
HAL Id: hal-01399290
https://hal.sorbonne-universite.fr/hal-01399290v1

Submitted on 23 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Incremental Planning and Learning with
Multi-Valued Decision Diagrams

Jean-Christophe Magnan, Pierre-Henri Wuillemin

To cite this version:
Jean-Christophe Magnan, Pierre-Henri Wuillemin. Efficient Incremental Planning and Learn-
ing with Multi-Valued Decision Diagrams. Journal of Applied Logic, 2017, 22, pp.63-90.
�10.1016/j.jal.2016.11.032�. �hal-01399290�

https://hal.sorbonne-universite.fr/hal-01399290v1
https://hal.archives-ouvertes.fr

Efficient Incremental Planning and Learning with
Multi-Valued Decision Diagrams

Jean-Christophe Magnan1, Pierre-Henri Wuillemin1

Sorbonne Universités, UPMC, Univ Paris 06, CNRS UMR 7606, LIP6, Paris, France

Abstract

In the domain of decision theoretic planning, the factored framework (Fac-

tored Markov Decision Process, fmdp) has produced optimized algorithms us-

ing structured representations such as Decision Trees (Structured Value Iter-

ation (svi), Structured Policy Iteration (spi)) or Algebraic Decision Diagrams

(Stochastic Planning Using Decision Diagrams (spudd)). Since it may be dif-

ficult to elaborate the factored models used by these algorithms, the architec-

ture sdyna, which combines learning and planning algorithms using structured

representations, was introduced. However, the state-of-the-art algorithms for

incremental learning, for structured decision theoretic planning or for reinforce-

ment learning require the problem to be specified only with binary variables

and/or use data structures that can be improved in term of compactness. In

this paper, we propose to use Multi-Valued Decision Diagrams (mdds) as a more

efficient data structure for the sdyna architecture and describe a planning algo-

rithm and an incremental learning algorithm dedicated to this new structured

representation. For both planning and learning algorithms, we experimentally

show that they allow significant improvements in time, in compactness of the

computed policy and of the learned model. We then analyzed the combination

of these two algorithms in an efficient sdyna instance for simultaneous learning

and planning using mdds.

Email address: pierre-henri.wuillemin@lip6.fr (Pierre-Henri Wuillemin)

Preprint submitted to Journal of Applied Logic November 15, 2016

1. Introduction

In decision-theoretic planning, the Markov Decision Process (mdp) is a

widely used framework that formalizes the interactions of an agent with a

stochastic environment. A mdp is commonly used to find an optimal policy,

i.e. the best action for the agent to do in each configuration of the environment5

(state). Two algorithms named Value Iteration (vi, Bellman, 1957) and Policy

Iteration (pi, Howard, 1960) exploit such models to find optimal policies. Each

step of these algorithms has a linear time complexity in the size of the state

space (Puterman, 2005). However, the size of the state space tends to become

very large for real problems. State spaces are indeed often multidimensional and10

then grow exponentially as the number of variables (dimensions) characterizing

these problems increases. vi and pi inevitably fall under the Bellman’s “Curse

of Dimensionality” (Bellman, 1961). It becomes unfeasible to find the optimal

solution.

Many relevant solutions have emerged to handle this growth: for instance15

by formalizing abstractions in the state space. Through these abstractions,

large sets of states in which the agents mostly behave the same are aggregated.

As a result, the number of states to visit during vi or pi iterations drasti-

cally decreases. Based on this idea, Factored mdps have proven to be efficient.

Structured vi (svi) and Structured pi (spi) (Boutilier et al., 1999) proposed to20

rely on Decision Trees (dts) as a basis for this abstraction process. More re-

cently, Stochastic Planning using Decision Diagrams (spudd, Hoey et al., 1999)

achieved better results using Algebraic Decision Diagrams (adds). In this arti-

cle, we describe algorithms that rely on an even more compact data structure:

the Multi-Valued Decision Diagrams (mdds)1. Figure 1 shows an add and an25

mdd and their respective compactness.

All of these algorithms need as a prior a known factored model of the prob-

lem to be solved. On the contrary, in the Reinforcement Learning framework,

1The algorithm spumdd has been initially described in (Magnan and Wuillemin, 2013)

2

X3

X2

X2

X1

X1 X1

Y 3

Y 3 Y 3 Y 3 Y 3

Y 2

Y 2 Y 2 Y 2 Y 2 Y 2 Y 2

Y 1 Y 1 Y 1 Y 1 Y 1

Up RightDown Left

(a)

S

E

1

2

3

4

5

6

1 2 3 4 5

(b)

X

Y Y Y Y

Up RightDown Left

4 1 3 2

15 3 4 42 1 6

5

6

6
6

2

(c)

Figure 1: An optimal policy to follow in order to go from S to E in the maze (b) represented

as (a) an Arithmetic Decision Diagram (add) and as (c) a Multi-Valued Decision Diagram

(mdd). The compactness as well as the readability of the solution are clearly improved with

mdds.

the agent has in charge to discover the world and to learn the optimal policy

by itself. Model-based approaches such as dyna and dyna-q (Sutton, 1990)30

propose that the agent iteratively learns a description of the world as a Markov

Decision Process and then applies either vi or pi to come up with an optimal

policy. Of course, these algorithms face difficulties when scaling up and it be-

comes necessary to provide the ability to handle factored representations. With

spiti, Degris et al. (2006a) extends the dyna framework to factored represen-35

tations. In spiti, the dts are used for the abstraction process. To learn the

dts defining a studied mdp as its agent experiences its world, the incremental

learning algorithm iti (Utgoff et al., 1997) is used. Then, optimal policies are

planned using svi or spi. Yet, dts are however less efficient than adds or mdds

in terms of size and, as a consequence, of handling (see Figure 1).40

Learning adds or mdds is difficult, particularly for systems with a huge

number of states. It may even be impossible to get the database to execute

the learning process on. Generally speaking, there are many cases where an

on-line (or incremental) learning process is more appropriate. To the best of

our knowledge there is no known algorithm for incremental learning of Multi-45

Valued Decisions Diagrams. One of the main contributions of this paper is an

algorithm addressing this issue.

3

This article is organized as follows: Section 2 covers the frameworks for

planning and incremental learning of compact and factored models. The next

two sections describe our algorithms to plan with and to incrementally learn50

mdds as well as the experimentations we lead to validate these algorithms.

Finally, in Section 5, a new sdyna instance based on mdds is proposed.

2. Planning and Learning with Factored Models

This section briefly introduces the global framework for the Markov Decision

Process and then describes more precisely the factored domain, the structured55

representations and the main algorithms that work on them.

2.1. Markov Decision Processes

A Markov Decision Process (mdp) formally describes a system in which

an agent interacts with a stochastic environment (Puterman, 2005). At each

(discretized) instant, the agent faces several choices that can alter the system.60

By performing these actions, the agent tries to resolve a task, to achieve a goal

inherent to the system.

Each time the agent has chosen and performed a certain action a, the system

moves from its current state s to a new one s′2. This change of state is called a

transition. However, as the environment is stochastic, arrival state s′ is uncer-65

tain. The mdp formalism makes two assumptions to address this uncertainty.

First, there exists a probability to reach any future state s′ given s, a and the

history of the system. Next, the system follows the Markov property (Markov

and Nagorny, 1988). As a consequence, the probability of moving from s to

s′ by doing a does not depend on the history of the system and can then be70

denoted P (s′|a, s).
Eventually, the relevance of every transition is evaluated. Indeed, to achieve

the inherent goal of the system, some transitions have to be performed, and some

have to be avoided. A real number named reward is given to every transition in

2We follow the classical notation in the domain: s′ stands for s of the future.

4

order to define its relevance to the task at hand. The function R : (s, a, s′) → R75

defines for every transition the associated reward.

In short, a mdp models a system as a tuple 〈S,A, P,R〉:
• S: the set of states (the state space);

• A: the set of actions;

• P: the transition probabilities function P : S ×A× S → [0, 1];80

• R: the reward function R : S ×A× S → R.

Without loss of generality, we will consider in this article that the reward func-

tion only depends on the current state, i.e. R : S → R.

Given this model, the objective is to plan for the agent a course of action that

will maximize its gained rewards. To establish this plan, the classical framework85

we will use makes these assumptions:

• discrete time: the agent proceeds step-by-step, resolving entirely an action

before doing the next one;

• infinite horizon: the agent never stops acting;

• full observability: the agent has a perfect knowledge of the current state;90

• discrete state space and actions (yet, these two sets can be very large).

2.1.1. Finding an optimal policy

A policy π explains how the agent must behave at every state. The policy

π is then defined as the function3 π : S → A.

Several criteria are used to assess the efficiency of a policy. The criterion95

used in this study is the maximization of the expected sum of gained reward

E[
∑∞

t=0 R(st)]. As we work at an infinite horizon, this sum may diverge. More-

over, it grants the same importance to rewards obtained far into the future in

comparison to immediate rewards.

Rewards should be discounted according to how far into the future they100

are obtained. A discount factor γ (γ ∈ [0, 1]) is defined for this. The value

function V π defines then for every state s the total discounted and expected

3In this article, we will focus on stationary and deterministic policies

5

reward obtained by following π and starting from s:

V π(s) = E

[∞∑
t=0

γtR(st)|π, s0 = s

]
(1)

This function, which seems a priori difficult to tackle with, can, as a matter of

fact, be rewritten in the following way (Bellman, 1957):105

V π(s) = R(s) + γ
∑
s′∈S

P (s′|s, π(s)) · V π(s′) (2)

= ΓπV π(s) (3)

where Γπ is the Bellman Operator:

∀s ∈ S, Γπf(s) = R(s) + γ
∑
s′∈S

P (s′|s, π(s)) · f(s′) (4)

The Bellman Operator satisfies all the prerequisites for Banach’s theorem

(Banach, 1922) to be applied. Hence it admits a unique fixed point which is, by

construction, V π.

This result gives two ways to compute V π:110

• either by resolving the system of linear equations (3);

• or by applying the Bellman Operator to a randomly initialized function

until convergence.

To find an optimal policy, the Principle of Optimality (Bellman, 1957) can

be applied. For every state, the best action to take is the one that maximizes115

the expected reward, no matter the course of actions that brought us to this

state. The Bellman Optimality Operator formalizes this principle:

∀s ∈ S, Γ�V (s) = R(s) + γ max
a∈A

[
∑
s′∈S

P (s′|s, a) · V (s′)] (5)

The Bellman Optimality Operator also verifies Banach’s theorem; as a conse-

quence, V � is its unique and attractive fixed point:

∀s ∈ S, V �(s) = Γ�V �(s) (6)

To find V � and any corresponding optimal policy, two strategies are possible,120

both based on dynamic programming:

6

• Apply iteratively the Bellman optimality operator (5) to a randomly ini-

tialized value function until convergence. Doing a last iteration of the

algorithm with an argmax instead of a max gives the optimal policy

(Puterman, 2005). This method is known as the value iteration vi (cf.125

Algorithm 1).

• Starting from a randomly initialized policy, compute its associated value

function using the Bellman Operator (4). Then, by applying the Bellman

Optimality Operator (5), a more efficient policy is built. These two steps

are applied until the policy is stabilized (Howard, 1960). This method is130

known as the policy iteration pi.

The convergence rate of these two algorithms is difficult to compare: vi

iterations are faster but the algorithm converges more slowly. However, pi it-

erations are much longer because each one requires the computation of a value

function. Note that pi has an interesting stopping criterion: its policy is stabi-135

lized. In comparison, the vi common stopping criterion only guarantees us to

be ε-optimal (Puterman, 2005).

For both algorithms, time complexity clearly depends on the size of the state

space. Furthermore, memory size complexity is quadratic in the size of the state

space due to the necessity to store the transition function. Since the size of the140

state space increases exponentially as the number of features characterizing the

system increases, any realistic model becomes too large to be stored in memory.

Furthermore, any iteration of either vi or pi becomes unfeasible because of the

large number of states to visit (curse of dimensionality, Bellman, 1961). Many

ideas have emerged in the literature in order to deal with this pitfall for vi and145

pi. We focus here on the concept of abstraction.

2.1.2. Abstraction

In a very large system, many states behave similarly from a mathematical

point of view. If we were to aggregate these states together into single more

abstract states, we would reduce both the memory consumption and the expo-150

nential increase in computational time. Indeed, since aggregated states behave

7

Algorithm 1: vi: Value Iteration

Data: a mdp 〈S,A, P,R〉, a discount factor γ

1 begin

// Initialization

2 V ← R ;

3 Δ ← 1 ;

// Value Iteration

4 while Δ ≥ ε·(1−γ)
2·γ do

5 Vold ← V ;

6 foreach s ∈ S do

7 foreach a ∈ A do

8 Q(s, a) ← R(s) + γ ·
∑
s′∈S

P (s′ | s, a) · Vold(s
′) ;

9 V (s) ← max
a∈A

[Q(s, a)] ;

// Stopping criterion reached?

10 Δ ← ‖ V − Vold ‖∞ ;

// Optimal Policy Extraction

11 foreach s ∈ S do

12 foreach a ∈ A do

13 Q(s, a) ← R(s) + γ ·
∑
s′∈S

P (s′ | s, a) · V (s′) ;

14 π�(s) ← argmax
a∈A

[Q(s, a)] ;

Result: a policy π� ε-optimal

in the same way from a mathematical point of view, we only need to store the

associated abstract states and compute an optimal solution for them. We would

then dispose of the optimal solution for each one of the original and concrete

states. Several implementations of this idea have been proposed.155

In the Hierarchical mdp (hmdp, Guestrin and Gordon, 2002; Hauskrecht

et al., 1998; Parr, 1998), the system is decomposed into several elements which

8

can be again decomposed into sub-elements, each element being organized around

a task to resolve. A mdp is then used to resolve each one of these sub tasks.

Each task is then abstractly viewed as a macro-action for the parent element.160

Whenever the system state matches a sub-element state space, the parent con-

siders itself to be in the corresponding abstract state. It then intends to resolve

the dedicated task in order to move on to a new abstract state.

In Relational mdps (rmdp, Boutilier et al., 2001; Wang et al., 2008), the

system is modeled by using objects and relations. Each relation is formalized165

as a predicate and first-order logic is used to handle these relations. Each state

is defined by the conjunction of the predicates that are true in that state. As

a result, states are now defined by a non constant number of relational atoms.

Abstraction can be achieved by replacing the constants in the predicates by

variables. These abstract states can also be defined by a conjunction of pred-170

icates with variables and can be used in actions definitions. These definitions

are based on the STRIPS probability operators (McDermott et al., 1993).

2.1.3. Factored mdps

Both hmdps and rmdps require a deep knowledge of the models that may

not be achievable for many real-world problems. On the other hand, complex175

states are often characterized by vectors of features which leads to another kind

of abstraction in mdp. The Factored mdps (fmdps) evolve around turning the

vector of features characterizing the system into a set of variables. Let Xi be a

multi-valued variable taking its values over a finite discrete domain DXi
4.

Definition (Decomposability of state space).180

A state space S is decomposable if and only if there exists a set of discrete

and finite variables X = {X1, . . . , Xn} that unequivocally characterizes S.

Each state s ∈ S is then an instantiation of these variables (s = {x1, . . . , xn}).

When S is decomposable, transition probabilities and the reward function

4Whenever Xi is instantiated (i.e. set to a given value in DXi
), it will be noted xi.

9

can be rewritten as functions of these variables:185

P (s′|s, a) = P (x′
1, . . . , x

′
n|x1, . . . , xn, a) (7)

R(s) = R(x1, . . . , xn) (8)

Assuming that ∀i
= j,X ′
i and X ′

j are conditionally independent to X,

P (x′
1, . . . , x

′
n|x1, . . . , xn, a) =

n∏
i=1

P (x′
i|x1, . . . , xn, a) (9)

Conditional independences are exploited to further reduce the number of

parameters of each probability distribution using the framework of the dynamic

Bayesian Networks (Dean and Kanazawa, 1989; Murphy, 2002):

P (x′
1, . . . , x

′
n|x1, . . . , xn, a) = P (x′

i|Parents(x′
i), a) (10)

where Parents(X ′
i) ⊆ X represents the parents of node X ′

i in the directed190

graph of the Bayesian Network (see Figure 2).

As |Parents(X ′
i)| ≤ |X|, a substantial gain in space complexity is ob-

tained: a large probability distribution over a huge number of states is now

represented as a few probability distributions with fewer parameters (see Figure

2). A similar factorization can be applied to the reward function using additive195

decomposition.

Even if these factorizations are useful, they only concern probability dis-

tributions (using conditional independence) or utility (using additive decom-

position). Other functions, such as the Value function can not have this kind

of decomposition. Indeed, the value function which is composed of an utility200

function, the reward function, and a joint probability distribution, the transi-

tion function, embedded together via the Bellman equation. Furthermore, since

Parents(Xi) ⊆ X it may happen that a conditional probability distribution

still needs to be stored in a very large array in memory. Finally, the fastidi-

ous enumeration of all the states in vi and pi algorithms is not addressed; the205

complexity in time remains the same.

10

P (X′
1, X

′
2 | X1, X2, a)

(a)

P (X′
1|X1, X2, a)·
P (X′

2|X1, X2, a)

(b)

P (X′
1|Par(X′

1), a)·
P (X′

2|Par(X′
2), a)

(c)

X1

X2

X ′
1

X ′
2

(d)

X1

X2

X ′
1

X ′
2

(e)

X1

X2

X ′
1

X ′
2

(f)

X1

0 1

X′
1

0

1

X2

0 1

X′
2 0

1

X2

0 1

X′
2 0

1

(g)

X1

0 1

X′
1 0

1

X2

0 1

X2

0 1

X1

0 1

X′
1 0

1

X2

0 1

X2

0 1

(h)

X1

0 1

X′
2 0

1

X2

0 1

X2

0 1

X1

0 1

X′
1 0

1

(i)

Figure 2: In this example, the same conditional probability distribution over X′
1 and X′

2

given X1, X2 and the performed action a is represented: as (a) a conditional joint probability

distribution, (b) a product of marginal conditional probability distribution, and (c) exploiting

conditional independences.

Figures (d), (e) and (f) show the evolution of the associated dbn as new independences are

taken into account.

Finally, figures (g), (h) and (i) show the reductions of the tables used to memorize the whole

distribution as new independences are taken into account. Finally, it only requires 12 values

to assert the whole distribution instead of 16.

2.1.4. Exploiting contextual independences

A solution, proposed by Boutilier et al. (1995), is to exploit contextual in-

dependences. For this purpose, function graphs prove to be efficient data struc-

tures.210

Let f be a function over the variables X1, . . . , Xn. We denote f |Xi=b the

restriction of f on Xi = b. The support of f is the set of variables that f really

depends on, i.e.,

support(f) = {Xi | ∃u, v ∈ DXi
s.t. f |Xi=u
= f |Xi=v} (11)

Note that ∀Xi, support(f |Xi=b) ⊆ support(f)\{Xi}: the support of the restric-

11

tion discards all the variables that become irrelevant and not only the variable215

Xi.

Definition (Function graph (Recursive Definition)). Let f be a function over

{X1, . . . , Xn}.
A directed acyclic graph (dag) Gf (N,A) is a function graph of f ⇐⇒
• if f is constant then Gf consists of a unique node N = {r} s.t. r.val = f ;220

• if f is non constant then Gf has a unique node r ∈ N without a parent.

Moreover,

– ∃Xi ∈ support(f) s.t. r.var=Xi;

– ∀u ∈ Dr.var, ∃!nu ∈ N such that:

◦ (r, nu) ∈ A;225

◦ the subgraph from nu (i.e. subgraph(nu)) is a function graph for

f |r.var=u.

DX = {0, 1}
DY = {0, 1, 2}
DZ = {0, 1}

f(X,Y, Z) = X + Y

support(f) = {X,Y }

(a) Function f

X

Y Y

0 1 2 1 2 3

0

0 01

1

2 1 2

(b) dt for f

X

Y Y

0 1 2 3

0

0 1 2

1

0 1 2

(c) mdd for f

Figure 3: Two different function graphs for the same function.

In a function graph, if a node n is terminal (i.e. without children) then n is

bound to a constant value (n.val), else n is associated with a variable (n.var).

A path from the root to a given node n instantiates every variable visited230

along that path. As a consequence, upon arriving at node n of Gf , f has been

restricted to a function f |n of which subgraph(n) is the function graph. This

restriction is defined by the value assumed by every variable explored on the

path from the root to n as shown in Figure 4.

Note that several paths may lead to the same subgraph, characterizing235

the fact that several restrictions may be equal. For instance, in Figure 3c,

12

f |X=0,Y=2 = f |X=1,Y=1 = 2. Furthermore, as shown in Figure 3, many differ-

ent function graphs may describe the same function. However, they all share

the same property of compactness: no irrelevant variable can appear on any

path of the function graph.240

C

0

1

B 0 1 0 1

A 0 1

4 5 4 5

7 7 8 8

C = 0

⎧⎪⎨
⎪⎩

R(0, , 0) = 7

R(1, , 0) = 8

C = 1

⎧⎪⎨
⎪⎩

R(, 0, 1) = 4

R(, 1, 1) = 5

C

A B

4 57 8

1

1 1

0

0 0

Figure 4: R(A,B,C) has 8 outcomes, one for each state. Yet, the function shows some

contextual independences which sum it up to 4 different outcomes, meaning the system has 4

abstract states.

Hence, function graphs are a compact and efficient way to store functions by

exploiting the contextual independences. Moreover, dedicated algorithms can

be designed to perform mathematical functions (addition, multiplication, max-

imization) directly on these function graphs. These specific operators exploit

the structure of the graphs, and, hence, avoid the costly enumeration of every245

state. A composed function such as the value function can also be stored as a

function graph. By designing vi and pi to exploit the function graphs as data

structures and to use their dedicated operators, we have now a way to compute

optimal policies without involving exhaustive enumerations of all states and too

important memory consumptions.250

2.1.5. Using Decision Trees

The first data structure used as a function graph for optimal policy search

was the Decision Tree (dt, as in Figure 3b). Structured Value Iteration (svi)

and Structured Policy Iteration (spi) rely on this data structure.

Algorithm 2 shows the layout of the algorithm svi, the new version of the255

algorithm vi using dts. The main difference between the two versions is the

disappearance of all the For statement over the state space S in the svi version.

Indeed, these statements have been replaced by the introduction of two new

13

Algorithm 2: svi: Structured Value Iteration

Data: a fmdp where Transition and Reward functions are factored using

dts

1 begin

// Building Initial Value function ...

2 T [V] ← T [R];

3 T [Vold] ← {};
// Structured Value Iteration

4 while ∃ a leaf l ∈ Combine(T [V] , T [Vold] ,−) s.t. l.val ≥ ε·(1−γ)
2·γ do

5 T [Vold] ← T [V], T [V] ← {};
6 foreach a ∈ A do

7 T [Qa] ← {} ;

8 foreach Xi ∈ X do

9 T [Qa] ← Combine(T [Vold] , T [PXi,a] ,×) ; // where

T [PXi,a] is the tree storing the probability

distributions P (X ′
i | Parents(X ′

i), a).

10 T [Qa] ← Project(T [Qa] , X
′
i) ; // where Project

suppress X ′
i from T [Qa] by summing over its

values.

11 T [V] ← Combine(T [V] , T [Qa] ,max);

// Greedy extraction of the ε-optimal policy π�

12 T [π�] ← {};
13 foreach a ∈ A do

14 T [π�] ← étendre(T [π�] , T [Qa] , argmax
a∈A

);

Result: the T [π�] representing an ε-optimal policy for the given fmdp

algorithms: Combine and Project. In the vi version, the For statement was

used to compute for each state diverse combinations (addition, subtraction,260

multiplication, maximization and variable removal) of the functions needed for

14

the optimal search policy (Transition Function, Reward Function and Value

Function). These two algorithms perform these specific combinations while

working directly on the dt structures, avoiding then costly enumerations of the

whole state space (Boutilier et al., 1999) 5. Figure 5 shows intuitively how these265

two algorithms work.

C

A B

7 8 4 5

0
1

0
1

0
1

×
C

B

0.5 0.4 0.6

0

1

0
1

=

C

A B

3.5 4 1, 6 3

0
1

0
1

0
1

(a) Combine algorithm

C

A B

7 8 4 5

0
1

0
1

0
1

→
C

A

B

7 8

A A

4 5

0 1

0
1

0
1

0 1 0 1

→
C

B

15 8 10

0

1

0
1

(b) Project algorithm (Suppression of variable A by summing over its values)

Figure 5: Illustrative cases of how Combine and Project algorithms work.

svi and spi were able to overcome, in some measure, the difficulties raised

by the exponential increase in the state space. However, as shown in Figures 3b,

dts may contain several isomorphic subgraphs. Indeed, due to the tree struc-

ture, these subgraphs can not be merged. Yet, these duplications unnecessarily270

increase the size of the graphs.

2.1.6. Using algebraic decision diagrams

Hoey et al. (1999) proposed to use Algebraic Decision Diagrams (add, Bahar

5While Combine interests us particularly in this article and will be seen in detail in Section

3 (at least its version for adds, see below), we will not go through the details of how Project

works. See (Boutilier et al., 1999) and Hoey et al. (1999) for the details

15

et al., 1997) as function graphs (as in Figure 3c). adds are a generalization of

Binary Decision Diagrams (bdds, Bryant, 1986) that represent real functions275

of boolean variables (f : Bn→R). Two important characteristics of these data

structures are that they are reduced and ordered.

Definition (Reduced function graph).

Gf is reduced ⇐⇒ ∀ nodes n
= n′, f |n
= f |n′

When a function graph is reduced, two isomorphic subgraphs are necessarily280

merged together.

Definition (Ordered function graph).

A function graph Gf is ordered ⇔ ∃ �Gf
complete order on support(f), s.t.

∀ nodes n1, n2 non terminal of Gf ,

n2 ∈ desc(n1) ⇒ n1.var �Gf
n2.var

When a function graph is ordered, the algorithm to reduce it is polynomial

Bryant (1986).

In the same article, Bryant (1986) also gives a version of the algorithm285

Combine dedicated to the bdds that also works on adds. By exploiting the ad-

vantages of adds over dts, in terms of compactness, and their specific Combine

algorithm, Hoey et al. (1999) elaborates another version of vi algorithm, spudd,

which is still the state-of-the-art exact algorithm for planning with fmdps.

2.1.7. Improving the data structure290

spudd is a very efficient algorithm that allows solving very large fmdps.

However, it is confronted by two major drawbacks which limit its use.

First, adds represent only functions of boolean variables. As a consequence,

all multi-valued variables have to be encoded with binary variables. A first issue

is raised by such an encoding; the state space size is artificially increased (see for295

instance Figure 1). Indeed, to code a variable with n values, one needs �log2n�
binary variables. These �log2n� variables will generate 2�log2n� possible states,

which means that 2�log2n� − n states are artificially created and have no real

16

existence. Thanks to the abstraction, these non-existent states will be regrouped

in abstract states. However, due to the dedicated operators, an optimal policy300

will be searched for these irrelevant abstract states.

In this article, we investigate the use of Multi-valued Decision Diagrams

(mdds) (Srinivasan et al., 1990). mdds simply generalize the concept of adds

to multi-valued variables (see for instance Figure 3c where Y is ternary). The

artificial increase in variables is then avoided, reducing therefore any function305

graph compactness.

The second drawback of adds (and of any reduced and ordered function

graphs, i.e. mdds) is that their compactness strongly depends on their inherent

variable order. Yet, their specific algorithm Combine imposes that they all share

the same order. As a consequence, this common order may not be the optimal310

one for each one of them or for the resulting adds. Given that the complexity of

the algorithm Combine with two adds D1 and D2 as entries is in O(|D1| · |D2|),
this common order tends to arbitrarily increase the computational complexity.

In section 3, we will describe a new algorithm Combine on mdds that will

not impose such a common order.315

2.2. Planning while learning with factored models

Another subject of concern addressed in this article is the difficulty to dis-

pose of a complete fmdp prior to the optimal policy search. The representation

of the world (Reward function and Transition probabilities) may not be known

because of a lack of data (the state space has not been explored yet) or be-320

cause of the nature of the data (typically for on-line processes such as stock

market prediction). This remark leads to the implementation of fmdp learning

algorithms.

The reinforcement learning framework proposes to learn the fmdp of a situa-

tion by trial-and-error (Dyna, Dyna-Q, Sutton, 1990). As the agent experiences325

the real world problem (acting), an on-line algorithm builds up a representation

of transition and reward functions (learning) by taking into account each new

transition observation ξ (learning) made, then a planning algorithm computes an

17

efficient policy based on the created model (planning). In Degris et al. (2006b),

the general architecture sdyna integrates planning, acting and learning using330

factored representations as described in Algorithm 3.

Algorithm 3: SDyna global architecture

1 foreach time step t do

2 s ← current state;

3 a ← πt(s); // πt is the current strategy

4 Perform a, observe s′ and r and define ξ = (s, a, s′, r);

5 Incremental “factored” learning from observation ξ;

6 “Factored” planning new πt+1;

In order to implement a sdyna architecture, one has (i) to choose a struc-

tured representation of the problem (dt, adds, etc.); (ii) to provide an optimal

policy search algorithm (line 6); and (iii) to provide an incremental learning

algorithm for the data structure (line 5). The following subsections cover the335

learning algorithms used to establish factored models.

2.2.1. Incremental learning of decision trees

There are many algorithms to learn a tree from a set of observations: cart

(Breiman et al., 1984), c4.5 (Quinlan, 1993), etc. However, many of these

approaches require having the complete set prior to the learning. They are not340

able to modify dynamically the tree as new observations arrive. A windowed

approach could be implemented but it would require rebuilding the tree from

scratch for each new observation. iti (Utgoff et al., 1997) is an algorithm that

fulfills this need of on-line adaptations to new observations.

In iti, each node N of the learned dt contains a set of observations ΩN that345

are compatible with the instantiation inN . For instance, the sets of observations

installed in the leaves of a tree form a partition of the set of all the observations

Ω. Adding a new observation ξ means updating any set compatible with ξ and

then modifying the structure of the tree where needed. The structure depends

itself on these sets of observations: an internal node N contains the “best” (not350

yet instantiated) variable that separates the set of observations ΩN . To select

18

a variable, iti uses the information gain ratio as a criterion and compares the

different distributions that would be created by installing each free variable at

the node. We refer the readers to Utgoff et al. (1997) for a much more complete

presentation of this algorithm.355

2.2.2. Planning while learning with decision trees

spiti is an instantiation of the sdyna architecture where dts are used for

the model factorization. Hence, for each P (X ′
i|A,Parent(X ′

i)), X
′
i ∈ X′ and for

the reward function R(X), a dt has to be incrementally learned. Then, the spi

algorithm (Boutilier et al., 1999) is used on the learned dts for the planning360

step.

In Degris et al. (2006a), spiti is implemented using a version of iti where the

variable selection criterion is the χ2 test instead of the information gain ratio.

Degris et al.(2006a) gives two major reasons to do so. First, White and Liu

(1994) shows that the χ2 criterion does not have any bias toward multi-valued365

values. Furthermore, the χ2 test allows spiti to do pre-pruning: a leaf will not

be refined if no variable is a match according to the χ2 test.

2.2.3. Learning mdds

Several articles address the problem of learning Multi-Valued Decision Dia-

grams. Oliver(1993) proposes to first build a tree using one of the state-of-the-370

art algorithms (cart, c4.5). Then, this tree is ordered in order to facilitate

the search for isomorphic subtrees. Eventually, these subtrees are merged using

the minimum description length principle as a criterion. Kohavi and Li(1995)

directly builds an ordered tree and then reduces it using its own set of rules.

These algorithms do not cope with the issue of on-line learning since the375

trees are learned from fixed databases. Therefore, adding new observations to

the database demands learning a new whole tree. Hence, these approaches can

not be good candidates for a sdyna architecture. Being able to review the tree,

and if and only if necessary its reduced version the mdd, without having to go

through the whole database would be a great asset that has not been proposed380

19

yet to the best of our knowledge. Section 4 covers our results on that matter.

2.2.4. Towards a sdyna framework with mdds

In this section, we aimed to show that the fmdp framework proposes a good

solution to solve large mdps by abstracting the states. The state-of-the-art

framework for reinforcement learning in fmdp is sdyna whose only instance is385

spiti which deals with decision trees. However, mdd is a much more compact

function graph. In the following sections, we will then present a planning al-

gorithm using mdds (section 3), an incremental learning algorithm for mdds

(section 4). These two algorithms will allow us to propose a new instance of

sdyna using mdds (section 5).390

3. Planning with Multi-valued Decision Diagrams

In this section, we introduce spumdd, a new planning algorithm like svi or

spudd that works on mdds. The main difference of this new algorithm over

its predecessors, apart from the fact that it works on mdds, is that it uses a

new version of the Combine algorithm that aims at removing the global order395

constraint. Indeed, the original Combine algorithm that was working on adds

and that also works on mdds, while having a complexity depending on the sizes

of the two combined Decision Diagrams, forces them to be ordered the same

way. However, the size of a Decision Diagram strongly depends on its ordering.

The resulting problem is that, with the constraint, the two Decision Diagrams400

may not be ordered optimally, only optimally for the operation. This results in

an increase of the complexity of the Combine algorithm that may be removed

if we were capable of doing this combination without forcing the two Decision

Diagrams to be ordered the same way. This section covers our inquiry over that

matter.405

Let G1, G2 and G be three reduced and ordered function graphs (bdds,

adds or mdds) such that G = G1 �G2
6. Based on our criticism of the existent

6� is a commutative operation: addition, multiplication, maximization, etc.

20

dedicated algorithm on adds (in spudd), this new Combine algorithm should

produce G from G1 and G2 without imposing that orders �1 from G1 and �2

from G2 are the same.410

At its core, the original Combine algorithm calls OrderedExplore, a recur-

sive function which explores the two diagrams. This is the behavior of this

OrderedExplore function that we have to change in order to remove the global

order constraint. First, we briefly present the state-of-the-art OrderedExplore

function that works on two Decision Diagrams ordered similarly (for further415

details, please refer to (Bryant, 1986)). Then we will go into the details of how

to modify this function to obtain the Explore function that works without the

constraint.

3.1. The OrderedExplore function

Let � be the common order imposed on G1, G2 and G for the operation.420

The OrderedExplore function relies on recursive and simultaneous depth-first

explorations of both G1 and G2. Each recursive call is made on a pair of nodes

n1 ∈ G1 and n2 ∈ G2. The initial call is made by the Combine algorithm on

the roots of both graphs; the recursive call on nodes n1 and n2 determines how

the nodes n1 and n2 will be visited:425

1. if n1 and n2 are both terminal, then n1.val � n2.val is computed;

2. if only one node is non-terminal, then the exploration function only visits

this node;

3. if both nodes are non-terminal then

a. if n1.var = n2.var, the exploration function visits simultaneously430

both nodes;

b. if n1.var � n2.var (resp. n2.var � n1.var), then the exploration

function visits only on n1 (resp. n2).

The visit of a node n consists in calling the function again on each one

of its children. Since each child is bound to a value that may assume n.var,435

the variable is then instantiated on each call. The called node from the other

diagram remains unchanged, unless it is simultaneously explored. In that case,

21

it is on its child selected by the current value to which n.var is instantiated that

the function is called.

At the end of each recursive call, when the exploration of every child is over440

(for an internal node) or when a value has been computed (terminal node), a

new node nG is inserted in G. If a value was computed, nG will then be a

terminal node and have the computed value attached to it. Otherwise, nG will

have n.var attached to it. The children of nG are the resulting nodes from

the explorations on n children. Of course, redundancy checks are made before445

inserting nG so that G is also reduced.

Proceeding this way ensures that every variable will be in the correct order

in G. Due to the assumption of a common order, the algorithm is quite simple.

When both G1 and G2 are trees, each pair of nodes is visited only once. Its

complexity is then in O(|G1|.|G2|) . For bdds, adds and mdds, a pruning450

mechanism (a cache) is needed in order to keep this complexity (see below for

more details).

Removing the common order constraint implies that different orders on the

variables will coexist: �1 for G1, �2 for G2 and �G for G = G1 �G2.

3.2. The problem of the retrograde variables455

With the objective of still performing a depth-first recursive and simultane-

ous exploration on G1 and G2, one has to analyze a new case at each step: let

n1 ∈ G1 and n2 ∈ G2 be the nodes considered at the beginning of a recursive

call. It may now happen that n1.var �1 n2.var and n2.var �2 n1.var. Figure

6 illustrates that case.460

Definition (Retrograde Variable).

Let �1 and �2 be two orders on a set of variables X. A variable Xr ∈ X is

said to be retrograde in �2 w.r.t. �1 if ∃ Xp ∈ X s.t. Xr �1 Xp and Xp �2 Xr.

Xp is then retrograde in �1 w.r.t �2 because of Xr (at least). For instance,

on Figure 6, we have A �1 B �1 C and A �2 C �2 B. As a consequence, B is465

retrograde in �2 w.r.t. �1 because of C.

22

V1 V2 V3 V4

C B

B C

A A

0

1

0

1

0
1

0

1

0

1

0
1

G1 G2

Figure 6: Illustrative case where ∃n1 and n2 s.t. n1.var �1 n2.var and n2.var �2 n1.var.

Here, each time the currently explored nodes are associated to B on one diagram and to C

on the other, we are in this new situation.

We note the set of retrograde variables: �1,2 = {Xi ∈ X,Xi retrograde in

�2 w.r.t. �1} and D�1,2
the domain of that set. The size of that domain is

|D�1,2 | =
∏

X∈�1,2

|X|. As we will see below, the size of both D�G,1
and D�G,2

should be minimal.470

To address this new case, the function Explore has to decide which variable

is explored first. This has several consequences that we are going to see now in

detail.

3.3. Exploration and construction

A direct consequence of choosing a variable Xr over a variable Xp for the475

exploration is that Xr will have to precede Xp in the order of the resulting

diagramG. Indeed, the recursive call of Explore on any node nr s.t. nr.var = Xr

will end after the recursive call of Explore on any node np s.t. np.var = Xp. As

a consequence, the resulting node nG
r will be parent to any resulting nG

p created

during the visits of nodes np. Hence, the necessity for Xr to precede Xp in �G.480

Another difficulty raised by this choice is the situation where a node bound

to Xp has among its descendant a node bound to Xr. Indeed, since we have

Xr �1 Xp and more importantlyXp �2 Xr, we may have in G2 a node n
2
r bound

to Xr that is among of the descendant of a node n2
p bound to Xp. The node

23

n2
r cannot be explored like any other node since it would violate the constraint485

Xr �G Xp (its recursive call taking place during the recursive call on n2
p).

To enforce Xr �G Xp, a recursive call instantiating variable Xr must have

begun before the exploration on n2
p begins. Then, whenever during the ex-

plorations in G2 a node bound to Xr is encountered, as Xr has already been

instantiated, the algorithm immediately jumps onto the child node determined490

by the current value of Xr.

A direct consequence is that we may have to possibly anticipate an explo-

ration on Xr whenever an exploration on Xp is required in G2 (in the case where

no exploration has begun on Xr while an exploration on Xp begins). This has a

consequence in terms of complexity that will be analyzed below. An anticipated495

exploration of Xr on a node n2 consists in performing a normal exploration on

an artificially inserted node nr such that nr.var = Xr and all its children are

n2.

The end of this section technically characterizes the specific situation where

this anticipation is required. Algorithm 4 presents the core function for the500

exploration and the different cases it has to deal with.

Let (n1, n2) be the visited nodes at a given step of our algorithm. If

subgraph(n2) contains Xr
7, the algorithm possibly have to anticipate an ex-

ploration on Xr. On the contrary, if subgraph(n2) does not contain Xr, the

algorithm can normally perform the exploration on n2.505

An exploration on Xp in G2 is required if and only if n2.var = Xp and

n2.var �G n1.var. Before that, exploration goes on normally. In particular, Xr

can be explored in G1. It is then normally explored regardless of its presence

in G2.

Assume that exploration on Xp is required and that Xr possibly has to be510

anticipated. Two cases can occur: (i) either Xr has been met in the current

explored path on G1; (ii) or Xr has not been met current explored path on

G1. In the first case, Xr has already been instantiated and then no anticipated

7More precisely, Xr ∈ support(subgraph(n2))

24

exploration on Xr is needed. In the second case, the anticipated exploration of

Xr is needed before exploring Xp on G2.515

V1 V2 V3 V4

C B

B C

A A

0

1

0
1

0

1

0

1

0
1

0

1

G1 G2

(a) No anticipated exploration is needed.

V1 V2 V3 V4

C B

B C

A A

0

1

0

1
0

1

0

1

0
1

0

1

G1 G2

B
1
0

1

(b) Anticipated exploration is needed.

Figure 7: The two cases. They occur when exploration explore the children of the root nodes

for A = 1. In case (a), for G1, the child node is bound to B, and, for G2, the child node is

bound to C. Exploration begins then to explore B, then C. Hence, when C is explored, B is

already being explored. In case (b), child for G1 is a terminal node. Then C is to be explored.

The problem is that then no exploration on B has begun. The solution is to insert in G1 a

node bound to B.

For the sake of simplicity of the presentation, we propose to arbitrarily build

�G so that �G,1 = ∅. The consequence of this choice is that any variable Xr

retrograde in �2 w.r.t. �1 because of any variables Xp will be explored first.

The proposed order �G will then have the following properties:

• �G extends �1;520

• �G extends �2\�1,2
.

These two properties are sufficient to build �G from �1 and �2. By definition,

�G is built so that �G,1 = ∅. It follows that the set of retrograde variables that
can be met is �G,2.

3.4. Pruning and complexity525

In the algorithm OrderedExplore, several explorations of a same pair of sub-

graphs always give to the same resulting structure. The different paths that

lead to those subgraphs do not alter the result. As a consequence, once a pair

of nodes has been visited, the resulting node is stored in a table along with this

pair as a key. Pruning consists then in looking for the pair of nodes in the table,530

25

and taking the result. This guarantees a complexity in O(|G1|·|G2|), since every
pair of nodes are visited only once.

In Algorithm 4, pruning is more difficult: consecutive visits of a same pair of

nodes do not necessarily lead to the same result. Suppose that for the current

nodes (n1, n2), n2.var = Xp and Xr ∈ subgraph(n2). With or without antici-535

pated exploration, Xr will be instantiated to a certain value before exploration

starts on n2. Then, as evoked just above, when any node bound to Xr is en-

countered in G2, exploration automatically jumps onto the child selected by the

current value of Xr. A direct consequence is that only a part of subgraph(n2) is

then explored. The algorithm will have to explore again subgraph(n2) for every540

value that Xr can assume. This has to be done from n2 in order to build the

resulting nodes in the right order (i.e. succG).

Algorithm 4: Operation between mdds without common order.

1 Procedure Explore(n1,n2,E)
Input: n1 ∈ G1,n2 ∈ G2, E instantiations of already explored variables

Output: n1 � n2

2 if n1.isTerminal and n2.isTerminal then

3 return Terminal(n1.val � n2.val)

4 if not n2.isTerminal and ∃nr ∈ n2.Descendants, nr.var ∈ �1,2 then

5 ∀m ∈ Dnr.var, nm = Explore(n1, n2, E ∪ {nr.var = m})
6 return NonTerminal(nr.var, children = {nm}m∈Dnr.var)

7 if n1.var �G n2.var or n2.isTerminal then

8 ∀m ∈ Dn1.var, nm = Explore(n1.child(m), n2, E ∪ {n1.var = m})
9 return NonTerminal(n1.var, children = {nm}m∈Dn1.var)

10 if n2.var �G n1.var or n1.isTerminal then

11 if ∃m, n2.var = m ∈ E then

12 return Explore(n1, n2.child(m), E)
13 else

14 ∀m ∈ Dn2.var, nm = Explore(n1, n2.child(m), E ∪ {n2.var = m})
15 return NonTerminal(n2.var, children = {nm}m∈Dn2.var)

16 if n1.var = n2.var then

17 ∀m ∈ Dn1.var, nm = Explore(n1.child(m), n2.child(m), E ∪ {n1.var = m})
18 return NonTerminal(n1.var, children = {nm}m∈Dn1.var)

26

Unnecessary explorations can still be pruned: once an exploration is done

for a value of the retrograde variable, there’s no need to repeat this exploration.

So a computed subgraph for n1 � n2 is identified not only by the nodes n1 and545

n2 but also by the values of the explored retrograde variables.

The multiple explorations due to retrograde variables affects the complexity

of the algorithm. The increase in complexity is by the size of the domain of

the retrograde variables D�1,2
in the worst case. Then complexity is now in

O(|G1| · |G2| · |D�1,2
|).550

But this worst-case complexity has to be pondered. Firstly our algorithm

only re-explores subgraphs of G2 when needed. The worst-case complexity is

determined as if all the re-explorations concerned the whole graph. Unfortu-

nately a more accurate upper bound is difficult to obtain; it would demand a

topological analysis of the graphs. Secondly G1 and G2 have now their (opti-555

mal) own order. Then the size of G1 and G2 can be smaller in this complexity

than in the case of the algorithm with common order. Thirdly �G can be com-

patible with either �1 or �2. As a consequence, we have a choice in the set of

retrograde variable we have to deal with: either it can be �1,2 or �2,1. And as

|D�1,2
|
= |D�2,1

|, another trade-off is to be found here.560

This discussion is confirmed in the experiments described below.

3.5. Experimentations and Observations

We have implemented spumdd using the C++ library aGrUM, developed at

LIP6 laboratory. Since the standard implementation of spudd uses a highly

optimized library for add (but not for mdd), we have coded our own version of565

spudd in order to compare the algorithms on a time basis.

Meanwhile, the size of computed diagrams is the most interesting measure.

Indeed, as seen before, the complexity of operations depends on the size of the

diagrams. The size of the computed value function is particularly relevant: on

each iteration, the value function decison diagram is used to compute various570

decision diagrams that are themselves aggregated back into a new value function

5. Therefore, the size of value function is a good indicator of the efficiency of

27

spumdd spumdd compared to spudd

State Internal Time State Internal Time

Space Nodes (s) Space Nodes

Coffee Robot 64 21 0.7 100.0% 100.0% 100.0%

Factory 55 296 377 103 42.2% 46.3% 13.3%

Factory 0 221 184 384 118 42.2% 44.4% 11.3%

Factory 1 884 736 736 213 42.2% 35.2% 6.7%

Factory 2 1 769 472 736 213 42.2% 35.2% 6.7%

Factory 3 10 616 832 814 903 31.6% 42.6% 8.4%

Maze 5x6 30 6 0.86 46.9% 17.7% 34.3%

Maze 8x8 64 9 1.05 100.0% 15.5% 31.6%

Table 1: Results using spudd and spumdd. The last columns illustrate the improvements in

space and time using spumdd.

the representations.

In both algorithms, reordering was performed regularly to ensure that the

data structures were of minimal size. Of course, for spudd, it implies that the575

minimization occurs simultaneously on every diagram so that the global size is

minimized. The heuristic used is the Sifting algorithm8 (Rudell, 1993), with

proper modifications for multivalued variables in spumdd.

S

E

S

E

Figure 8: Maze examples. Walls are in dark gray. Impossible s generated by binarization in

light gray.

Table 1 shows results of value iteration using spudd and spumdd on var-

ious mdps. State space size gives the total number of states (including the580

8St-Aubin et al. (2000) argues that this algorithm is the most efficient one in a planning

framework.

28

ones induced by binarization of multi-valued variables). Internal nodes gives

the number of non-terminal nodes inside the computed value functions at last

iteration (the number of terminal nodes is the same for both methods). And

time (in seconds) is the average time to reach stopping criterion (ε was set to

10−5) over 30 runs.585

We examine the efficiency of our algorithm on two standard problems: coffee

robot and factory. Coffee Robot is a problem in which an agent has to seek coffee

for its owner while avoiding to get wet by the rain. Coffee Robot is a small binary

problem. In the Factory issue, the goal is to machine and assemble two pieces

together in the correct order. Factory is mostly a binary problem too (only a590

few ternary variables), its state space size is larger (5000 states).

The interest in the coffee robot planning problem is that it contains only

binary variables. It allows to see if spumdd remains efficient on such cases.

Results show that spumdd got same behavior than spudd. Yet it is slightly

slower, showing that on small purely binary problems adds are sufficient.595

In factory, the interest resides in the mix of binary and ternary variables.

The conversion of ternary variables in binary variables generates an increase in

the number of variables as much as an increase in state space size. Results show

clearly that advantage can be taken of by spumdd.

Note that factory1 and factory2 only differ on one variable that is not rel-600

evant for value function (it has no incidence on other variable). Both factories

got eventually the same structure, showing clearly that mdds can eliminate non

relevant variables as adds do.

To examine the behavior on problems with multi-valued variables, two mazes

have been created. The maze (Figure 8) has 30 cases, 8 of them being blocked.605

It only requires two multi-valued variables (X and Y) of 5 and 6 modalities

to represent its 30 possible states. However, its translation in binary variables

demands 3 variables on each axis. These variables generate a grid of 64 states

where 34 are impossible. The second maze is an 8 by 8 maze, and thus generates

no impossible states on translation into a binary problem.610

Here again, spumdd shows itself better than spudd, gaining both on time

29

X

Y Y Y Y

Up RightDown Left

4 1 3 2

15 3 4 42 1 6

5

6

6
6

2

X3

X2

X2

X1

X1 X1

Y 3

Y 3 Y 3 Y 3 Y 3

Y 2

Y 2 Y 2 Y 2 Y 2 Y 2 Y 2

Y 1 Y 1 Y 1 Y 1 Y 1

Up RightDown Left

Figure 9: Maze Optimal Policy with spumdd (dashed line stands for default arc) and with

spudd (dashed line from node X stands for x).

and size representation. Figure 9 shows the simplification of the policy obtained

for the first maze with spumdd compared to spudd.

3.6. Planning with mdds

In this section, we proposed a new algorithm for operations between mdds.615

This new algorithm allows us to define spumdd, a new planning algorithm using

mdds as compact representation for the different functions. spumdd proved to

be efficient both in size representation and in time. The next section deals with

the second step of our program towards a new sdyna instance: incremental (or

on-line) learning of mdds.620

4. On-line Learning of Multi-valued Decision Diagrams

In this section we describe imddi, a novel algorithm for the incremental

learning of Multi-valued Decision Diagrams (Magnan and Wuillemin, 2015).

Without any loss of generality, this presentation will focus on the estimation of

the probability distribution of a multi-valued variable Y according to a set of625

multi-valued variables X = {X1, . . . , Xn} (see Figure 10). Indeed, learning the

transition model of a factored mdp consists in learning several conditional prob-

ability distributions (Boutilier et al., 1999). Moreover, learning other functions

such as the reward function is done using very similar algorithms.

There are two major differences between a dt and an mdd: first, an mdd630

is structured by a global order on the variables. Variables must appear on each

30

X2

X1

12

∗
∗ 2

3

Figure 10: An mdd representing a probability distribution P (Y |X1, X2). Each leaf contains

a probability distribution P (Y) over the domain of Y . This mdd states that P (Y |X1 = 2) =

P (Y |X1 = 1, X2 /∈ {2, 3}) and that P (Y |X1 /∈ {1, 2}) = P (Y |X1 = 1, X2 = 3). Those

equalities represent Context-Specific Independence in P (Y |X1, X2) (Boutilier et al., 1996).

branch of the mdd w.r.t this global order. This order has a large impact on the

compactness of the mdd. We call a dt with this constraint an Ordered Decision

Tree (odt).

Second, an mdd merges sub-trees together in order to be reduced. The635

complexity of reducing an odt T into an mdd is in O(|T | · log |T |) where |T | is
the number of nodes in T (Bryant, 1986). Figure 11 depicts the transformation

from a dt into an mdd via an odt. A first incremental algorithm to learn

mdd (named iti+dd later) could be i) to simply use iti to learn the dt, ii)

then to choose an order and to convert the learned dt into an odt and finally640

iii) to build a mdd from this odt at each step as it has been proposed for

non incremental learning of mdds by Oliver (1993). However the search for

an optimal global order is NP-hard. Moreover it is possible to maintain an

estimation of an efficient global order. This is a key point in our algorithm

imddi: we propose a modified version of iti that handles an ordered decision645

tree instead of a tree. Then, whenever needed, the mdd will be built from this

odt.

4.1. Incremental Induction of an Ordered Tree

imddi is based on a version of iti but the main features have been revised

and are described in the following subsections: how to select the variable to be650

installed at any node; how to incrementally integrate a new observation ξ and

how to update the structure w.r.t. this new observation.

31

1 2 3 1 2 3

Z Y

Y Z

X

1 2 3 1 2 1 3

Z Z Z

Y Y

X

2 1 3

Z Z

Y Y

X

Figure 11: A function represented as (a) a dt, (b) an odt (X � Y � Z) and (c) an mdd (with

the same order).

Algorithm 5: Incremental mdd Induction (imddi) for P (Y |X1, . . . , Xn)

Data: a data stream of observations: ξ = (X1, . . . , Xn, Y)

1 foreach ξ = next observation do

2 AddObs(ξ); // see Algorithm 6

3 UpdateODT(); // see Algorithm 7

4 if change is needed then

5 Reduce(); // see Algorithm 8

Algorithm 5 presents the complete imddi algorithm. The three steps of this

algorithm are presented in detail below.

4.1.1. Variable Selection655

Like every dt learning algorithm, imddi needs a selection criterion to decide

which variable has to be installed on a given node. As selection criteria, both

G-statistic (Mingers, 1989) and χ2 statistic are interesting as they have no bias

toward multi-valued variable (White and Liu, 1994). G and χ2 tests are close

when the size of the sample is big enough but Dunning (1993) argues that660

G-statistic is superior to the χ2 statistic for dealing with rare events.

LetN be the node on which we want to either install a variable (ifN is a leaf)

or ensure that the current variable is the most pertinent. Let ΩN be the set of

associated observations on which we rely to perform our selection (see Algorithm

6 below to understand how these databases are extracted). Let VN be the set665

of variables that could be installed at node N . For each variable Xi ∈ VN , N

keeps a contingency table giving the sample size nxi,y for each combination of

32

Xi and Y values. The G-statistic is then computed in the following way:

G(Xi) = 2 ·
∑

xi∈DomXi

∑
y∈DomY

nxi,y ln
nxi,y · |ΩN |
n.,ynxi,.

(12)

where n.,y =
∑

xi
nxi,y and nxi,. =

∑
y nxi,y.

To decide among everyXi which one should be installed, imddi compares the670

p-values associated to the computed G-statistics: variables with a high number

of values tend to have a high G-statistic whereas variables with a low number of

G-statistic has a low score. The use of p-values avoids this bias towards multi-

valued variables since the p-values “normalize” every G-statistic by integrating

degrees of freedom. Furthermore, like the χ2, the G-statistic has an interesting675

feature: it can also be used as a pre-pruning criterion in order to prevent the

tree from growing unreasonably. To sum up, the variable with the highest p-

value will be selected. If this p-value is higher than a fixed threshold, we install

that variable at the node. If it is lower than the threshold and node N is not a

leaf, N is turned into a leaf.680

4.1.2. Adding a new observation

An observation ξ is an instantiation of all the variables 〈X1, · · · , Xn, Y 〉. By
construction, there exists a unique path from the root to a leaf of the odt that

represents a partial instantiation of 〈X1, · · · , Xn〉 compatible with ξ. Adding ξ

to the odt consists in updating the database ΩN and the G-statistics of every685

node N of that path. With XN the variable installed on an internal node N ,

pNG (Xi) the p-value for a variable Xi ∈ VN at the node N , cN (v) the child of

node N for the value v of XN and finally ξ(A) the value for the variable A in

ξ, Algorithm 6 describes this update of the internal structure of the odt.

4.1.3. Updating the odt690

Once the statistics have been updated, a last step consists in revising the

tree topology. Due to the insertion of the new observation, a revision of the

variables previously installed at every node may be necessary. However, this

revision has to take into account the global order. To update the odt, imddi

33

Algorithm 6: AddObs (addition of an observation ξ)

Data: the observation ξ = {x1, . . . , xn, y} and the odt T

1 Node N ← root of T ;

2 repeat

3 Add ξ to ΩN ;

4 foreach variable Xi ∈ VN do

5 Update pNG (Xi);

6 if N is not a leaf then

7 Node N ← cN (ξ(Xi));

8 until N is a leaf ;

must (i) find a (as good as possible) global order, (ii) ensure that this order695

is respected on every branch and (iii) ensure that the best possible variable is

installed at every node. A last requirement is that, for any observation that will

not change the structure, this operation should be as simple as possible. As an

incremental algorithm, imddi infers a relevant global order while keeping the

possibility to revise it. To fulfill these requirements, the strategy we propose is700

to check variable by variable the relevance of their position in the current global

order.

To decide which variable should be the next one in the global order, each re-

maining variable has to be scored using the G-statistics maintained at any node

but later aggregated from specific nodes within a boundary B. This boundary705

is the set of nodes where a variable check-up must be performed w.r.t. the up-

dated global order. The boundary is initialized as the root node (singleton) and

will contain the leaves of the odt at the end of this structure revision. imddi

computes an aggregated score by summing up the p-values computed on the

nodes N ∈ B weighted by the proportion of observations at these nodes (|ΩN |)710

compared to the total number of observation added to the tree (|Ω|). The vari-

able with the highest score is then chosen and becomes the next variable in the

updated global order.

Then, for every node of the boundary, this chosen variable will be installed if

its associated p-value for that node is above a fixed threshold. This installation715

34

is done the same way it is done in iti (see Utgoff et al. (1997) for further details).

If the variable is effectively installed, the node is removed from the boundary,

replaced by all its children. Once this step is over, nodes in the boundary will

not be authorized to choose to install this variable later on.

Algorithm 7: UpdateODT (updating the structure)

Data: an odt T after adding ξ (with Algorithm 6)

1 B = { root R of T}; // boundary

2 F = X; // Set of variables

3 repeat

4 foreach variable Xi ∈ F do

5 pG(Xi) =
∑

N∈B

|ΩN |
|Ω| · pNG (Xi);

6 V ← arg min
Xi∈F

pG(Xi);

7 B′ ← B;
8 foreach N ∈ B do

9 if pNG (V) ≥ τ1 then

10 Install V in node N ;

11 B′ ← B′ \ {N} ∪⋃
v∈Dom(V) cN (v)

12 B ← B′;

13 F ← F \ {V };
14 until F = ∅ or no variable in F can be installed in B;

The stopping criterion for Algorithm 7 has to take into account two cases:720

either all variables of X have been added to the updated global order or no

variables can be installed at any node of the current boundary (i.e. all the p-

values are below the threshold). When it stops, the boundary contains all the

leaves of the updated odt. Any node which is internal at this moment is turned

into a leaf, its subtree being removed.725

If the new observation does not change the structure of the odt, the only

computations performed by Algorithm 7 are weighted sums on each boundary

from the root to the leaves of the tree.

35

4.2. From the odt to the mdd

Once the odt is generated, the next step is to reduce it into a mdd. Merging730

the isomorphic subtrees is done by the bottom-up polynomial (in time) algo-

rithm 8. This algorithm begins by merging all the leaves with similar probability

distributions. Then, for every variable Xi, going backward in the global order,

two nodes N and N ′ bound to Xi are merged if they have the same children.

Furthermore, if a node has only one child then it is redundant and is then735

replaced by arcs outgoing from its parents to its unique child.

Algorithm 8: Reduce (merge isomorphic subtrees)

Data: an odt T

1 repeat

2 (U∗, V ∗) = argmin(U,V) leaves(max(pGU , pGV));

3 if max(pU
∗

G , pV
∗

G) ≤ τ2 then

4 Merge U∗ and V ∗;

5 until
 ∃ two leaves that can merge;

6 foreach Xi ∈ X backward w.r.t the order do

7 foreach NXi
, N ′

Xi
with Xi as installed variable do

8 if ∀xi ∈ Dom(Xi), cNXi
(xi) = cN′

Xi
(xi) then

9 NXi
and N ′

Xi
are merged ;

10 foreach NXi
with Xi as installed variable do

11 if ∀xk
i , x

l
i ∈ Dom(Xi), cNXi

(xk
i) = cNXi

(xl
i) then

12 Replace NXi
by arcs outgoing from the parents to the unique child.

The first stage which consists in merging similar leaves together has to be

addressed more specifically. If the leaves of the mdd were discrete values, merg-

ing these leaves would be very simple. However, in our framework, each leaf is

a probability distribution over the variable Y . As a consequence, we need a test740

to decide whether or not two probability distributions are similar.

Let U and V be the two leaves we want to merge, let nU,y be the sample size

for the value y ∈ Dom(Y) and NU = |ΩU | be the total number of observations

on the leaf U . Merging U and V would produce a new node W . It follows

that ∀y ∈ Dom(Y), nW,y = nU,y + nV,y and NW = NU + NV . To determine

whether or not we should merge U and V into W , we compute for both leaves

36

a G-statistic:

∀L ∈ {U, V }, GL = 2 ·
∑
y

nL,y ln
nL,y

eL,y

where eL,y = nW,y
NL

NW
. Note that we have to scale down the quantity nW,y in

order to compare it to the quantity nL,y. We propose a greedy algorithm on

the leaves of the odt (Algorithm 8): a pair of p-values (pUG, p
V
G) is computed

for every possible pair of leaves (U, V). Then the best candidate for merging is745

(U∗, V ∗) = argmin(U,V) max
(
pUG, p

V
G

)
. This criterion selects the pair with the

lowest high dissimilarity in the probability distributions. If both pU
∗

G an pV
∗

G

are smaller than the threshold then the nodes are merged and the process is

repeated. The stopping criterion is the absence of merging during an iteration.

4.3. Some properties about complexity of imddi750

As a composite incremental learning algorithm, it is difficult to assess a

global complexity for imddi. However, some properties can be stated about the

behavior of parts of this algorithm. This section lists some of them. Let X be

the set of variables, Y the variable of interest. imddi tries to learn P (Y |X) as

an mdd using an odt T .755

Property 1 (Adding an observation – algorithm 2). The complexity of adding

a new observation ξ to the odt is in O(|X|2).

Proof. To add a sample to the odt, the algorithm performs a depth-first search

until it reaches a leaf. The height of the tree is in O(|X|) since each variable

appears at most once on every path from the root to the leaves. During the760

addition of ξ, at each node of the path, the algorithm updates the G-statistic

for every variable of VN with |VN | ≤ |X|.

The behavior of imddi drastically depends on the nature of the observation of

ξ: it may happen that adding ξ to the tree does not lead to any structural change

in T . From time to time, adding ξ will imply such a change, the complexity will765

be very different. It has to be noted that even if the value of a variable V in ξ

has never been encountered, the complexities given here will not change.

37

Property 2 (Updating T with no changes – algorithm 3). The complexity of

updating the tree with no structural change is in O(|T ||X|).

Proof. Since no structural change will take place during the iteration over the770

boundaries, every node N of the odt T will participate only once to the com-

putation of the aggregated score over a boundary. N will do this computation

for each variable of VN with (as above) |VN | ≤ |X|.

Property 3 (Installing a new variable – algorithm 3). The complexity of in-

stalling a new variable at a given node N is O(|ΩN |+ |X|).775

Proof. The installation of a new variable V at a node N requires creating a

whole new set of (Dom(V)) children for the node N . Let cN (i) be the child

for the ith value of the new variable V installed at N . This child cN (i) will

now include all the observations of ΩN where V is equal to its ith value. To

find these observations (and those for the others children), it is necessary to go780

through ΩN .

Then the p-values (≤ |X|) have to be computed for every new node.

The next important step of imddi is the reduction of the odt into a mdd.

Property 4 (Merging T into an mdd – algorithm 4). The complexity of reducing

the odt is in O(|T |2).785

Proof. As Bryant (1986) demonstrates, the merging of an odt where the leaves

are exact value is in O(|T logT |). However, imddi has to merge similar prob-

ability distributions on the leaves and not exact values. This merging hence

has to be cut in two parts. One part is the merging of internal nodes. This

parts remains in O(|T logT |). The merging of the leaves is different. Indeed,790

initially, two p-values are needed for each pair of leaves (2|leaves|2 values are

then computed). Each merging computes again the p-values for the newly cre-

ated leaf with all the other remaining leaf (|leaves| values are then computed).

However, there will be at most |leaves| aggregations (there can not be more

merging than the number of existing leaves). Hence, this stage computes at795

38

most 2|leaves|2 + |leaves| ∗ |leaves| values. Altogether, the complexity for this

stage is in |leaves|2. Since |T |/2 ≤ |leaves| ≤ |T |, the complexity of the whole

algorithm is O(|T |log|T |) +O(|T |2) = O(|T |2).

These complexities demonstrate that imddi is an algorithm dedicated to

online learning: the size of the base of observations Ω is not a parameter for800

those complexities. Only one sub-algorithm complexity depends on the sub-

part ΩN installed at node N . Note also that the two most complex algorithms

(installing and merging) will not occur each time a new observation ξ is taken

into account. As the next section will demonstrate, the re-evaluation of the

mdd does not occur often.805

4.4. Experimental Validation of imddi

In order to analyze the behavior of our algorithm imddi, we compared it to

iti since it is the online learning algorithm for dts. However, iti is an algorithm

that produces unordered dts. Hence, we also compared imddi to the extended

version iti+dd which reorders the tree learned by iti with the heuristic used810

in imddi and reduces it into an mdd. These three algorithms were written in

Python. Oliver(1993) and Kohavi and Li(1995) propose batch mdd learning

algorithms that would also be interesting to compare with. Unfortunately, to

the best of our knowledge, no working implementation for these algorithms is

accessible.815

We tested our algorithms on several databases of observations ξ = 〈x, y〉.
Each database was associated to a different set of variables X and to a differ-

ent distribution P (Y |X). To generate the distributions P (Y |X), we retained

three different settings for each original model: i) mdd, ii) dt, and iii) Bayesian

Networks. In the first setting, imddi can find the original model. In the two820

last settings, the representation of P (Y |X) as an mdd necessarily leads to ap-

proximation. For the second setting, the challenge is to see if a learned mdd

is able to represent a dt efficiently, despite the absence of explicit isomorphic

subgraphs and global order. Finally, a Bayesian Network implies conditional

39

dependencies between Y and the set of variables X but does not compel the825

existence of context-specific independences that are existing in mdds or a dts.

For each setting, 20 random instances were generated. For each instance,

the size of X was 10; the domain size of each variable was randomized (up to 5

values); then the structure and the distribution of the instance were randomly

chosen. The randomized structure of the model may imply that only a subset830

of X is needed for the estimation of Y . From each instance, databases of 20 000

observations and of 10 000 observations were generated. The first database was

used to learn the model whereas the second one was used to compare the log

likelihood of the learned models.

4.5. Quality of the learned models835

For a qualitative comparison , we propose to use two criteria: the log like-

lihood of the second database according to the learned model and the size (in

term of nodes) of the learned model (mdds or dts). The log likelihood is ob-

served to ensure that imddi does not degrade too much the quality of the learned

probability distribution in comparison to both iti and iti+dd. And, as we need840

a model as compact as possible, the size criterion ensures that there is a gain

in the size of the learned models.

imddi vs iti imddi vs iti+dd

Size Log Likelihood Size Log Likelihood

mdds 63.34% ±9, 51% 100.96% ±1, 53% 101.15% ±3, 46% 100.01% ±0.04%

dts 69.44% ±15.44% 101.93% ±1.89% 101.52% ±15.22% 100.03% ±0.09%

bns 60.51% ±8.73% 100.69% ±1.25% 105.53% ±5.83% 99.94% ±0.39%

Table 2: Log likelihood and size comparison (average ± standard deviation) between imddi,

iti and iti+dd

Table 2 shows the results obtained by averaging over the twenty instances

for each setting. The numbers are the relative difference between imddi and

iti or iti+dd. For instance, the first number 63.34% means that on average,845

imddi gives a decrease of 36.66% for the size of the learned model compared

40

to iti with the first setting (mdd). According to this table, the imddi strategy

is as interesting as iti or iti+dd from a quality of the solution point of view.

Moreover, the learned models are clearly more compact than the ones obtained

with iti. Compared to iti+dd, the results both in terms of likelihood and in850

terms of size do not lead to an improvement from our algorithm. However, it has

to be remembered that iti+dd learned the mdd from scratch at each iteration.

4.6. Computation time

The other criterion on which we challenged imddi and iti+dd is the com-

putational time. We compared the time spent to take into account a newly855

arrived observation. Figure 12a shows the average time spent to take into ac-

count a new observation when no reduction is applied to the decision diagram.

It clearly demonstrates how the time spent to reorder the tree in the iti+dd

strategy completely renders it inefficient: the reordering part becomes much

slower for iti+dd as the tree grows.860

0 5000 10000 15000 20000

Nb Observations added

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T
im
e
(s
)

Average Treatement Time of an Observation
When No Reconstruction of the MDD is Done

IMDDI
ITI+DD

(a)

0 5000 10000 15000 20000

Nb Observations added

-50

0

50

100

150

200

250

Relative Difference of Complete Treatement Time
of an Observation

(b)

Figure 12: Two comparisons between imddi and iti+dd: 12a time spent to take into account

a new observation with no revision of the mdd and 12b evolution of the relative change of the

total time to take a new observation into account.

The steps with reconstruction of the MDDs experimentally represent from

15% to 7% of the observations. In that case, on all our experiments, the imddi

step is still shorter than the iti+dd step. Indeed, in Figure 12b, we show the

relative differences between the total times taken by imddi and iti+dd to handle

41

a new observation: the central curve demonstrates that on average, in spite865

of the reduction to the mdds, the imddi algorithm remains fifty times faster

than the iti+dd algorithm. These experiments illustrate that our algorithm

outperforms iti in terms of quality (same likelihood, better compactness) and

outperforms a straightforward iti+dd in terms of computation time.

4.7. Online learning of mdds870

This section presented imddi, the first online learning algorithm for mdds.

It describes the different phases: addition of an observation, update of the

structure, and reduction into a decision diagram and shows their complexities

proving that imddi is adequate for on-line learning. It also experimentally

verifies the compactness and the accuracy of the learned models in comparison875

with algorithms iti and iti+dd. Finally, it illustrates that imddi is much faster

than a straightforward iti+dd learning strategy.

It is noteworthy to mention that the imddi algorithm needs no prior on the

variables: no knowledge about the number of variables or even their domains

are required and can be dynamically discovered during the learning.880

5. SPIMDDI: a SDYNA instance with Multi-valued Decision Dia-

grams

imddi proves to be an efficient online mdd learning algorithm. Because a

motivation for imddi is to substitute the dts with the mdds in the sdyna frame-

work, the next step is naturally to integrate it in a sdyna instance, jointly with885

the spumdd algorithm for the planning phase. Hence, the obtained spimddi

instance can perform reinforcement learning tasks in a large environment by

only manipulating mdds.

5.1. Validation of the SPIMDDI instance

This section covers experiments made on spimddi on three classical problems890

from the literature: Coffee Robot, Factory (Dearden and Boutilier, 1997) et Taxi

(Dietterich, 1998). In the Taxi, a driver has to pick up his client at a point A

42

and bring him to a point B while navigating in a city modeled as a graph and

managing his gas tank. Taxi is a large multivalued issue; the smallest domain

size is 4 while the biggest is 14.895

In order to be fair in our comparisons, both spimddi and spiti were coded

in C++ in the same software library. Figure 13 shows three comparison criteria

between spimddi and spiti on the three problems mentioned above. The curves

were obtained by averaging over 20 experiments of 4000 trajectories each. A

trajectory was composed of 25 decision makings before the system current state900

was randomly reset. Between experiments, the learned model was also reset.

Figure 13a compares the size of the learned models; this size is the total

number of nodes in every learned function representation (every probability

distribution and every reward function) as dts or mdds. We test here if the

“better compactness” objective is achieved. Results show that on the three905

examples, imddi learns a more compact description of the problems.

0 500 1000 1500 2000 2500 3000 3500 4000

Nb Trajectories Performed

60

80

100

120

140

160

180

200

Size Comparison
of Learned Models

Coffee Robot

Factory

Taxi

(a)

0 500 1000 1500 2000 2500 3000 3500 4000

Nb Trajectories Performed

50

100

150

200

250

300

350

Size Comparison
of Computed Optimal Policies

Coffee Robot

Factory

Taxi

(b)

0 500 1000 1500 2000 2500 3000 3500 4000

Nb Trajectories Performed

70

80

90

100

110

120

130

Discounted Rewards
Progressions Compared

Coffee Robot

Factory

Taxi

(c)

Figure 13: Ratio SPIMDDI
SPITI

(in %) in terms of (a) the size of the learned models (transitions

and rewards), (b) the size of the optimal planned policy , and (c) the obtained discounted

rewards during the experiments.

Figure 13b compares the size of the obtained optimal policies (in number of

nodes). On every problem, final policies are of comparable size. Moreover, in

Figure 13c, the similarity between discounted rewards9 for both instances tends

9Upon each observation, discounted rewards for both algorithms are updated according

to the following formula: Rn+1 = rn + γ · Rn where rn is the reward obtained with the

observation.

43

to indicate that spimddi learns a policy that is as efficient as the spiti one.910

However, the number of possible actions in these problems may be too low to

make a meaningful difference between the optimal policy expressed as a dt and

the optimal policy expressed as an mdd.

Figure 14 shows that imddi learns a near optimal representation of struc-

tured transition (sub-figure a,b,c) while computing a policy (sub-figure d,e,f)915

based upon this model. The quality of the learned models and of the opti-

mal policy tends to validate our approach and suggests that imddi is a good

candidate for a sdyna algorithm using mdd.

U ′

0.09 0.91

Y es

W

U

L

U ′ U ′ U ′

0.05 0.95 0.0 1.0

Y es

Y es

Shop

Y es Y esY es

U

L

U ′ U ′ U ′

0.08 0.92 0.0 1.0

Y es

Shop

Y es Y es Y es

(a) (b) (c)

Buy

HRC

LL

U

R

W

Mov BuyDel Get

Y es

Shop

Shop

Y esY es

Y es

HRC

L L

W W

U R

U

Mov BuyDel Get

Y es

Shop Office

Y es Y es

Y es

Y es

Y es

(d) (e) (f)

step 100 step 1000 step 400

Figure 14: Evolutions of the transition model P (U ′|X,Get) [a,b,c] and of the optimal policy

[d,e,f]. In step 400 the transition distribution is close to the original and the optimal policy

is equivalent to the policy for the original mdp.

5.2. Application to a real problem

While the three problems on which we tested spimddi are challenging in920

several aspects, they remain artificial. As a consequence, we looked at a less

44

established problem: the management of units in the StarCraftTM10 video game.

The objective is to see if spimddi is able to learn a factored representation of

the environment in which the given units evolved.

Several sensors (i.e. variables) are used to characterize the situation of the925

unit: unit’s number of life points, unit’s localization on the map (abstract one

like near enemies or allies, close to unexplored areas, ...), is the unit under

attack?, number of allies and enemies visible, has the unit a target or not,

etc. These sensors lead to a virtual state space of size 16 000 states. The unit

can performed high level actions: explore an unknown area of the map, attack a930

visible enemy, go on patrol, support allies or go to the last place where an enemy

unit was seen. The rewards are based on whether the game is won or lost, if

the unit has died and if the unit has explored new (geographical) areas. Each

unit is an agent that learns and applies the same fmdp. There is no centralized

decision but the experiences are shared and the process of decision making is935

the same among the units. Figure 15 shows the setting of the experiment with

the game in the upper right corner, and the different programs that control the

interactions between spimddi and the game.

Figure 15: A look at spimddi used in the video game StarCraftTM.

10http://eu.battle.net/sc2/fr/

45

While this is still a work in progress, preliminary results tend to validate the

efficiency of spimddi. Indeed, the diverse mdds produced by spimddi during the940

experiments are all compact representations of the state space; meaning there

are far fewer paths in these representations from the root to any leaf than there

are states in the problem: the average size is of 200 internal nodes (proving the

ability of abstraction of the model). Moreover, the mdds learned are often much

more compact than trees. For instance, Figure 16 shows the optimal policy that945

spimddi managed to compute after 50 games. spimddi clearly shows its ability

to extract compact structured representations from an unknown problem.

Figure 16: The optimal policy computed after 50 games.

6. Conclusion

Surprisingly, even if the advantages of mdds over dts are evident in terms

of size and compactness, their use in Reinforcement Learning is minimal (to the950

best of our knowledge). This article aims to fix this lack. It first shows how

building a planning algorithm that takes into account the characteristics of mdds

mainly by dropping the constraint of a same global order for all the function

graphs that describes the behaviour of the systems. It then describes an on-line

learning algorithm for mdds that allows building a first incremental scheme for955

fmdps using mdds as function graphs for conditional probability distributions

and rewards. Theses two contributions can be combined in an new instance of

sdyna, the Reinforcement Learning framework for factored domains. Finally,

46

all these algorithms are written in C++, are available in the aGrUM11 library

and could be exploited in an application dedicated to find optimal policies for960

instantiations of the StarCraftTMgame.

References

Bahar, R. I., Frohm, E. A., Gaona, C. M., Hachtel, G. D., Macii, E., Pardo, A.,

Somenzi, F., 1997. Algebric decision diagrams and their applications. Formal

Methods in System Design 10 (2-3), 171–206.965

Banach, S., 1922. Sur les opérations dans les ensembles abstraits et leur appli-

cation aux équations intégrales. Fundamenta Mathematicae 3 (1), 133–181.

Bellman, R., 1957. Dynamic Programming, 1st Edition. Princeton University

Press, Princeton, NJ, USA.

Bellman, R., 1961. Adaptive Control Processes. Princeton University Press.970

Boutilier, C., Dean, T., Hanks, S., 1999. Decision-theoretic planning: Structural

assumptions and computational leverage. Journal of Artificial Intelligence Re-

search 11 (1), 94.

Boutilier, C., Dearden, R., Goldszmidt, M., et al., 1995. Exploiting structure in

policy construction. In: IJCAI. Vol. 14. pp. 1104–1113.975

Boutilier, C., Friedman, N., Goldszmidt, M., Koller, D., 1996. Context-specific

independence in Bayesian Networks. In: Proceedings of the Twelfth Interna-

tional Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann

Publishers Inc., pp. 115–123.

Boutilier, C., Reiter, R., Price, B., 2001. Symbolic dynamic programming for980

first-order mdps. In: Proceedings of the 17th International Joint Conference

on Artificial Intelligence - Volume 1. IJCAI’01. Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, pp. 690–697.

11http://agrum.lip6.fr

47

Breiman, L., Friedman, J., Olshen, R., Stone, C., 1984. Classification and Re-

gression Trees. Wadsworth & Brooks.985

Bryant, R. E., 1986. Graph-based algorithms for boolean function manipulation.

IEEE Transactions on Computers 100 (8), 677–691.

Dean, T., Kanazawa, K., 1989. A model for reasoning about persistence and

causation. Computational Intelligence 5 (2), 142–150.

Dearden, R., Boutilier, C., 1997. Abstraction and approximate decision-990

theoretic planning. Artificial Intelligence 89 (1–2), 219 – 283.

Degris, T., Sigaud, O., Wuillemin, P.-H., 2006a. Chi-square tests driven method

for learning the structure of factored MDPs. In: UAI-22. AUAI Press, pp.

122–129.

Degris, T., Sigaud, O., Wuillemin, P.-H., 2006b. Learning the structure of fac-995

tored Markov decision processes in reinforcement learning problems. In: Pro-

ceedings of the 23rd International Conference on Machine learning. ACM, pp.

257–264.

Dietterich, T. G., 1998. The MAXQmethod for hierarchical reinforcement learn-

ing. In: Proceedings of the Fifteenth International Conference on Machine1000

Learning (ICML 1998). Morgan Kaufmann, pp. 118–126.

Dunning, T., Mar. 1993. Accurate methods for the statistics of surprise and

coincidence. Computational Linguistic 19 (1), 61–74.

Guestrin, C., Gordon, G., 2002. Distributed planning in hierarchical factored

MDPs. In: Proceedings of the Eighteenth Conference on Uncertainty in Ar-1005

tificial Intelligence. Morgan Kaufmann Publishers Inc., pp. 197–206.

Hauskrecht, M., Meuleau, N., Kaelbling, L. P., Dean, T., Boutilier, C., 1998.

Hierarchical solution of Markov Decision Processes using macro-actions. In:

Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intel-

ligence. Morgan Kaufmann Publishers Inc., pp. 220–229.1010

48

Hoey, J., St-Aubin, R., Hu, A., Boutilier, C., 1999. SPUDD: Stochastic plan-

ning using decision diagrams. In: Proceedings of the Fifteenth Conference on

Uncertainty in Artificial Intelligence. Morgan Kaufmann, pp. 279–288.

Howard, R. A., 1960. Dynamic Programming and Markov Processes. MIT Press.

Kohavi, R., Li, C., 1995. Oblivious decision trees, graphs, and top-down pruning.1015

In: Proceedings of the Fourteenth International Joint Conference on Artificial

Intelligence. Morgan Kaufmann, pp. 1071–1077.

Magnan, J.-C., Wuillemin, P.-H., 2013. Improving decision diagrams for decision

theoretic planning. In: Proceedings of the Twenty-Sixth International Florida

Artificial Intelligence Research Society Conference. pp. 621–626.1020

Magnan, J.-C., Wuillemin, P.-H., 2015. On-line learning of multi-valued deci-

sion diagrams. In: Proceedings of the Twenty-Eighth International Florida

Artificial Intelligence Research Society Conference. pp. 576–580.

Markov, A., Nagorny, N., 1988. The Theory of Algorithms. Mathematics and

its Applications (Kluwer Academic).: Soviet Series. Springer.1025

McDermott, S. H. D., Hanks, S., McDermott, D., 1993. Modeling a dynamic

and uncertain world I: Symbolic and probabilistic reasoning about change.

Artificial Intelligence 66, 1–55.

Mingers, J., 1989. An empirical comparison of selection measures for decision-

tree induction. Machine Learning 3 (4), 319–342.1030

Murphy, K. P., 2002. Dynamic Bayesian Networks: Representation, inference

and learning. Ph.D. thesis, University of California, Berkeley.

Oliver, J. J., 1993. Decision graphs - an extension of decision trees. In: Pro-

ceedings of the Fourth International Workshop on Artificial Intelligence and

Statistics. pp. 343–350.1035

Parr, R. E., 1998. Hierarchical control and learning for Markov decision pro-

cesses. Ph.D. thesis.

49

Puterman, M., 2005. Markov Decision Processes: Discrete Stochastic Dynamic

Programming. Wiley series in probability and statistics. Wiley-Interscience.

Quinlan, J. R., 1993. C4.5: Programs for Machine Learning. San Francisco, CA,1040

USA.

Rudell, R., 1993. Dynamic variable ordering for ordered binary decision dia-

grams. In: Proceedings of the 1993 IEEE/ACM International Conference on

Computer-Aided Design. IEEE Computer Society Press, pp. 42–47.

Srinivasan, A., Ham, T., Malik, S., Brayton, R. K., 1990. Algorithms for dis-1045

crete function manipulation. In: ICCAD-90. Digest of Technical Papers., 1990

IEEE International Conference on Computer-Aided Design. IEEE, pp. 92–95.

St-Aubin, R., Hoey, J., Boutilier, C., 2000. APRICODD: Approximate policy

construction using decision diagrams. In: Proceedings of Conference on Neu-

ral Information Processing Systems. pp. 1089–1095.1050

Sutton, R. S., 1990. Integrated architectures for learning, planning, and react-

ing based on approximating dynamic programming. In: Proceedings of the

Seventh International Conference on Machine Learning. pp. 216–224.

Utgoff, P. E., Berkman, N. C., Clouse, J. A., 1997. Decision tree induction based

on efficient tree restructuring. Machine Learning 29 (1), 5–44.1055

Wang, C., Joshi, S., Khardon, R., 2008. First order decision diagrams for rela-

tional MDPs. Journal of Artificial Intelligence Research, 431–472.

White, A. P., Liu, W. Z., 1994. Technical note: Bias in information-based

measures in decision tree induction. Machine Learning 15 (3), 321–329.

50

