating immune and non-
immune stromal cell populations is highly informative of
the types of inflammatory, angiogenic, and desmoplastic
reactions occurring in a diseased tissue. In cancer, mul-
tiple studies focusing on a limited number of immune
populations have reported an association between the
extent of infiltrating immune cells and prognosis
(reviewed in [1]). For instance, it has been shown that
T-cell infiltration correlates with favorable outcome in
colorectal [2, 3] and many other cancers [4] and with
poor outcome in clear-cell renal cell carcinoma [5].
Other immune cell types, such as macrophages, B cells
and natural killer (NK) cells [1], as well as endothelial
cells and fibroblasts [6, 7], have been shown to posi-
tively or negatively influence the prognosis of cancer
patients. Yet, as quantifying just a single cell population
is demanding, little is known about how all these cell
populations collectively predict the prognosis of cancer

patients. The ability to simultaneously quantify multiple
cell populations within a tissue sample thus appears
critical to identify clinically relevant classes of diseased
tissues based on their inflammatory and stromal
profiles.
In cellularly heterogeneous tissue samples, transcrip-

tomic measurements average signals originating from
the distinct underlying cell populations. The deconvo-
lution of these signals can yield estimates of cell popu-
lation proportions in a sample [8]. Tens of thousands
of transcriptomic profiles are readily available for retro-
spective analyses from public repositories such as Gene
Expression Omnibus (GEO), ArrayExpress, or The Cancer
Genome Atlas (TCGA). Different transcriptome-based
computational methods were recently proposed to
characterize the proportions of immune populations
within leukocytes but omit the critical parameter of the
overall abundance of leukocytes in the sample [9, 10].
Other published methods lack quantitative validation
[11] or are limited to only two cell populations [12]. To
overcome these limitations, we introduce Microenvir-
onment Cell Populations (MCP)-counter, a transcriptome-
based computational method that robustly quantifies the
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abundance of immune and non-immune stromal cell pop-
ulations in a heterogeneous tissue sample.
MCP-counter is available as an R package. From a gene

expression matrix, it produces for each sample an abun-
dance score for CD3+ T cells, CD8+ T cells, cytotoxic
lymphocytes, NK cells, B lymphocytes, cells originating
from monocytes (monocytic lineage), myeloid dendritic
cells, neutrophils, as well as endothelial cells and fibro-
blasts. MCP-counter estimates are “single sample” scores,
in the sense that they are computed on each sample
independently. These scores can then be used for direct
comparisons of the abundance of the corresponding cell
type across samples within a cohort. We show that our ap-
proach either complements or outperforms previously
published methods. We quantitatively validated MCP-
counter both in vitro, by using mRNA mixtures, and ex
vivo, by using immunohistochemical cell quantifications
on paraffin-embedded tissue sections. We illustrate its ap-
plication to assess tissue-infiltration in 47 healthy tissue
types and in 32 non-hematological malignancies. We
show that our method is able to reproduce immunological
and stromal prognostic classifications in lung adenocar-
cinoma and colorectal and breast cancers.

Results
Development and validation process of the MCP-counter
method
We designed a method, called MCP-counter, with the ob-
jective of measuring the inter-sample relative abundance of
different cell populations in a microenvironment. To de-
velop and validate our method, we designed a seven step
strategy (Fig. 1). MCP-counter is based on the methodo-
logical framework [8] of transcriptomic markers (TM),
defined as gene expression features expressed in one and
only one cell population and whose expression shows little
variation within the population of interest (step 1). It
directly follows that, within a sample composed of many
different cell populations, the abundance of the population
of interest is proportional to the sample’s expression of its
related TM. Given their restrictive definition, TM are not
guaranteed to exist for all populations. We set up a discov-
ery series by curating Microenvironment Cell Population
(MCP) transcriptomes from 81 public datasets derived
using Affymetrix Human Genome U133 Plus 2.0 microar-
rays (step 2). These transcriptomes were normalized [13] to
allow their integration into a large meta-dataset which in-
cludes 1194 immune or non-immune microenvironment
cell population samples; 742 tumor cell line samples were
included as negative controls (Additional file 1: Table S1).
No hematopoietic tumor cell line was included as a nega-
tive control as the transcriptome of these cells is closely
related to that of non-malignant hematopoietic cells [14].
After manual curation, all the samples were annotated using
63 labels, of which 42 correspond to microenvironment
cell populations and 21 represent cell lines from 21 non-
hematopoietic cancer types (Fig. 2a). We organized the 63

cell populations into a pyramidal graph according to rules
of inclusion (Additional file 2: Figure S1). We added
hematopoiesis-inspired (e.g., lymphoid and myeloid line-
ages) or functional (e.g., cytotoxic lymphocytes) categories
to this pyramid, resulting in a total of 67 nodes corre-
sponding to potential cellular populations in the tissue
microenvironment (step 3) (Additional file 2: Figure S1).
This organization was validated by its consistency with
clusters obtained with transcriptome-based principal com-
ponent analysis (step 4; Additional file 2: Figure S2).
To identify TM of a given cell population (a node in our

cell population pyramid; step 5), we defined as “positive”
the samples included in this population and we defined as
“negative” the samples that do not contain this population.
Samples containing both positive and negative cells are
omitted from the analysis for this node. Three criteria
were then calculated for each feature (probe set) within
the discovery set: a) the mean log2-expression difference
between positive and negative samples (a threshold of 2
was applied); b) the area under the ROC curve (AUC) of
the feature for the identification of the positive samples
(threshold of 0.97); and c) a measure of the signal to
noise ratio between positive and negative samples
(threshold of 1.5) (“Methods”; Additional file 1: Table
S2). Gene expression features that reached the defined
thresholds simultaneously for all three criteria were
retained as TM for the corresponding cell population.
Since we had no a priori knowledge of the populations

for which TM could be identified, we applied our selec-
tion procedure exhaustively for each non-root node of
the sample pyramid (Additional file 2: Figure S1) and se-
lected a posteriori the most relevant TM sets. The num-
ber of identified markers at each level of this pyramidal
graph is reported in Additional file 1: Table S3. From the
67 nodes, we retained TM for the most precise popula-
tions for which TM could be robustly identified. We
thus discarded those for which appropriate negative con-
trols were not publically available (for instance, identify-
ing TM for effector memory CD4 T cells at least
requires negative controls such as central memory CD4
T cells and effector memory CD8 T cells), those with few
positive samples, or those with no identified markers
after the selection procedure. Nodes corresponding to
more general populations (for instance, lymphocytes or
myeloid cells) were discarded as TM for more precise
daughter cell populations were available (reasons for dis-
carding each non-selected TM sets are given in Add-
itional file 1: Table S3). We thus retained TMs specific
for ten distinct populations: eight immune cell popula-
tions (T cells, CD8+ T cells, NK cells, cytotoxic lympho-
cytes, B cell lineage, monocytic lineage cells, myeloid
dendritic cells, and neutrophils) and two non-immune stro-
mal populations (endothelial cells and fibroblasts). The 81
datasets from the discovery set spanned 344 different culture
conditions, purification methods, and cell treatments, which
ensures that the selection of TM was not sensitive to
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Fig. 1 Purpose and development of the MCP-counter method. a Comparison of MCP-counter estimates and CIBERSORT-estimated leukocytic
fractions. b Framework of MCP-counter’s development and validation
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experimental conditions. MCP-counter scores were defined
as the log2 average expression of the TM for each popula-
tion (step 6). We then validated MCP-counter (step 7).

Qualitative validation of the identified TM
The reproducibility of the identified TM was assessed on
two micrenvironment validation series of 1596 samples
hybridized on Affymetrix U133A arrays and 3208 samples
hybridized on Affymetrix HuGene 1.0ST arrays (Add-
itional file 1: Tables S4 and 5). For the ten cell populations,
the specific expression patterns obtained on the discovery
series were consistently reproduced (Additional file 2:
Figure S3), and the same selection criteria applied to
MCP validation series identified significantly overlap-
ping TM sets (Additional file 1: Table S3; p < 0.003
for any selected TM set). MCP-counter scores exhibit
a clear separation of the cell types in the discovery
and two validation series (Fig. 2b), with an AUC
above 0.994 for each signature on the 4804 validation
samples (Additional file 2: Figure S4).
Although their identification is data-driven, and not

knowledge-driven, the selected TM largely overlap with

known markers of the corresponding cell populations.
They include, for instance, probe sets mapping to CD3D
and CD5 for T cells, CD8B for CD8+ T cells, EOMES
and GNLY for cytotoxic lymphocytes, NCR1 (NKp46)
and KIR genes for NK cells, CD19, CD79A, and CD79B
for B cells, CSF1R for monocytic cells, CD1 molecules
for myeloid dendritic cells, FCGR3B and CEACAM3
(CD66b) for neutrophils, VWF (von Willebrand fac-
tor) and CDH5 (VE-cadherin) for endothelial cells,
and DCN and TAGLN for fibroblasts (Fig. 2c). In
contrast, the screening process excluded from TM
some genes usually considered as specific for a given
cell population, such as BLK, which we found overex-
pressed not only in B cells but also at a lower level
in plasmacytoid dendritic cells, a result which
supports the relevance of a data-driven approach
(Additional file 2: Figure S5).
Since, for a given cell population, the TM are expected

to be coordinately expressed, we examined the correlation
matrices of the TM on the three MCP datasets. We ob-
served highly positive correlation matrices for all popula-
tions in the MCP datasets (Additional file 2: Figure S6).

Fig. 2 Identification and qualitative validation of transcriptomic markers. a The MCP discovery series. pDC plasmacytoid dendritic cell, PBMC peripheral
blood mononuclear cell. b Quartiles of MCP-counter scores on positive and control samples in the discovery and validation microenvironment series.
Gray indicates missing values. c Representative transcriptomic markers and their corresponding expression patterns in the MCP discovery series
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Having assessed the reproducibility of this approach, we
reduced the number of markers for four populations (neu-
trophils, fibroblasts, endothelial cells, B cell lineage) which
had large TM sets (>90 TM) using information from the
MCP validation series (“Methods”). We examined the cor-
relation patterns of these final TM sets in 9408, 3548, and
6451 tumor transcriptomic samples (Additional file 1:
Table S6) obtained using Affymetrix Human Genome
U133 Plus 2.0, Affymetrix 133A, and Illumina HiSeq tran-
scriptomic platforms, respectively (Additional file 1: Ta-
bles S7–S9). We observed largely positive-valued
correlation matrices for all MCP in the three tumor data-
sets, in both pan-cancer (Additional file 2: Figure S7) and
single-cancer (Additional file 2: Figure S8) datasets.

Quantitative validation of MCP-counter abundance estimates
We quantitatively validated the MCP-counter method.
For this purpose, we designed an in vitro RNA mixture
experiment (Fig. 3a). Immune populations were purified
from healthy donors’ peripheral blood; their RNAs were
extracted and mixed in highly variable concentrations
(from 0.7 to 46 % of the sample’s RNA). The RNA pro-
portions of the populations were arranged in two trans-
posed latin squares to avoid collinearity and thus ensure
specificity (Additional file 1: Table S10). The mixtures
were further diluted in a fixed amount of a solution con-
taining mRNA extracted from HCT-116, a colorectal
cancer cell line. Transcriptome analyses revealed that
MCP-counter scores were highly correlated with the cell
proportions for the populations introduced in the mix-
tures (Fig. 3b), with Pearson’s correlation coefficients
ranging from 0.94 to 0.99. We added to these mixtures
mRNA extracted from fibroblasts and human umbilical
vein endothelial cells, extending the latin square layout
(the resulting concentrations are shown in Additional
file 1: Table S11), and computed MCP-counter estimates
using quantitative polymerase chain reaction (qPCR).
For these two cell populations, we also obtained positive
and significant linear correlation estimates (Fig. 3c; r =
0.96 and p = 9.9 × 10−6 for endothelial cells, r = 0.93 and
p = 8.9.10−5 for fibroblasts). Finally, although the amount
of cytotoxic lymphocyte mRNA was not controlled in
our mixture experiment, we tested whether the CD3+ T
cells (through their CD8+ subset) and the NK cells con-
tributed to the level of the cytotoxic lymphocyte MCP-
counter score. We thus performed a linear model
(“Methods”) which revealed that both cell types contrib-
uted significantly and positively to the level of the cyto-
toxic lymphocyte score, jointly explaining 99 % of the
observed variance (Fig. 3d; p = 1.3 × 10−9 for NK cells
and p = 0.038 for CD3+ T cells, R2 = 0.99). In addition,
immunohistochemical (IHC) digital quantification of
CD3+, CD8α+, and CD68+ cell densities were per-
formed on tissue sections from 38 colorectal cancer

tumors. The IHC-measured density of each cell popula-
tion was found to correlate with the corresponding
MCP-counter score (Fig. 3e).
Finally, we assessed the limit of detection of the technique

for each cell population using non-hematopoietic control
samples. For each assayed population, we observed a limit
of detection below 2 % (depending on the population, from
1/950 to 1/50 of the sample’s total RNA; Fig. 3b). Altogether,
these results validate the use of the MCP-counter method
to directly compare the abundance of the corresponding cell
population across transcriptomic samples.

Comparison of MCP-counter with previously published
methods
MCP-counter differs from methods such as CIBERSORT
[9], which aims to measure intra-sample (within-
leukocyte) proportions of immune cell populations, while
MCP-counter outputs an abundance estimate per cell
population that enables an inter-sample comparison, at
the cost of being expressed in arbitrary units. To illustrate
these differences, we simulated mRNA mixtures where
the within-leukocyte proportion of five immune cell popu-
lations was kept constant and equal while the proportions
of tumor cells varied (Fig. 4a). In this setting, only MCP-
counter was able to accurately reflect the difference in im-
mune cell abundances across simulated mixtures, while
CIBERSORT (accurately) estimated stable proportions of
each immune cell population within the leukocytic frac-
tion of the simulated mixtures.
To compare the robustness of the TM sets used in

MCP-counter and those identified in previously published
methods, we computed metagene scores on the three
microenvironment series with TM sets reported by Bindea
et al. [11] or Yoshihara et al. [12]. MCP-counter scores
achieved high specificity and sensitivity for each of the
corresponding cell populations, while some TM sets from
other methods were sometimes highly expressed in nega-
tive samples (Fig. 4b; Additional file 2: Figure S9).

Analysis of the microenvironment of normal and cancer
tissues
We applied MCP-counter to a first dataset of 505 samples
spanning 47 non-pathological anatomical locations [15].
Lymphoid organs (spleen, lymph nodes, tonsils, bone mar-
row) were, as expected, found to harbor a high number of
immune cells, while the thymus featured the highest MCP-
counter score for CD3+ Tcells (Fig. 5a). On the other hand,
known “immune sanctuaries”, such as testes, were cor-
rectly found to feature little abundance of immune cells.
Tumor immunology is one of the natural applications

of MCP-counter. We estimated the abundance of im-
mune and non-immune cell populations in 19,407 sam-
ples spanning 32 non-hematopoietic human tumors,
thus proposing a global analysis of non-malignant cell
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Fig. 3 (See legend on next page.)
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population abundances across human cancers (Fig. 5b).
The MCP-counter scores obtained from the three
underlying transcriptome platforms (Affymetrix Human
Genome U133 Plus 2.0, Affymetrix 133A, and Illumina
HiSeq) yielded reproducible patterns across cancer
types (Additional file 2: Figure S10) and were thus aver-
aged to produce a synthetic view (Fig. 5b). We observed
that kidney clear-cell carcinoma had the highest abun-
dance of endothelial cells of all cancers, while uveal
melanomas, which occur in the eye, an immune sanctu-
ary, are poorly infiltrated by immune cells. Colorectal
cancer samples were average in terms of immune cell
abundance. Gliomas and glioblastomas appeared poorly
infiltrated by T cells. The often viral-induced cervical
squamous carcinoma is highly infiltrated by cytotoxic T
and NK cells but poorly by cells of monocytic origin.

Prognostic value associated with MCP-counter estimates
The three tumor series included, respectively, 2631, 1615,
and 6047 samples that had been annotated for overall sur-
vival (OS). We additionally curated 1591 tumor transcrip-
tomes with OS annotations obtained using other
transcriptomic platforms (Additional file 1: Tables S6 and
S12). By performing a meta-analysis of univariate Cox
models adjusted on each independent study, we assessed
the correlation between the abundance of each micro-
environment cell population, as estimated by MCP-coun-
ter scores, and OS within cancer types (Fig. 6a). Although
this univariate analysis was not adjusted for variables po-
tentially influencing OS, such as tumor stage or treat-
ments received, it nonetheless appeared consistent with
the published literature [1], notably revealing an overall fa-
vorable prognosis associated with infiltration by T cells,
except in kidney clear-cell carcinoma as previously re-
ported [5] and in low grade glioma. Fibroblasts were
mostly associated with poor outcome.
To assess whether MCP-counter was relevant to iden-

tify tumor subgroups based on their relative infiltration
by multiple cell populations, we attempted to reproduce
previously reported prognostic classifications. In lung
non-small cell adenocarcinoma, it was recently reported
that infiltration by B or T cells independently predicts fa-
vorable prognosis [16, 17]. In colorectal cancer, extensive
literature exists about the protective role of a high infiltra-
tion by T cells [2, 3], while fibroblasts were reported to be

associated with poor outcome [6, 7]. In breast cancer, a
stratification relying on cytotoxic T cells (associated with
favorable outcome) and macrophages (poor outcome) was
proposed [18]. Using MCP-counter, we were able to re-
produce these clinically relevant patterns (Fig. 6b–d).

Discussion
Tissue-infiltrating immune and non-immune stromal
cells contribute to the measured signal in gene expres-
sion experiments. Retrieving this information can yield
estimates of the abundance of tissue-infiltrating cells
[19], illustrated here in cancer samples. To harness this
information, we developed the MCP-counter method,
implemented in an easy-to-use R package.
It produces a score for each of ten distinct MCP. We

validated that these scores are accurate abundance esti-
mates in three different settings: a) transcriptomic profiles
of 4804 validation MCP samples, in which the MCP-
counter score separated positive and negative samples
(relative to each of the ten cell populations) with high spe-
cificity and sensitivity; b) in an in vitro RNA mixture set-
ting, where we showed that MCP-counter scores
corresponding to the cell populations from which RNAs
were extracted highly correlated (Pearson’s correlation co-
efficients ranging from 0.93 to 0.99) with the RNA fraction
of the corresponding cell population in the mixture; and
c) in an ex vivo setting where we showed that MCP-
counter estimates correlated with IHC measurements of
the corresponding cell densities. Using the in vitro setting,
we showed that MCP-counter’s lower limit of detection
for a population was below 2 % of the sample’s total RNA
proportion when using Affymetrix Human Genome U133
Plus 2.0 microarrays. This limit of detection might be low-
ered by using more sensitive gene expression techniques,
Nanostring, or RNA-sequencing assays. We consistently
observed lower limits of detection using qPCR data for
two cell populations (Fig. 3c).
Other techniques to quantitatively characterize the cel-

lular composition of a heterogeneous tissue notably
include flow cytometry and enzymatic IHC. MCP-counter
estimates are conceptually close to IHC-estimated cell
densities (number of cells per surface unit on a tissue sec-
tion), as the produced estimates can be used to compare
the abundance of the corresponding cell populations
across samples. Unlike IHC, however, MCP-counter

(See figure on previous page.)
Fig. 3 Quantitative validation of MCP-counter estimates. a Design of the in vitro RNA mixture validation experiment. b Correlation of MCP-
counter scores to samples’ known RNA proportions in RNA mixture samples. The dashed line represents the least-square regression line. The red
dots correspond to limits of detection (average score of non-hematopoietic discovery MCP samples on the x-axis and corresponding mRNA
fraction predicted by this linear regression on the y-axis). c Endothelial cells and fibroblasts were tested in the same fashion as in b but using
qPCR data. HUVEC human umbilical vein endothelial cell. d Three-dimensional scatterplot showing the relationship between the cytotoxic
lymphocyte MCP-counter score and T and NK cell proportions in the mixtures. e Correlation of MCP-counter scores with corresponding cell
densities measured by immunohistochemistry
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Fig. 4 (See legend on next page.)
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enables the simultaneous quantification of ten cell popula-
tions with a single gene-expression experiment, while IHC
quantifications are usually limited to a couple of markers.
Information of the cells’ spatial localization, which is

available in IHC experiments, is lost, however, when using
transcriptomic technologies. Histological confirmation of
MCP-counter estimates may thus be necessary in cases
where contamination of samples by surrounding tissues is

Fig. 5 Estimation of the abundance of infiltrating immune and stromal cells across healthy tissues and non-hematopoietic human tumors. a
MCP-counter scores across healthy tissues. In the case of multiple samples originating from the same type of non-diseased tissue, the resulting
MCP-counter scores were averaged. b Means of MCP-counter scores across malignant tissues and three transcriptomic platforms. Rows are
ordered using a hierarchical clustering procedure, with Ward’s aggregation criterion and Euclidean distance. HNSCC head and neck squamous
cell carcinoma

(See figure on previous page.)
Fig. 4 Comparison of MCP-counter with previously published methods. a MCP-counter scores (left) and CIBERSORT estimates (right) on simulated
mRNA mixtures where five immune populations are introduced in equal proportions, with a varying proportion of tumor cells (x-axis). Error bars
represent standard error estimates. b Heat maps showing scores computed with TM sets from three sources (Pred columns). The Truth columns
indicate the status of the sample for each TM set. Thus, the performance of a TM set is indicated by the concordance between its Pred and Truth
columns. The complete sets of markers, which do not use information from validation series, were used for MCP-counter

Becht et al. Genome Biology  (2016) 17:218 Page 9 of 20



unavoidable. DNA-sequencing data could also be lever-
aged to estimate the proportion of cells with rearranged
T-cell receptor or B-cell receptor loci, providing informa-
tion about both the abundance and repertoire of these
two populations. The eight other populations for which
MCP-counter provides estimates are, however, unquan-
tifiable using DNA-sequencing data. Studying the
clonality of T and B cells is, however, an interesting
covariate to complement abundance estimates of these
cell populations and is accessible from RNA-seq data,
as recently demonstrated in tumor samples [20–22].
MCP-counter is more sensitive and specific in the inter-

pretation of its scores than other previously published TM-
based methods [11, 12] as a result of the rigorous, unbiased,
and conservative approach to define the TM sets on which it
is based (Fig. 4b) and, importantly, has been quantitatively
validated experimentally (Fig. 3). It conceptually differs from
flow cytometry experiments or flow cytometry-inspired com-
putational methods such as CIBERSORT [9], which aim at
describing the relative proportions of various cell populations
within a single sample (Fig. 4a). In contrast, MCP-counter is
specifically designed to compare the absolute abundance of a
given cell population across multiple samples.
MCP-counter scores linearly correlate with the corre-

sponding cell population abundances across samples, but
they are expressed in arbitrary units. These arbitrary
units are dependent on the gene expression platform
used to produce the data and one can only compare
samples produced with the same gene expression plat-
forms. Nonetheless, we showed that the relative cellular
abundance across three large tumor datasets, totaling
more than 19,000 tumors and obtained with three differ-
ent gene expression platforms, are largely consistent
(Additional file 2: Figure S10), validating the use of MCP-
counter to assess which samples are most or least infil-
trated by each characterized cell population. Nonetheless,

since MCP-counter scores are based on summarized gene
expression features (such as reads per kilobase per mil-
lions), its accuracy may suffer if the quality of this sum-
mary is low. The cell populations whose abundance is
estimated by MCP-counter are usually at relatively low
frequencies in tissue samples. Thus, sequencing samples
at high depth (>80 million reads per sample) [23], which
has been reported to improve the quantification of rare
transcripts, may improve the accuracy of MCP-counter
estimates from RNA-sequencing samples.
We illustrated the use of MCP-counter on non-diseased

human tissues and observed abundance estimates consist-
ent with the known immunological status of the samples.
We applied MCP-counter to describe the average MCP cel-
lular abundances in 32 non-hematopoietic human
malignancies. This analysis confirmed the very high
vascularization of clear-cell renal cell carcinoma and
showed that cervical squamous cell carcinoma tumors,
which are often virally induced, are highly infiltrated by T
lymphocytes and, notably, cytotoxic T cells but only moder-
ately by other immune subsets. Other results appeared
more surprising, such as the high abundance of fibroblastic
cells in the microenvironment of stromal tumors—which
may originate from a subset of dedifferentiated tumor cells
or the relatively low vascularization of hepatocellular car-
cinoma samples—which is possibly due to the unique
phenotype of endothelial cells in the liver. MCP-counter
should in these cases be compared with histopathological
knowledge and data within a given cancer.
MCP-counter is most relevant to stratify a cohort of

similar samples based on the composition of their im-
mune and stromal microenvironments, or to follow the
composition of the microenvironment over time. The
use of MCP-counter confirmed that significant univariate
associations between OS and tumor infiltration by cyto-
toxic lymphocytes were mostly positive [4]. In contrast,

Fig. 6 Prognostic value associated with MCP-counter scores in non-hematopoietic human cancers. a Meta-analysis for the univariate prognostic
value for overall survival of MCP-counter scores in human cancers. Bigger circles represent lower p values. Green represents hazard ratios lower
than 1 (favorable prognostic impact) and red hazard ratios higher than 1 (poor prognostic impact). Dull colors represent p values higher than 0.05.
HNSCC head and neck squamous cell carcinoma. b–d Tumor microenvironment classifications of b lung adenocarcinomas based on the abundance
of infiltrating T and B cells, c colorectal cancer based on the abundance of cytotoxic lymphocytes and fibroblasts, and d breast cancer based on the
abundance of cytotoxic lymphocytes and cells of monocytic origin
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significant associations between prognosis and extensive
abundance of non-immune stromal cell populations and,
notably, fibroblasts were shown to be mostly negative
using MCP-counter. These observations, largely consist-
ent with the published literature [1, 4, 6, 7], validate the
use of MCP-counter to assess the prognostic value of
MCP in other cohorts of patients.
MCP-counter complements IHC approaches in that it en-

ables the analysis of ten cell populations using a single gene
expression experiment, thus enabling the rapid generation
of research hypotheses than can then be confirmed and
spatially studied using histological data. We notably illus-
trated its use to separately classify lung adenocarcinoma,
colorectal, and breast tumors into microenvironment-
defined subgroups. In this setting, we were able to confirm
the prognostic impact of three previously published
microenvironment-based tumor classifications. These results
suggest that MCP-counter may enable the identification of
new multi-marker microenvironmental stratifications.
MCP-counter relies on TM which have been identi-

fied in a dataset containing gene expression profiles
of cancer cell lines from 21 different anatomic loca-
tions among its negative controls, ensuring applicabil-
ity in a wide range of samples. This large diversity of
control samples may, however, discard TM which
would be relevant in a specific setting: for instance,
the screening procedure discarded NCAM1 (CD56), a
widely used marker of NK cells, as it is also
expressed by nervous malignant cells and is thus un-
suitable to quantify NK cells in brain samples. The
general framework that we have developed could thus
be tailored to identify additional TM for investigation
in a more restricted set of organs.
MCP-counter can potentially be incorporated in clinical

routines to characterize immune infiltration in samples
where IHC-based quantifications are impossible, such as
for fine-needle aspiration biopsies. In this setting, samples
are typically collected one at a time. To complement the
current multi-sample use of MCP-counter, designed for ex-
ploratory analyses, one could notably settle on a desired
gene expression platform and use a set of calibrating sam-
ples. For instance, the in vitro RNA mixtures described
here could help to map MCP-counter abundance scores
to non-arbitrary units, such as the percentage of the cor-
responding cells within a sample. Setting-specific tuning
may, however, be required to reach the reliability neces-
sary for clinical protocols.

Conclusions
To our knowledge, MCP-counter is the first validated com-
putational method that enables the robust quantification of
the abundance of multiple immune and non-immune stro-
mal populations in the transcriptome of cellularly heteroge-
neous tissues such as normal or malignant tissues. It might

be relevant in a clinical setting, as immune biomarkers can
help to predict a patient’s prognosis [3] or response to ther-
apies [24], most notably to immunotherapies [25]. Its retro-
spective and prospective application to study inflammatory
profiles through transcriptomics should help to unravel
the role of immune and stromal populations in cancers
and other diseases and to decipher the interplay between
these populations.

Methods
Gene expression profile datasets
We curated transcriptomic profiles from several types of
samples from public repositories (microenvironment cell
populations (MCP), non-hematopoietic human tumors,
non-diseased human tissues, in vitro RNA mixtures) and
obtained using different gene expression platforms (mainly
Affymetrix HGU 133 Plus 2.0, HGU 133A, HuGene 1.0 ST,
and Illumina HiSeq 2000). For survival analysis, transcrip-
tomic profiles of non-hematopoietic human tumors with
OS annotations were also included. Table 1 lists the types
of samples curated, stratified by gene expression platforms,
and points to the identifiers of the included samples.

Gene expression profile normalization
Affymetrix Human Genome U133 plus 2.0, Human Genome
133A, and HuGene 1.0 ST arrays
MCP datasets and tumor datasets from Affymetrix Human
Genome U133 Plus 2.0, Human Genome 133A, and
HuGene 1.0 ST arrays were normalized using the frozen
robust multiarray average (fRMA) method, implemented
in the fRMA R package (version 1.18.0). Unlike RMA,
fRMA uses fixed estimates of probe-specific effects and
variances, allowing a consistent normalization of gene ex-
pression profiles (GEP) from different series, provided that
they were obtained on the same gene expression platform.
GEP obtained with the Affymetrix Human Genome

U133 Plus 2.0, Human Genome 133A, and HuGene 1.0
ST array platforms were thus normalized using the
frma function of the frma Bioconductor R package
using the preprocessing input vectors provided by the
Bioconductor R packages frmahgu133plus2frmavecs ver-
sion 1.3.0, frma133afrmavecs version 1.3.0, and hugen-
e.1.0.st.v1frmavecs version 1.0.0, respectively. The frma
method was called on batches of CEL files corresponding
to individual series.

TCGA gene expression data
Gene expression data from non-currently embargoed
TCGA projects were obtained from TCGA data portal
(https://gdc-portal.nci.nih.gov/). Only GEP obtained using
Illumina HiSeq 2000 were retrieved. Already-normalized
“level 3” data were downloaded separately for each project.
The resulting *.rsem.genes.normalized_results files were
then merged into a single pan-cancer expression matrix.
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Other gene expression platforms
For GEP obtained using other gene expression platforms,
we used pre-processed GEP data as published by each
study and available from the corresponding public
repositories.

Publicly available sample annotations
MCP datasets: discovery series—Affymetrix U133 plus 2.0
arrays)
Samples were annotated according to the author-reported
phenotypes, yielding 344 distinct labels (Additional file 1:
Table S1). We recoded these labels into 63 categories,
including 21 cancer cell phenotypes (42 immune and
stromal labels).

MCP datasets: validation series—Affymetrix 133A and
HuGene 1.0 ST arrays)
Samples were annotated according to the 63 labels used
to annotate the discovery microenvironment series. The
previously defined 63 categories did not fit the pheno-
type of a few samples and motivated the addition of 15
categories (Additional file 1: Tables S4 and S5). These
newly defined categories all refine some of the initial 63
labels.

Non-diseased human tissues (GEO:GSE7307)
Sample annotations were retrieved from GEO:GSE7307.
Samples corresponding to diseased tissues, cell lines, or
sorted immune cells were discarded, retaining only the
non-diseased, cellularly heterogeneous samples. For clar-
ity, some tissues were regrouped in broader anatomical
locations (detailed in Additional file 1: Table S14). Ana-
tomical systems were manually added.

Non-hematopoietic tumor sample series
From the three tumor datasets, only samples corre-
sponding to primary tumors obtained from tumor resec-
tions with no neoadjuvant treatments and that did not
use laser capture microdissection were retained for ana-
lysis (Additional file 1: Tables S6, S7, S8, S9, and S12).
Annotations for samples retrieved from GEO and

ArrayExpress were retrieved from the “Series matrix”
files and “sdrf” files, respectively. Annotations for
TCGA samples were retrieved from TCGA data portal
(https://gdc-portal.nci.nih.gov/).
Since annotations originated from many different

groups, only a subset of the variables were retained for
each series. The corresponding values were harmonized
into a consistent ontology. The following list contains
the final set of variables for which sample annotations
were retained: sample identifiers; series identifiers; gene
expression platform; cancer type; sample type (autopsy,
biopsy, cell culture, surgery followed by laser capture
microdissection, surgery); overall survival event and
delay (months)

Non-hematopoietic tumor samples series (other platforms)
Only sample identifiers, tumor types, sample status and
OS were retained.

Removal of tumor sample duplicates
Some tumor GEP are present in multiple public datasets
and correctly labeled as “Reanalyzed”. In this case, only
the original sample was considered for analysis. To avoid
unspecified duplicated GEP, we computed MD5 check-
sums for all uncompressed CEL files. Samples with iden-
tical MD5 checksums were considered duplicates. In this
case, only the sample belonging to the oldest series was
kept. Annotations present on the most recent sample
instance and absent from the older sample instance were

Table 1 Types of samples curated

Sample type Gene expression platform Sample identifiers

Microenvironment cell populations Affymetrix Human Genome 133 Plus 2.0 Additional file 1: Table S1
GEO accession number GSE86362

Microenvironment cell populations Affymetrix Human Genome 133A Additional file 1: Table S4
GEO accession number GSE86363

Microenvironment cell populations Affymetrix HuGene 1.0 ST Additional file 1: Table S5
GEO accession number GSE86357

In vitro RNA mixtures Affymetrix Human Genome 133 Plus 2.0 Additional file 1: Table S11
GEO accession number GSE64385

Non-diseased human tissues Affymetrix Human Genome 133 Plus 2.0 Additional file 1: Table S14
GEO accession number GSE7307

Non-hematopoietic tumors Affymetrix Human Genome 133 Plus 2.0 Additional file 1: Table S7

Non-hematopoietic tumors Affymetrix Human Genome 133A Additional file 1: Table S8

Non-hematopoietic tumors Illumina HiSeq 2000 Additional file 1: Table S9

Non-hematopoietic tumors Other gene expression platforms Additional file 1: Table S11
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added to the older sample’s annotation. Conflicting anno-
tations were resolved by keeping the oldest annotation.
These conflicts never occurred for clinical follow-up
variables.

Selection of the TM
Organization of the samples into a pyramidal graph of
categories
We define as a pyramid a directed acyclic graph with a
root node. Samples of microenvironment purified cells
were labeled according to their reported immune or
stromal populations, resulting in 63 distinct labels in the
MCP discovery series, with an additional 15 labels for
the MCP validation series, resulting in a total of 78 la-
bels. We organized these labels in a pyramidal graph
(Additional file 2: Figure S1) with nodes representing
populations (categories) and directed edges representing
relations of inclusion. For instance, the labels “CD8+ T
cells”, “CD4+ T cells”, “Tγδ cells”, “Memory T cells”,
“Activated T cells”, and “Naïve T cells” and all labels in-
cluded in them (for instance “Effector-memory CD8 T
cells”) form the “T cells” category, which itself is in-
cluded in the “T/NK lineage” category. Of these 78
sample labels, some correspond to terminal leaves of this
pyramid (e.g., “Canonical CD4 Treg cells”), while others
correspond to higher level nodes (e.g., peripheral-blood
mononuclear cells (“PBMC”)). In addition to these 78
labels, 15 hematopoiesis or immunology-inspired cat-
egories that are not directly represented by samples but
relevant for their organization in a structured pyramid
(for instance “Lymphocytes”) or as a potential cell popu-
lation (for instance “antigen-experienced B cells”) were
added (Additional file 1: Table S13). Categories corre-
sponding to tumor samples were discarded for the iden-
tification of TM and only kept as negative controls,
resulting in 68 categories available for screening.
Having defined this set of 78 labels and 68 categories

(53 categories are directly represented by labels, with 15
additional categories not directly represented in the data-
set), we exhaustively encoded the relationships between
labels and categories using three possible relationships
(Additional file 1: Table S13). Relative to a category, we
define three sets of samples:

� C : “positive samples” are those whose label is
included in the category (all cells composing a
sample which is in C are in the category)

� C : “negative samples” are those whose label is
strictly non-overlapping with the category (all cells
of a sample which is in C are not in the category)

� -1 : “mixed samples” are those whose label is partly
overlapping with the category (some cells of the
sample are in C and some are in C ).

For instance, for CD8+ T cells, C is the set of samples
whose label is “CD8 T cells” or “Effector memory CD8 T
cells” (Additional file 2: Figure S1; Additional file 1:
Table S13), mixed samples are, for instance, CD3+ T cells
as they mix CD4+ and CD8+ T cells, or PBMC as they
mix CD8+ T cells with, e.g., monocytes. C is defined as
all non-positive non-mixed samples.
Note that the relationships represented in Additional

file 2: Figure S1 only correspond to the “direct inclusion”
relationship, which is transitive (we thus removed for
clarity all the arrows which can be inferred by transitiv-
ity). Hence, strict exclusion or mixture relationships are
not represented but are taken into account during the
screening process (the related information is available in
Additional file 1: Table S13).

Selection of TMs for each category
We performed an exhaustive exploration of the category
pyramid to screen for the existence of potential TM at
each node. For a given node of the pyramid, Additional
file 1: Table S13 defines the set of positive samples C
and negative samples C (mixed samples are discarded
for this node). Common differential expression tests
(based on cutoff values on the fold-change and the sig-
nificance of, e.g., a Student’s t-test) aim at investigating
whether two samples drawn from two continuous distri-
butions have the same mean. Our definition of a TM re-
quired a more stringent approach, as we not only
required differential expression but also null expression
in the negative samples. Given these two sets of samples,
a triplet of probe set-level statistics was thus computed
per probe set: the positive AUC, the fold change (FC),
and a specific fold change (sFC), with the latter two hav-
ing the following definitions:

FC ¼ X −X

sFC ¼ X−Xmin
� �

= Xmax−Xmin
� �

where we denote by X the centroid (i.e., average across
all samples) of category C, X the centroid of C , Xj the

centroid of any class j composing C (j = 1..k), X min the
minimum value across centroids of classes composing C
(Xmin = minj∈1..k {Xj}), and X max the max value across

centroids of classes composing C (Xmax= maxj∈1..k {Xj}).
The specific FC accounts for both a high expression in
C compared to C and a low variability within C .
For each non-root node of the pyramid, probe sets

with AUC >0.97, FC >2, and sFC >1.5 were retained
(Additional file 1: Table S3). The choice of the (log2) FC
cutoff was arbitrarily set to 2, which falls in the upper
range of commonly chosen cutoffs for log2 FC [26]. We
then performed simulations by drawing 2000 “negative”
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datapoints from N(0,s) and 100 “positive” datapoints
from N(2,s), where N(μ,s) designates the normal distri-
bution with mean μ and s is the median standard devi-
ation of probe sets observed in our discovery series,
which revealed that an AUC cutoff of 0.97 corre-
sponded to a type two error of 25 %. The cutoff value
for the sFC was chosen by examining the univariate
distribution of sFC values after filtering probe sets for
FC >2 and AUC >0.97 and choosing a cutoff retaining
only the upper flat tail of the distribution, with 30 % of
the probe sets passing the first two criteria falling
above this cutoff.

Selection of TM sets for ten populations
Having selected in an unbiased manner the TM for each
level of the pyramid, we manually selected the most rele-
vant TM sets, discarding very broad categories (such as
“stromal cells” which would, in a tumor, designate all non-
malignant cells from the microenvironment), categories
with too few (<30) positive samples to reliably identify ro-
bust markers from high-dimensional data, those for which
no appropriate controls were represented in the discovery
series, and those for which no markers were identified.

Reduction of TM sets for four populations
For four populations (neutrophils, endothelial cells, fi-
broblasts, and B lineage cells), the number of TM iden-
tified in the discovery series was much higher (>90)
than for the other cell populations (<25). To obtain
more balanced marker sets, we performed the same se-
lection process on the validation series, obtaining TM
sets overlapping with those identified in the discovery
series (Additional file 1: Table S3). To reduce the number
of markers, we thus took the intersection of the markers
across the three microenvironment series (B lineage,
fibroblasts), or the discovery and the HuGene 1.0ST
series (endothelial cells), or the discovery and the Affy-
metrix HGU 133A series (neutrophils). Of note, this
filtering step was not performed for the figures where
data from the MCP validation series were used (Fig. 2;
Additional file 2: Figures S3, S4, S6).

Computation of MCP-counter scores
Given a set of transcriptomic markers of a given category,
we computed a corresponding per-sample score, called
hereafter a MCP-counter score, using the log2 geometric
mean of this set of markers.

Principal component analyses of microenvironment
samples
For each MCP series, we retained samples belonging to
well-characterized hematopoietic lineages (T or NK
cells, B cells, monocytic lineage, granulocytes, endothe-
lial cells, fibroblasts) and cancer cell lines. Probe sets

were filtered to retain only the those above the 95th
variance percentile on each series. Principal component
analysis was then performed for each series and data for
the first principal two components (those explaining the
most variance) are displayed (Additional file 2: Figure
S2; cell lineages are color coded).

Correlation profiles of TM in micrenvironment and tumor
datasets
For a given set of TMs, corresponding features were sub-
setted from the expression matrices of the three micro-
environment series and three primary tumor series
(Affymetrix Human Genome U133 Plus 2.0, 133A, and
TCGA). On these six matrices, Pearson correlation coeffi-
cients were computed for each pair of features (Additional
file 2: Figures S5–S7).
This analysis is motivated by the following model: our

definition of a transcriptomic marker is a feature that is
expressed in one and only one cell population at an
homogeneous level. Let (i) S be a tissue sample composed
of n cell populations with proportions πi (i = 1..n), (ii) f be
a feature and (iii) fS be its measured expression in sample
S and (iv) fi its measured expression in a cell population i
(i = 1..n). Assuming linearity between the measured ex-
pression of the feature f and the corresponding targeted
mRNA, we have the following equation:

fS ¼
X

i¼1

n
f
i
:πi ð1Þ

This equation states that the measured signal in the
cellularly heterogeneous tissue is sum of its proportion-
weighted expression level in each individual population.
In the case of a TM, since fi is non-null in a single popu-
lation k, we have:

f S ¼ f k :πk ð2Þ

i.e., the measured expression level is proportional to the
proportion of the cell population with non-null expres-
sion for the TM.
If g is another expression feature that is a transcrip-

tomic marker for population k, we also have:

gS ¼ gk :πk ð3Þ

Combining Eqs. 2 and 3, we have:

πk ¼ fS
fk

¼ gS
gk

ð4Þ

If we now have m transcriptomic measurements, Eq. 4
stands independently in each measured tissue. We thus
have, for each j in 1,…,m:
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πk;j ¼ fS;j
fk¼gS;j
gk

ð5Þ

where πk;j is the proportion of the cell population k in
sample j, fS,j is the expression level of feature f in sample
j, and gS,j is the expression level of feature g in sample j.
Importantly, since fk and gk are the expression levels of f
and g in the cell population k, they are independent of
sample j.
Equation 5 thus shows that, for each sample, fS equals

gS times the constant fk/gk. We thus show that given that
f and g are two transcriptomic markers for population k,
then the expression of f and g in a series of transcrip-
tomic measurements is proportional. In a perfect system
(in which no non-linear and noise are present), we thus
expect correlation coefficients of 1 for two TM specific
for a given cell population.

RNA mixture models
Peripheral blood immune cell sorting
Peripheral venous blood was extracted for three healthy
donors using heparin vacuntainer tubes (BD Bioscience).
Peripheral blood mononuclear cells (PBMC) or poly-
morphonuclear cells (PMN) were isolated using Ficoll-
Paque PLUS (GE Healthcare Life Sience) or Polymorph
Prep (Axis-Shield) density gradients, respectively. PBMCs
were stained with anti-CD3 FITC (clone UCHT1), anti-
CD14 APC (MΦP9), anti-CD19 ECD (J3-119) and anti-
CD56 PE (B159); PMNs were stained with anti-CD66b
FITC (G10F5), anti-CD19 ECD (J3-119), anti-CD3 PE
(UCHT1), anti-CD56 PE (B159), and anti-CD14 APC
(MΦP9). Cell sorting was done in a FACS Aria cytometer
(BD Bioscience) and cell purity higher than 97 % was
always achieved. We sorted the following populations: T
cells (DAPI−/CD3+/CD14−/CD19−/CD56−), monocytes
(DAPI−/CD3−/CD14+/CD19−/CD56−), B cells (DAPI
−/CD3−/CD14−/CD19+/CD56−) and NK cells (DAPI
−/CD3−/CD14−/CD19−/CD56+) on PBMCs, and neutro-
phils (DAPI−/CD66b+/CD19−/CD3−/CD56−/CD14−) on
PMNs.

Cell culture
HCT116 and CCD-18Co cells lines were purchased from
ATCC and cultured according to the vendor’s instructions.
Primary human umbilical vein endothelial cells (HUVEC;
third-passage) were isolated as previously described [27]
and cultured in M199 medium (Gibco, Paisley, UK) with
20 % fetal calf serum.

RNA extraction
Cells were lysed in RLT (QIAGEN)-1 % mercaptoethanol
buffer and RNA was purified with a Maxwell 16 sim-
plyRNA Kit (Promega) according to the manufacturer’s

instructions. Genetic material quality and quantity were
determined with a 2100 Bioanalyzer Instrument (Agilent
Technologies).

Mixtures of RNA solutions
A set of four twofold serial dilutions were performed on
each aliquot of RNA extracted from sorted peripheral
blood immune cells, yielding solutions of decreasing
concentration S0 to S4 for each cell population. Ten ali-
quots were used to mix these solutions using two trans-
posed latin square layouts (Table 2).
The volume corresponding to 10 ng of a solution of

HCT116 colorectal cancer cell line-extracted mRNA
was then added to mixes 3 to 12. Two additional sam-
ples (mixes 1 and 2) of pure HCT116 mRNA were also
included. The resulting concentrations are available in
Additional file 1: Table S10.
For the qPCR experiments, we added mRNA from

fibroblasts and HUVEC to these previously generated
mixtures in the following way.
mRNA solutions from mixes 1 to 12 described above

where unthawed, to which we added a set of four two-
fold serial dilutions of mRNa from cultured fibroblasts
and HUVEC, yielding solutions of decreasing concentra-
tion S0 to S4 for each cell population (Table 3). For
these two cell populations, S0 corresponds to 3 ng/μL
of mRNA. The resulting proportions are available in
Additional file 1: Table S10.

Microarray hybridization
Biotinylated double-stranded cDNA targets were prepared
from 10 ng of total RNA using the NuGEN Ovation Pico
WTA System V2 kit (catalog number 3302) followed by
the NuGEN Encore Biotin Module Kit (catalog number
4200) according to the manufacturer’s recommendations.
Following fragmentation and labeling, 4.55 μg of cDNA
was hybridized for 16 h at 45 °C, 60 rpm on Human Gene-
Chip Human Genome U133 plus 2.0 arrays (Affymetrix).
The chips were washed and stained in a GeneChip Fluidics
Station 450 (Affymetrix) using the FS450_0004 script and
scanned with a GeneChip Scanner 3000 7G (Affymetrix) at
a resolution of 1.56 μm. Raw data (.CEL intensity files)
were extracted from the scanned images using the Affyme-
trix GeneChip Command Console (AGCC) version 4.0.

Quantitative PCR
Reverse transcription PCR was conducted with the
High-Capacity cDNA Reverse Transcription kit (Applied
Biosystem). Quantitative expression analysis of 12 genes
was determined on an Applied Biosystems 7900HT Fast
Real-Time PCR System. Expression levels of genes were
determined using threshold cycle (Ct) values normalized
to beta-actin (ΔCt). The list of analyzed genes is displayed
in Additional file 1: Table S15.
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Correlation between MCP-counter scores and known mRNA
proportions
MCP-counter scores were computed from the fRMA-
normalized RNA-mixture microarray dataset and plotted
against the known mRNA log-proportions. Pearson cor-
relation coefficients and the corresponding tests against
the t distribution were performed.
For qPCR experiments, MCP-counter was ran using

gene symbols as identifiers and the intersection of the
“complete” TM sets for fibroblasts and endothelial cells
and the gene assayed by qPCR as features.

Estimation of the limit of detection
For each of the five sorted cell populations (NK cells, B
cells, T cells, monocytes, neutrophils), we fitted a least-
square linear regression model of the known mRNA
log-proportions with the corresponding MCP-counter
score as predictive variable using the ten mRNA mixture
samples.
The MCP-counter scores for non-hematopoietic sam-

ples from the MCP discovery series were computed. The
above-described linear fits were used to predict the
mRNA fraction of the five sorted cell populations from
the corresponding MCP-counter scores. The exponential
of the mean of the estimated log-proportions across
non-hematopoietic samples is reported as the estimate
of the limit of detection for each immune cell population
assayed.

Data deposition
The transcriptome data of the 12 mixture samples has
been deposited in NCBI’s Gene Expression Omnibus
and are accessible through GEO series accession number
GSE64385.

Linear model correlating the cytotoxic lymphocyte MCP-
counter score to NK and T cell abundances
NK and CD3+ T cells are the two populations intro-
duced in our mRNA mixture experiment that contain
cytotoxic lymphocytes (as a whole for NK cells and
through their CD8+ subset for CD3+ T cells). The model
is thus set up to assess whether the observed cytotoxic
lymphocyte scores can be explained by the proportions
of NK and T cells in our mixture samples.
Let C, NK, and T designate the mRNA amounts corre-

sponding to cytotoxic lymphocytes, NK cells, and CD3+
T cells, respectively. Let C.MCP designate the cytotoxic
lymphocyte MCP-counter score. We have the following
linear relationship at the mRNA level:

C ¼ a’NK :NK þ a’T :T þ b’;

where a’NK, a’T and b’ are scalar constants.
C is not controlled for in our dataset. However, under

the hypothesis that C correlates with the cytotoxic
lymphocyte MCP-counter score, and since the mRNA
data are in a log2 scale, we have:

C ¼ a:2C:MCP þ b”

Combining these two equations, we have:

2C:MCP ¼ aNK :NK þ aT :T þ b

with b = (b” − b’)/a, aNK = a’NK/a, and aT = a’T/a, which is
also a linear relationship. We thus tested it using a
bivariate linear model on our dataset.

IHC-based cellular density estimates
Serial 5-μm formalin-fixed paraffin-embedded tissue sec-
tions from colorectal cancer were stained using autostainer-
Plus Link 48 (Dako). Antigen retrieval and deparaffinization
were carried out on a PT-Link (Dako) using the EnVision

Table 2 mRNA mixtures experimental layout

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8 Mix 9 Mix 10 Mix 11 Mix 12

NK cells - - S0 S1 S2 S3 S4 S0 S4 S3 S2 S1

B cells - - S4 S0 S1 S2 S3 S4 S3 S2 S1 S0

T cells - - S3 S4 S0 S1 S2 S3 S2 S1 S0 S4

Neutrophils - - S2 S3 S4 S0 S1 S2 S1 S0 S4 S3

Monocytes - - S1 S2 S3 S4 S0 S1 S0 S4 S3 S2

HCT116 10 ng 10 ng 10 ng 10 ng 10 ng 10 ng 10 ng 10 ng 10 ng 10 ng 10 ng 10 ng

Table 3 mRNA mixtures extended experimental layout

Mix 1 Mix 2 Mix 3 Mix 4 Mix 5 Mix 6 Mix 7 Mix 8 Mix 9 Mix 10 Mix 11 Mix 12

HUVECs - - S4 S3 S2 S1 S0 S0 S4 S3 S2 S1

Fibroblasts - - S3 S2 S1 S0 S4 S4 S0 S1 S2 S3
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FLEX Target Retrieval Solutions (Dako). The antibodies
used are listed in Additional file 1: Table S16. Peroxidase
activity was detected using diaminobenzidine substrate
(Dako). Slides stained with anti-CD3, anti-CD8A, and anti-
CD68 were digitalized with a NanoZoomer scanner (Hama-
matsu). The densities of positive cells in the tumor core
were measured using Calopix software (Tribvn, France).

Mapping of Affymetrix probe sets to gene identifiers and
across series
For Affymetrix Human Genome U133 Plus 2.0, 133A,
and HuGene 1.0 ST arrays, probe sets were mapped to
gene identifiers using annotations provided by Affyme-
trix version 35.
TCGA GEP are annotated with ENTREZ identifiers

which were converted to HUGO symbols using Homo_
sapiens.gene_info (ftp://ftp.ncbi.nih.gov/gene/DATA/GEN-
E_INFO/Mammalia/Homo_sapiens.gene_info.gz; retrieved
on 20 May 2015).
When assessing the reproducibility of the selection

procedure across microenvironment series, mapping be-
tween features was performed as follows. Probesets that
are shared between the Affymetrix Human Genome
U133 Plus 2.0 and 133A platforms were mapped, while
the others were ignored. As HuGene 1.0 ST and Human
Genome U133 Plus 2.0 Affymetrix platforms do not
share any probe set, probe sets of both platforms map-
ping to the same gene symbols were mapped between
the two platforms.

R implementation of the MCP-counter method
We implemented MCP-counter as an R package called
“MCPcounter”. Users should call the “MCPcounter.esti-
mate” function, which takes a normalized gene expres-
sion matrix as its first argument and the type of features
that should be mapped to selected TM (probe sets,
HUGO symbols, ENTREZ ID) as its second argument.
We used mapped TM to “probe sets” to compute

MCP-counter scores for Affymetrix Human Genome
U133 Plus 2.0 and Affymetrix 133A samples, and HUGO
symbol identifiers for samples obtained on Affymetrix
HuGene 1.0 ST, Illumina Hiseq, and other gene expres-
sion platforms.
This package is available Zenodo (https://doi.org/

10.5281/zenodo.61372).

Simulation of mRNA mixtures (Fig. 4a)
Let’s call d a linear scale (genes × samples) GEP matrix,
with samples related to six possible phenotypes, five
corresponding to immune cell populations (“T cells”,
“NK cells”, “B cells”, “monocytic lineage”, “neutrophils”)
and one to non-hematopoietic tumor cell lines. Simula-
tions are performed according to the following three-
step procedure.

Step 1
For each of these six possible phenotypes, randomly
choose one GEP in the microenvironment series 3
among corresponding samples and let’s call d’ the matrix
d restricted to these six samples (columns).

Step 2
From the six randomly selected samples S1..S6 (one per
phenotype) create two sets of virtual GEP, S* and S’,
defined as S * = d ’.W + ε and S ’ = log2(d ’.W + ε). ε
corresponds to random noise drawn from the standard
normal distribution for each gene expression feature of
the simulated mixture. W is a 6 × 7 (samples ×mixing
proportions) matrix (Table 4).
In other words, the six randomly selected GEP are

linearly convoluted with weights wi for each of the five im-
mune populations and the complementary weight 1 − 5wi

for the tumor cell population. For each method, seven dif-
ferent simulated mixtures are thus computed per set of
randomly chosen samples.

Step 3: run CIBERSORT on S* and MCP-counter on S’
Fifty simulations were performed (leading to 350 esti-
mates as seven values of w per simulation run were
used). Figure 4a represents, for each cell population, the
mean MCP-counter scores or CIBERSORT estimates for
a given value of w across the 50 simulations. For CIBER-
SORT, non-zero estimates of non-introduced cell popu-
lations (for instance, mast cells) were discarded and the
remaining estimates were re-normalized to sum to 1.
Then, estimates for subpopulations were summed (for
instance, the “B cells” CIBERSORT estimate sums the
estimates corresponding to naïve B cell, B memory cell,
and plasma cell subpopulations).

Comparison of MCP-counter TM sets with those from
other methods
TM sets proposed by Bindea et al. (the “Immunome” TM
set) and Yoshihara et al. (“ESTIMATE” TM set) were
retrieved from the corresponding publication and the
ESTIMATE R package, respectively. For the Immunome
set, probe sets were used as TM for the Affymetrix
Human Genome U133 Plus 2.0 and 133A microenviron-
ment series and gene symbols for the HuGene 1.0 ST
microenvironment series. For ESTIMATE, gene symbols
were used for all three series. For each of the three micro-
environment series, scores were computed (“Computation
of MCP-counter scores” in the “Methods” section) from
the TM sets proposed herein, the Immunome and ESTI-
MATE. For each TM set (columns) and each cell popula-
tion represented in Fig. 4b (rows), the average score for
the TM set in this cell population was computed. This
vector of averaged score, called the “Pred” (for prediction)
vector, was linearly mapped to a color code where the
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minimum value is blue, the maximum red, and the mean
of the maximum and the minimum white. A “Truth” vec-
tor of colors, formed by the status of each cell population,
was appended to each prediction vector (red, i.e., positive,
if the cell population is supposed to express the genes in
the TM set; blue, i.e., negative, if the cell population
should not express genes in the TM set; and white if the
cell population mixes both positive and negative cells). An
accurate TM set should thus produce blue
Truth is blue and red values when the Truth is red. White
values of the Truth column are less informative as expres-
sion of the TM set would then depend both on the accur-
acy of the TM set and on the proportion of the
corresponding cell population in the sample.

Representative MCP-counter scores across cancers
In each of the three tumor series, samples were split
according to their tumor type as represented in Fig. 4b.
The median MCP-counter score was computed for each
cell population in each tumor type, yielding three
“median matrices” (one per technological platform).
Since MCP-counter scores are expressed in arbitrary
units which depend on the gene expression platform
used, we Z-transformed each column of these three
matrices (the mean of each column was subtracted on
each platform and the resulting values were multiplied
by the average of the three standard deviations observed
across the three platforms for this column; Additional
file 2: Figure S8). The resulting three matrices were aver-
aged (omitting missing values in case of a cancer missing
from one or two of the datasets; Fig. 5b).

Prognostic value of MCP-counter scores
For a given cancer type, several datasets, sometimes based
on different platforms, were collected. MCP-counter esti-
mates were first computed for each dataset individually.
The resulting scores were then Z-transformed for each
dataset individually, leading to similar distributions of the
scores across datasets. Then, univariate Cox proportional
hazards models for OS were fitted separately in each data-
set using the related Z-transformed MCP-counter scores.
To aggregate the resulting estimates (beta values) across
datasets, we used the meta-analytical R package meta

(function metagen), using a fixed-effect model (as the
scores in each series follow the same distribution). This
function weights the independent estimates using an
inverse-variance weighting.

Microenvironment-based tumor classifications
MCP-counter estimates were first computed for each
dataset individually. The resulting scores were then Z-
transformed for each dataset individually, leading to simi-
lar distributions of the scores across datasets. Datasets
from the same cancer were then merged and all MCP-
counter variables were binarized using a median cut (lead-
ing to “high” and “low” samples for each variable and for
each cancer according to their relative position from the
cancer’s median value). We selected three tumor classifi-
cations from the literature (using B and T cells in lung
adenocarcinoma, fibroblasts and cytotoxic lymphocytes
in colorectal cancer, and macrophages and cytotoxic
lymphocytes in breast cancer). For each of these three
cancers, we concatenated the binarized scores for the
two variables of interest, leading to four classes (high–
high, high–low, low–high, low–low). The correspond-
ing Kaplan–Meier curves for OS were then plotted and
the p value of the corresponding log-rank test is
reported.

Additional files

Additional file 1: Table S1. Microenvironment cell populations (MCP)
dataset. Discovery series. Affymetrix Human Genome U133 Plus 2.0. Table
S2. The selected transcriptomic markers and their expression across MCP
datasets. fc fold change, auc area under the ROC curve, Fcspec specific
fold change (see “Methods”). 133P2 is the discovery MCP series; 133A and
HG1 are the validation MCP series. Restricted.TM.set indicates whether the
corresponding probe set is only in the complete set of markers (No) or if
it is included in both the complete and the restricted set (Yes) (see
Methods). Table S3. Result of the screening process on the discovery
and validation series. For each non-root node (categories) represented in
Additional file 2: Figure S1 or listed in the rows of Additional file 1: Table
S13, and applying the screening process described in the “Results” and
“Methods” sections, we report the number of markers identified on each
series, the number of distinct datasets containing positive samples for this
node, and the number of positive samples. The overlap between markers
identified by this process on pairs or triplets of MCP series is reported
with the corresponding Fisher’s exact test p value. Table S4. Microenviron-
ment cell populations dataset. Validation series 1. Affymetrix 133A. Table
S5. Microenvironment cell populations dataset. Validation series 2.

Table 4 Cell populations’ weights in the simulated mixture

Weight in
mixture 1

Weight in
mixture 2

Weight in
mixture 3

Weight in
mixture 4

Weight in
mixture 5

Weight in
mixture 6

Weight in
mixture 7

S1 0.002 0.004 0.01 0.02 0.04 0.1 0.18

S2 0.002 0.004 0.01 0.02 0.04 0.1 0.18

S3 0.002 0.004 0.01 0.02 0.04 0.1 0.18

S4 0.002 0.004 0.01 0.02 0.04 0.1 0.18

S5 0.002 0.004 0.01 0.02 0.04 0.1 0.18

S6 0.99 0.98 0.95 0.9 0.8 0.5 0.1
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Affymetrix HuGene ST 1.0. Table S6. Non-hematopoietic human tumor
datasets. The numbers of GEP per expression platform and per tumor
type are listed, as well as the number samples annotated for overall
survival (OS). Table S7. Non-hematopoietic human primary tumors
dataset 1. Affymetrix Human Genome U133 Plus 2.0. Table S8. Non-
hematopoietic human primary tumors dataset 2. Affymetrix 133A.
Table S9 Non-hematopoietic human primary tumors dataset 3. TCGA,
Illumina HiSeq. Table S10 mRNA from purified cell populations: mixture
proportions (microarray dataset). Table S11. mRNA from purified cell
populations: mixture proportions (qPCR dataset). Table S12. Non-
hematopoietic human primary tumors meta-dataset 4. Other gene
expression platforms, samples with OS annotations. Table S13.
Relationship between MCP sample labels and categories represented in
Additional file 2: Figure S11. MCP sample labels are in columns and
categories in lines. A “1” designates positive labels and indicates inclu-
sion of the label in the category (which means that all cell populations
contained in the sample are in the category); “0” designates negative
labels and indicates strict separation of the label from the category
(which means that no cell type from the sample is in the category); −1
designates excluded labels (for “mixed samples”) and indicates
contamination of the sample by the category (which means that some
cells composing the sample are in the category and some are outside
the category). Table S14. Author-reported tissue types, recoded tissue
types, and anatomical system of non-diseased human tissue samples
(dataset GSE7307). Table S15. List of TaqMan probes used in qPCR
analyses. Table S16. Antibodies and experimental conditions used for
immunohistochemical analyses. (XLSX 1568 kb)

Additional file 2: Figure S1. Hierachization of samples’ recoded
phenotypes. The sample labels present in the discovery or validation
series are all represented on the graph, as well as manually encoded
higher-level categories. Arrows denote the relationship “includes”. A
second type of relationship, “mixed samples” (see “Methods” for its use
and definition) is not represented here but is detailed in Additional file
1: Table S13. Cancer cell lines from various organs were aggregated
under a single label in this figure for simplicity. Figure S2. Consistency
between MCP sample hierarchization and unsupervised data representation.
Principal component analyses of MCP samples across the three MCP
datasets based on the features whose standard deviation ranked
among the top 5 %. Samples are colored according to their phenotype.
Figure S3. Reproducibility of transcriptomic marker expression patterns
between the discovery and validation series. Transcriptomic marker
expression quartiles in peripheral blood mononuclear cells (PBMC), CD3
+ T cells, CD4+ T cells, CD8+ T cells, NK cells, Tγδ cells, B cells, pDC
(plasmacytoid Dendritic Cells), Granulocytes, Neutrophils, Eosinophils,
Monocytes, Macrophages, myeloid dendritic cells (mDC), mast cells,
endothelial cells, fibroblasts, and cancer cell lines in the MCP discovery
series and MCP validation series. Figure S4. AUC for each MCP-counter
score on MCP discovery and validation series. The TM sets used here
are the “complete” sets, which do not use any information from the
validation series. Figure S5. Expression pattern of the BLK gene across
MCP samples. Figure S6. Coexpression of transcriptomic markers specific
for the same cell population in the three MCP datasets. Heat map
representation of correlation matrices. The TM sets used here are the
“complete” sets, which do not use any information from the validation
series. Figure S7. Coexpression of transcriptomic markers specific for the
same cell population in the three tumor datasets. Heat map representation
of TM correlation matrices. TM were ordered using hierarchical clustering
with complete linkage and Pearson’s “distance”. Figure S8. Reproducibility
of the coexpression patterns within malignancies. Heat map representation
of TM correlation matrices within each malignancy. The color scale is the
same as in Additional file 2: Figure S6 as well as the order of the features.
Figure S9. Distribution of summarized TM sets on microenvironment series.
Boxplots showing the distribution of scores computed with TM sets
from Bindea et al. (left) and MCP-counter complete TM sets (right)
across the three MCP series. For each TM set, boxplots are colored red
for “positive” samples, blue for “negative” samples, and gray for “mixed”
samples. Figure S10. Reproducibility of the malignancy mean abundance
estimates across the three primary human tumor meta-datasets. Means of
MCP-counter scores across malignant tissues. For each platform, columns
were Z-transformed. Dark red denotes highest and dark blue lowest Z-scores.

A gray line indicates that the corresponding malignancy is not represented in
the meta dataset. (PPTX 9607 kb)
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