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I. Introduction 

Over the two past decades, the analysis of the 
gradient field of the Electron Localization 
Function (ELF) has helped in understanding the 
concept of electron-pair localization in 
numerous molecules and solids.[1-4] However, 
the long-running debate over critics of ELF about 
its definitions and its physical interpretations is 
still relevant.[5-12] These include the original 
formulation of Becke and Edgecombe which lies 

on the conditional same-spin pair probability Dσ 

scaled by the homogeneous electron gas (HEG) 

kinetic energy density D0
σ

[13], both Dα and Dβ 

being separately computed. The kernel χσ of ELF 

is then expressed from nσ occupied molecular 

orbitals ϕiσ, as follows: 

 

χσ = Dσ
Dσ0

 =
∑ |∇φiσ|2nσi - 1

4
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τσ - 1
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((Figures should be referenced in the text and 
embedded close to the first figure reference at 
high enough resolution to ensure clarity.)) 

 

Figure 1. Figure Caption. (Reproduced from [ref. 
no.], with permission from [Publisher].) ((delete 
if not applicable))  
 
 

 

and ELFσ = 1
1+χσ2

                                                      (1) 

 

where ρσ is the σ-spin density and τσ is the spin 
contribution to the positive definite kinetic 

energy density. ELFσ ranges from 0 to 1 where 1 
is a situation void of Pauli repulsion, i.e. a high 
probability of finding electron localization. 
Several theoretical studies have shown that the 

separated ELFα/β components are quite useful to 
evaluate the localization of unpaired electron in 

radicals.[14-16] In a similar manner, ELFσ/π 

components were conducted from ρσ/ρπ groups 
of molecular orbitals. [14,15,17,18] These latter 
studies have been mainly motivated by the lack 

of assessment on the individual σ/π bonding 
pictures in ELF based on the total electron 
density (see below). They have notably proved to 
be meaningful to quantify the concept of 
resonance and to rationalize the aromaticity of 

ring molecules. Note that ELFσ/π  components are 
in general isotopological to the termed ELI-D 
function which can be exactly decomposed as a 
sum of partial orbital contributions[19-21]. ELI-D is 
a variant form of the Electron Localizability 
Indicator (ELI), this latter being derived from the 
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electron pair density without any reference to 
the uniform electron gas.  

Turning to the original definition in 

terms of σ-spin density, a functional form of ELF 
based on the total electron density can be 

obtained for the closed-shell systems in which ρα 

= ρβ = ρ/2.  In this latter case, the kernel of this 
total ELF becomes: 

where τ is the positive definite kinetic energy 

density and ρ is the total electron density. Note 
that equation (2) cannot be derived from any 

components of the total density, such as ρσ/ρπ, 
and it should be strictly restricted to closed-shell 
systems. Actually, the equation (2) is also 
thoroughly used for open-shell systems because 
it can be obtained in a conceptually different 
way. Indeed, a physical interpretation of 
equation (2) was later attributed[22] in terms of 
the local kinetic energy densities as: 

Where τw is the von Weizsäcker kinetic energy 
density, i.e. the kinetic energy of a density model 
system in which the antisymmetry is switched 

off.[23] The kernel χ is now interpreted in terms 

of Pauli kinetic energy density τPauli, i.e. the local 
excess kinetic energy due to the Pauli exclusion 
principle. Note that some years later, ELF was 
also extended to ab initio correlated wave 
functions [24].  

In its original definition (equation 1) as 
well as in its functional form (equation 3), ELF 
does not necessarily go to zero for vanishing 
density. Numerical instabilities can also appear 

in low density regions, typically when Dσ tends to 

zero faster than ρ. To address these issues, Savin 
et al. have introduced in the equation (3), a 

shifting constant ε  = 2.871.10-5 to τPauli 
quantity[25]. This compels ELF to be less than 0.5 

when ρ ≤ 10-3 bohr-3 and yields ELF to zero with 
the electron density.  

The kinetic energy interpretation of the 
total ELF (equations 3) extends its validity of 

systems where τPauli can be properly evaluated 

within Density Functional Theory, the σ 
dependence (equation 1) no longer appearing in 
the equations (2) and (3). Thus, details about 
bond pictures obtained from individual orbital 

contributions such as the σ/π decomposition, 
are lost in the total ELF[17].  Actually, the way to 
decompose the function into any density 
components is unclear, the total ELF being 
neither the sum nor the average of its partial 
density contributions.  However, in analogy to 
the spin-density functional theory[26], a such 
decomposition in terms of spin densities (spin-
polarized ELF) was proposed by Kohout and 
Savin[27] as follows: 

 

Note that ELFs is also computed with the shifting 
constant introduced by Savin et al[25]. Although 
the equation (4) addresses the challenge to 
decompose the total ELF in terms of spin 
densities, the relationship between equations 
(3) and (4) remains unclear because it is only 

possible once again to obtain χs = χ in the closed-
shell systems. In open-shell systems, these 
equations generally differ.  

The purpose of the present paper is to 
discuss the relationship between the total ELF 
and its partial density components. A particular 
focus on the relationship between the spin-
polarized ELFs (equation 4) and its usual 
functional form (equation 3) will be examined in 
terms of degree of the electron localization. 
Another purpose of the report is to explore how, 
from the total ELF, the electron localization can 
be evaluated in any subparts of the density. 
 

χ = 
τ  - 

1
8

|∇ρ|2

ρ

cfρ5/3
 and ELF = 

1

1+χ2
 (2) 

χ = τPauli

τh = τ - τw

τh =
τ  - 1

8
|∇ρ|2

ρ
cfρ5/3  (3) 

χ#  = 
τα

Pauli + τβ
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τα
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h
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1
8
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 - 

1
8

%∇ρβ%2
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22/3cf & ρ
α

5/3 + ρ
β

5/3'
 

and ELFs = 
1

1+χs
2
 

(4) 
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II. ELF decomposition into density 

components 
 

The total electron density can be trivially 
decomposed into orbitals components. Under 
the only constraints of the single or double 

occupation εi for each spatial molecular orbital ϕ
i
 

(Hartree-Fock or Kohn-Sham formalisms), ρ can 
be written as a function of subshell electron 
densities of n1 and n2 occupied MOs: 

ρ = ( εi$φi$
2

n

i=1

= ( εi|φi|2+
n1

i=1
( εi|φi|2= ρ1

n2

i=n1+1
+ ρ2 

     (5) 

With n1 + n2 =n. 
 
Note that this decomposition does not restricted 
to only spin densities, any split of the total 
density chemically significant could be 
considered.  
A dimensionless normalized quantity x can be 
expressed as follows: 

x generally depends on the position r because 

the ratios ρ1/ρ or ρ2/ρ do not remain constant 
over the molecular space and consequently x 

changes from 1 (ρ1= ρ) to 0 (ρ2= ρ). Note that in 

this context, the kinetic energy density τ can also 

be trivially separated into two parts τ = τ1 + τ2 

such as: 
 

 τ1 =
1

2
($∇φi$

2
 and τ2=

1

2
( |∇φi|2 
n2

i= n1+1
 

n1

i=1

 

 
 

 

The von Weizsäcker kinetic energy density  
 

Generally, τw of the total system differs 
from the summation of kinetic energies for each 

subsystem τ1
w + τ2

w. Hence, the decomposition 

of τw remains a tricky problem. The first step is 

to remark that τw can be split in the following 
way[28]:  

Therefore, a term τc
w where ρ1  and ρ2 are mixed, 

can be underlined as the difference between the 

summation τ1
w + τ2

w and the total τw: 
 
τc

w = τ1
w + τ2

w * τ+ 

=
1

8

$∇ρ1$2

ρ1

,1-x-+
1

8

$∇ρ2$2

ρ2

x * 2∇ρ1∇ρ2

8 ρ
 

 

      τc
w =

1

8

.ρ1 + ρ2/$(1-x) ∇ρ1- x ∇ρ2$0

 ρ1 ρ2

≥0        ,8- 

 

Interestingly, the equation (8) underlines that τc
w 

is a positive quantity which implies that τPauli > 

(τ1
Pauli + τ2

Pauli) underlying a small overestimation 

of the electron localization if the summation τ1
w 

+ τ2
w is used instead of the total τw. This result is 

illustrated in Figure 1 with ρ1=ρα and ρ2=ρβ. 
Here, the mixed term appears as negligible in the 

core regions because ρα and ρβ are equal (x 
becomes 0.5). In the valence regions, the loss of 
the mixed term becomes conspicuous (see 
Figure 1). 
 

 
Figure 1: ELF values along the z axis of the K(2S) atom 
calculated at the B3LYP /aug-cc-pVTZ level of theory.  
ELF (equation 3) is displayed in black while ELF 

without the mixed term τc
w is displayed in blue. The 

capital letters give the shells. 

 

1(r)=
ρ

1
(r)

ρ,r-  or  1-1(r) =
ρ

2
(r)

ρ,r-   
(6) 

τ2  = 1

8

$∇.ρ1 + ρ2/$2

ρ1 + ρ2

 

            = x
8

$∇ρ1$2

ρ1

+
(1-x)

8

$∇ρ2$2

ρ2

+
2∇ρ4∇ρ0 

8 .ρ1 + ρ2/ 

(7) 
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Generally, if x does not depend of r, namely that 

the ratio ρ1/ρ2 remains unchanged over the 
space, the equation (8) evidences that the mixed 

term is lost (τc
w =0) since |∇ρ1| = x |∇ρ| and 

|∇ρ2| = (1- x) |∇ρ|, and thereby simplifying τw 

as the sum τ1
W+ τ2

W. Note that applied to the 
spin-densities, this mixed term becomes zero for 

the closed-shell systems in which x=1/2 (ρα= ρβ = 

ρ/2) everywhere.  It is worth noting that in 

practice, for most systems, τc
w remains generally 

very small with respect to kinetic energy 
densities because the subsystem densities are 
mainly distributed in different regions of the 
molecular space. 
 
The HEG kinetic energy density 

 

The decomposition of τh into density 

components is not a trivial problem because τh 
differs from the summation of kinetic energies 
for each subsystem. However, it has been 

previously shown that τh can be easily split as 
follows[28]: 

 

where g,x- = 
1 - x5/3

,1-x-5/3. The plot of g(x) is displayed 

in Figure 2. 
  

 

Figure 2: Plot of the g(x) function 

 

As shown in Figure 2, g(0) is 1 and g(x) goes to 
infinity while x becomes 1. Actually, at the limit 

x→1, the quantity g(x) ρ2
5/3 occuring in the 

equation (9) switch to 0 while x becomes 1 

because ρ2 becomes always zero faster than g(x) 
goes to infinity. In a similar manner to the von 

Weizsäcker quantity, a term τc
h where ρ1  and ρ2 

are mixed, can be underlined as the difference 

between the summation τ1
h + τ2

h and the total τh 
as follows: 
 

τc
h =  τ1

h + τ2
h * τ5 =  20/6c

f 
 ρ

1
5/3+ 20/6cf  ρ2

5/3 -  τh
   

       = cf .20/6- 1/ ρ
1

5/3+ cf &20/6- g,x-'ρ
2

5/3 ≥ 0   (10) 

τc
h appears always positive even when x goes to 

1 (ρ1 ≈ ρ, g,1- ρ2
5/3 → 0). It becomes only zero 

when x=1/2. Thus, the equation (10) shows that 

τh < (τ1
h + τ2

h) underlying an overestimation of 

the electron localization if the summation τ1
h + 

τ2
h is used instead of the total τh. Once again, this 

result is shown in Figure 3 where ρ1=ρα and ρ2= 

ρβ. Note that the mixed term appears quite 
negligible in the core regions where x=1/2 since 

ρα = ρβ. 

 

Figure 3: ELF values along the z axis of the K (2S) atom 
calculated at the B3LYP /aug-cc-pVTZ level of theory.  
ELF (equation 3) is displayed in black while ELF 

without the mixed term τc
h is displayed in blue. The 

capital letters give the shells. 

 

The polarized ELF  

At this stage, one can easily grasp how 
density components play such a role in 
determining the degree of the electron 
localization measured by the total ELF (equation 
3). Indeed, the kernel of ELF can be now related 
to its kinetic energy components: 

τh = cf ρ
5/3  

     = cf x
5/3  ρ5/3 + cf  (1-x5/3) ρ5/3 = c

f 
.ρ

1
5/3+ g,1- ρ

2
5/3/ 

(9) 
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χ = τ1
Pauli + τ2

Pauli +  τc
w

τ1
h + τ2

h * τc
h

8  τ1
Pauli + τ2

Pauli

τ1
h + τ2

h
    ,11- 

 

The equation (11) is a decomposition of ELF into 

unmixed (τ1
Pauli, τ2

Pauli , τ1
h , τ2

h ) and mixed (τc
w , 

τc
h) terms. It highlights that if both mixed terms 

are omitted, the degree of electron localization 

is overestimated. Applied to spin-densities (ρ1 = 

ρα, ρ2 = ρβ),  the spin-polarized χs formula 

(equation 4) can be directly obtained from χ if 
these both mixed terms are dismissed.  
Nevertheless, the equation (11) shows that in 

the case of closed-shell (x =1/2, ρα = ρβ = ρ/2), the 

relation χs = χ remains exactly verified since the 
mixed terms become exactly zero over the 

space. Beyond the connection between χs and χ, 
a polarized form of ELF taking account mixed 
terms, even approximatively, should be able to 
properly describe the degree of localization in 
the whole molecular space.  Thus, a polarized ELF 
as close as possible to ELFs, could be expressed 
as a sum of each Pauli kinetic energy weighted 
by x components where the HEG reference 
occuring in ELFs remains unchanged: 
 

 

ELFp = (1+ χp 
2)-1, ε being a shifting constant which 

constrains ELFp to be less than 0.5 when ρ ≤ 10-

3density. This constant was introduced for ELF 

(see the introduction section) in which ε = 

2.871.10-5. [25] In the case of ELFp, ε = 4.5574.10-5 

[x5/3 + (1-x)5/3]. ELF and ELFp go necessarily to zero 
for vanishing density (regions with numerical 
instabilities) whereas in its original definition 
(equations 1 and 3), ELF tends to 1 in low density 
regions. The factor 2 in the equation (12) holds 

the closed-shell connection since if x=1/2, χp is 

exactly equal to χ over the space. If x=0 or x=1, 

χp becomes proportional (factor 2) to the 
original expression of Becke and Edgecombe 
(equation 1).   

Three examples of comparative 
behaviors of ELFp, ELFs and the ELF (equation 3) 
are displayed in Figure 4. We can notice that 
both ELFp and ELF display very similar profiles, 
ELFp appearing almost isotopological to ELF since 
the location and properties of critical points 
(local minima and maxima) are almost the same 
in the whole molecular space. 

Figure 4: ELF values along the z axis of C (3P), K (2S) 
and Fe (5D) atoms calculated at the B3LYP /aug-cc-
pVTZ level of theory.  ELF (equation 3), ELFp (equation 

12 with ρ1=ρα and ρ2= ρβ) and ELFs (equation 4) values 
are respectively displayed in black, blue and orange.  

 

However, as regards the spin-polarized ELFs 
(equation 4), the function can slightly differ from 
ELF in valence regions where the single electron 
character dominates. As discussed above, this is 
due to the overestimation of the degree of 
localization in ELFs.  

The distance between two minima of the 
considered function (ELF, ELFp or ELFs) can be 
defined as a shell radius and charts the frontier 
between the spherical basin centered on the 
maxima location. The shell population can be 
then computed by the integration of the density 
over the basin’s volume. For closed-shell 
systems, radii and populations of three ELF, ELFp 
and ELFs are obviously the same (closed-shell 
connection). For open-shell systems, small 
differences are observed using the three 
formulas. The radius and the population of inner 
shells (K and L) have the same magnitude 
whatever the considered function. Conversely, 
the radius and the population of outer shells (M 

χ9 = 2 .x τ1
Pauli + (1-x) τ2

Pauli/ + :
 τ1

h +  τ2
h

        

=  2.x τ1
Pauli + (1-x) τ2

Pauli/ + ε
cf 2

2/3. ρ
1

5/3 + ρ
2

5/3/  
(12) 
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and N) differ depending on the considered 
function. By way of example, consider the 
potassium atom K(2S).  The radius of the M shell 
decreases from 3.28 bohr for ELF to 3.06 bohr for 
ELFs. A radius of 3.20 bohr is found for ELFp which 
is close to that of ELF. Similar behavior is 
observed for the populations. The population of 
the M shell decreases from 8.05 e for ELF to 7.94 
e for ELFs. This population is 8.02 e for ELFp which 
is close to that of ELF. Thus, these results show 
that ELFp describes more adequately the degree 
of electron localization than ELFs where mixed 
terms are dismissed. 
 

III. Electron localization from density 

subsystems 

 
As previously discussed by some 

authors[15,17], the total ELF (equations 3) lacks of 
assessment on the individual bonding pictures 

such as the conventional σ/π scheme. Of course, 
one could use separated ELF components (for 

example ELFα/β or ELFσ/π) to measure the 
localization in subparts of the total density. 
However, as seen from the above discussion, the 
ELF components cannot be, in general, properly 
connected to the total ELF without including 
mixed terms. In addition, the ELF component of 
a single orbital has no physical meaning (ELF 
becomes 1 in the whole space). In this case, ELF 
decays only due to the shifting constant 

introduced by Savin et al. Overall, a function χx 
quantifying a meaningful measure of electron 
localization for only a subpart of the total density 

system (for example ρ1) needs to answer to 
following properties: 

1. The localization is inversely proportional 
to the number of electrons delocalized 

in the subsystem, i.e. if x→ 0, the 

function χx goes to infinity and then 

1/(1+χx
2) goes to zero. 

 
2. The closed-shell connection need to be 

sustained, i.e. χx = χ when x=1/2. 
 

These two criteria are fulfilled with the following 
equation: 

 ;<=
;

2 1  and ELF
x
= 

1
1 + ;<0         ,13- 

 

Indeed, ELFx becomes zero when x→ 0. The 
factor 2 holds the closed-shell connection since 
if x=1/2, ELFx = ELF. Note that ELFx is also 
computed with the shifting constant introduced 
by Savin et al[25]. It is worth noting that if the 
subsystem involves only a single molecular 

orbital ϕ, i.e. ρ1=|ϕ|2, χx differs from zero while 

τ1
Pauli becomes zero over the molecular space [8].   

The calculations were performed on a 
set of prototype systems where the separation 
of group of molecular orbitals within their 
symmetry, is chemically intuitive. Figure 5 
depicts the electron localization domains 
computed with ELFx for selected orbital 
dissections: core/valence separation in the 

benzene (ρ = ρc + ρv), σ/π separation in the 

benzene (ρ = ρσ + ρπ), separation of spin-

densities in the radical C6H4 (ρ = ρα + ρβ). 
 

 
Figure 5. ELFx localization domains (ELF=0.85 except 

for ELFx,π = 0.6). (a) Separation into core and valence 

regions of the benzene molecule. Light grey: ρ1=ρcore 

and blue: ρ1=ρvalence. (b) Separation into σ and π 

regions of the benzene molecule. Left: : ρ1=ρσ and 

right : ρ1=ρπ (c) Separation of density-spin 

components of the C6H4 molecule. Left: ρ1=ρα and 

right: ρ1=ρβ. 

 
One can see that in all cases, the ELFx topologies 
match closely with the chemically meaningful 

pictures. By way of example, consider the α and 

β localization domains in the Phenyl radical 
molecule. We observe, in Figure 5, an agreement 
between the topological domains displayed by 

ELFx and those of ELFα/β components. They 
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clearly show the unpaired domains of α 

functions while these domains do not exist in β 
functions.  

We now turn to the π localization 
domains in the benzene displayed in Figures 5 
and 6.  
 

 
 

Figure 6. Compared localization domains of ELFπ (left) 

and ELFx,π (right) depicted in the molecular plane of 
the benzene molecule. Blue regions are domains of 
high electron localization while red regions are 
domains of low electron localization. 

 

Regarding the topology of ELFx,π, it corresponds 
to a typically delocalized double bond picture 
where the attractors (local maxima) of bonding 
basins C-C are located between the carbon 
atoms rather than on the carbon atoms. Note 
that this statement drawn from ELFx differs from 

the topology of the single ELFπ component (see 
Figure 6) where the localization domains of C-C 
bonds are located on the carbon atoms above 
and below the molecular plane.  

Further example of ELFx can be gained in 
a context of frontier reactivity theory[26,29,30] with 

ρ1 = εHOMO |ϕHOMO|2 and x = εHOMO |ϕHOMO|2/ρ. 
The ELFx topology is then expected to simply 
stands for the contribution of the frontier orbital 
to the pair regions in the studied systems. Within 
a frozen orbital approximation, i.e. orbitals 
remaining unchanged upon addition and 

subtraction of one electron, ρ1 is simply reduces 
to the Fukui function f- which is a local descriptor 
of the nucleophilicity.[31-34] Overall, Fukui 
functions are powerful tools to get an insight 
into the reactivity since they allow to select the 
electrophilic and nucleophilic regions of the 
molecular space. 

 

 
Figure 7. ELFx localization domains built from the 

single Highest Occupied Molecular Orbital (ρ1 = 2 

|ϕHOMO|2) for NH2OH (ELF=0.6), Toluene (ELF=0.75) 
and Trifluorotoluene (ELF=0.75) molecules. 

 
The electron localization domains of ELFx 

for three selected systems are reported in Figure 
7. For the NH2OH molecule, the ELFx topology 
yields non-bonding basins accounting for 
nitrogen and oxygen lone pairs, no N-O bonding 
oxygen basin was found.  This can be 
conveniently interpreted by means of a 
bifurcation theory where the value of isosurfaces 
when basins begin to split (points of bifucation) 
are related to a measure of the electron 
localization and to the chemical interaction 
among the different basins.[25] Interestingly, the 
nitrogen and oxygen non-bonding basins 
presents a weak ELFx bifurcation value of 0.66, 
thereby leaving a single nitrogen localization 
domain above the bifurcation value. In addition, 
the integration of the HOMO density 

= 2|φHOMO|2drrrr was computed over the basin 
volumes (populations) for all the basins of 
NH2OH. A population of 0.31 e was found for the 
oxygen non-bonding basin whereas a population 
of 1.26 e was found for the nitrogen non-
bonding basin. A population close to 0.1 e was 
found for each hydrogen basin. Hence, it is clear 
from these findings, that nitrogen center is 
predicted to be more nucleophilic than those 
corresponding to the oxygen and the hydrogen 
centers. This outcome is consistent with the 
well-known reactivity of the hydroxylamine 
predicts by Fukui analyses [35,36]. This is also 
experimental evidenced that the nitrogen atom 
is the most reactive, at least, for the protonation 
process.[37]  

The localization domains of ELFx of 
C6H5CH3 (ortho-para reactivity) and C6H5CF3 
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(meta reactivity)  are also displayed in Figure 7. 
Once again, excluding the ipso position of 
C6H5CH3

[20], the topology of ELF basins matches 
closely with the known local nucleophilicity of 
these compounds, notably predicts by the Fukui 
and the molecular orbital analyses[35]. Indeed, 
only localized valence basins are observed 
around carbons ortho and para for C6H5CH3 while 
only basins are displayed around carbons meta 

for C6H5CF3. 
All Geometry optimizations were 

performed using the B3LYP hybrid functional[38] 
combined with the aug-cc-pVTZ basis set for all 
calculations. The DFT calculations have been 
performed using the GAUSSIAN09 program 
package.[39] Afterward, ELF calculations were 
carried out using a modified version of the 
TopMod and TopChem programs. ELF 
isosurfaces were drawn using the Molekel 
software.[40,41] 

 

 

IV. Concluding Remarks 

In summary, this work has introduced a 
decomposition of ELF obtained from an 
appealing scheme of kinetic energy components. 
The relationship between ELF and its usual spin-
polarized formula, proposed by Kohout and 
Savin a few years ago, has been clarified by 
showing how the spin-polarized ELF can be 
obtained if mixed terms are omitted. Beyond 
spin-densities, a new ELF polarized formula was 
proposed. Regarding the degree of the electron 
localization measured in ELF, a localization 
function quantifying the measure of electron 
localization for only a subpart of the total system 
was introduced. The function could be useful to 
evaluate electronic properties which depend 
only on subparts of the density (aromatic 
character, radicals...) in various chemical 
systems and notably to be useful for exploring 
the local chemical reactivity of donor systems. 
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