S. Rüdiger and E. Kemnitz, The fluorolytic sol???gel route to metal fluorides???a versatile process opening a variety of application fields, Dalton Transactions, vol.18, issue.9, pp.1117-1127, 2008.
DOI : 10.1016/j.solidstatesciences.2007.10.036

A. Demourgues, N. Penin, D. Dambournet, R. Clarenc, A. Tressaud et al., About MX3 and MX2 (Mn+=Mg2+, Al3+, Ti4+, Fe3+; Xp???=F???, O2???, OH???) nanofluorides, OH ? ) nanofluorides, pp.35-43, 2012.
DOI : 10.1016/j.jfluchem.2011.02.006

URL : https://hal.archives-ouvertes.fr/hal-00663171

M. Leblanc, V. Maisonneuve, and A. Tressaud, Crystal Chemistry and Selected Physical Properties of Inorganic Fluorides and Oxide-Fluorides, Chemical Reviews, vol.115, issue.2, pp.1191-1254, 2015.
DOI : 10.1021/cr500173c

URL : https://hal.archives-ouvertes.fr/hal-01116572

J. H. Moss and A. Wright, Titanium(IV) oxydifluoride, Journal of Fluorine Chemistry, vol.5, issue.2, pp.163-167, 1975.
DOI : 10.1016/S0022-1139(00)81702-9

K. Dehnicke, Syntheses of Oxide Halides, Angewandte Chemie International Edition in English, vol.4, issue.1, 1965.
DOI : 10.1002/anie.196500221

A. P. Wilkinson, R. E. Josefsberg, L. C. Gallington, C. R. Morelock, and C. M. Monaco, History-dependent thermal expansion in NbO2F, Journal of Solid State Chemistry, vol.213, pp.38-42, 2014.
DOI : 10.1016/j.jssc.2014.02.003

W. Li, D. Corradini, M. Body, C. Legein, M. Salanne et al., Anatase Nanoparticles with Cationic Vacancies for Fast Lithium Storage, Chemistry of Materials, vol.27, issue.14, pp.5014-5019, 2015.
DOI : 10.1021/acs.chemmater.5b01407

URL : https://hal.archives-ouvertes.fr/hal-01204724

W. Li, M. Body, C. Legein, O. J. Borkiewicz, and D. Dambournet, Atomic Insights into Nanoparticle Formation of Hydroxyfluorinated Anatase Featuring Titanium Vacancies, Inorganic Chemistry, vol.55, issue.14, pp.7182-7187, 2016.
DOI : 10.1021/acs.inorgchem.6b01259

URL : https://hal.archives-ouvertes.fr/hal-01489042

W. Li, M. Body, C. Legein, and D. Dambournet, Sol???Gel Chemistry of Titanium Alkoxide toward HF: Impacts of Reaction Parameters, Crystal Growth & Design, vol.16, issue.9, pp.5441-5447, 2016.
DOI : 10.1021/acs.cgd.6b00910

URL : https://hal.archives-ouvertes.fr/hal-01489147

A. Demourgues, N. Penin, E. Durand, F. Weill, D. Dambournet et al., as a UV Absorber, Chemistry of Materials, vol.21, issue.7, pp.1275-1283, 2009.
DOI : 10.1021/cm8030297

URL : https://hal.archives-ouvertes.fr/hal-00374091

M. V. Reddy, S. Madhavi, G. V. Subba-rao, and B. V. Chowdari, Metal oxyfluorides TiOF2 and NbO2F as anodes for Li-ion batteries, Journal of Power Sources, vol.162, issue.2, pp.1312-1321, 2006.
DOI : 10.1016/j.jpowsour.2006.08.020

K. Tressaud, Amine, Dual Lithium Insertion and Conversion Mechanisms in a Titanium-Based Mixed-Anion Nanocomposite, J. Am. Chem. Soc, vol.133, pp.13240-13243, 2011.

Y. Zeng, W. Zhang, C. Xu, N. Xiao, Y. Huang et al., One-Step Solvothermal Synthesis of Single-Crystalline TiOF2 Nanotubes with High Lithium-Ion Battery Performance, Chemistry - A European Journal, vol.7, issue.13, pp.4026-4030, 2012.
DOI : 10.1002/chem.201103879

L. Chen, L. Shen, P. Nie, X. Zhang, and H. Li, Facile hydrothermal synthesis of single crystalline TiOF2 nanocubes and their phase transitions to TiO2 hollow nanocages as anode materials for lithium-ion battery, Electrochimica Acta, vol.62, pp.408-415, 2012.
DOI : 10.1016/j.electacta.2011.12.058

N. Louvain, Z. Karkar, M. El-ghozzi, P. Bonnet, K. Guérin et al., : a novel synthesis approach and proof of the Li-insertion mechanism, Journal of Materials Chemistry A, vol.22, issue.37, pp.15308-1531510, 1039.
DOI : 10.1039/C4TA02553A

J. M. Powell, J. Adcock, S. Dai, G. M. Veith, and C. A. Bridges, Role of precursor chemistry in the direct fluorination to form titanium based conversion anodes for lithium ion batteries, RSC Adv., vol.145, issue.108, pp.88876-88885, 2015.
DOI : 10.1039/b909692b

B. Li, D. Wang, Y. Wang, B. Zhu, Z. Gao et al., One-step synthesis of hexagonal TiOF2 as high rate electrode material for lithium-ion batteries: research on Li intercalation/de-intercalation mechanism, Electrochimica Acta, vol.180, pp.894-901, 2015.
DOI : 10.1016/j.electacta.2015.09.034

X. Rocquefelte, F. Goubin, Y. Montardi, N. Viadere, A. Demourgues et al., :?? Concept of Optical Channel as a Guide To Understand and Design Optical Materials, Analysis of the Refractive Indices of TiO 2 , TiOF 2 , and TiF 4 : Concept of Optical Channel as a Guide To Understand and Design Optical Materials, pp.3589-3593, 2005.
DOI : 10.1021/ic048259w

C. Z. Wen, Q. H. Hu, Y. N. Guo, X. Q. Gong, S. Z. Qiao et al., From titanium oxydifluoride (TiOF 2 ) to titania (TiO 2 ): phase transition and non-metal doping with enhanced photocatalytic hydrogen (H 2 ) evolution properties, Chem. Commun, pp.47-6138, 2011.

Z. Huang, Z. Wang, K. Lv, Y. Zheng, and K. Deng, Nanosheets with Exposed {001} Facets via Solvothermal Strategy, ACS Applied Materials & Interfaces, vol.5, issue.17, pp.8663-8669, 2013.
DOI : 10.1021/am4023048

J. Wang, F. Cao, Z. Bian, M. K. Leung, and H. Li, nanocubes with mesoporous structure, high activity and durability in visible light driven photocatalysis, Nanoscale, vol.46, issue.2, pp.897-902, 2014.
DOI : 10.1039/C3NR04489K

K. Vorres and J. Donohue, The structure of titanium oxydifluoride, Acta Crystallographica, vol.8, issue.1, pp.25-26, 1955.
DOI : 10.1107/S0365110X55000054

Y. Ren, Z. Liu, F. Pourpoint, A. R. Armstrong, C. P. Grey et al., Nanoparticulate TiO 2 (B): An Anode for Lithium-Ion Batteries, Angew. Chem. Int. Ed, pp.51-2164, 2012.

C. J. Silwood, I. Abrahams, D. C. Apperley, N. P. Lockyer, E. Lynch et al., Surface analysis of novel hydroxyapatite bioceramics containing titanium(iv) and fluoride, Journal of Materials Chemistry, vol.4, issue.16, pp.15-1626, 2005.
DOI : 10.1039/b417539e

J. Lhoste, M. Body, C. Legein, A. Ribaud, M. Leblanc et al., F???/OH??? substitution in [H4tren]4+ and [H3tren]3+ hydroxyfluorotitanates(IV) and classification of tren cation configurations, Journal of Solid State Chemistry, vol.217, pp.72-79, 2014.
DOI : 10.1016/j.jssc.2014.05.008

B. Bureau, G. Silly, J. Buzaré, and J. Emery, Superposition model for isotropic chemical shift in ionic fluorides: from basic metal fluorides to transition metal fluoride glasses, Chemical Physics, vol.249, issue.1, pp.89-104, 1999.
DOI : 10.1016/S0301-0104(99)00253-0

M. Body, G. Silly, C. Legein, and J. Buzaré, F Environment and Isotropic Chemical Shift in Barium and Calcium Fluoroaluminates, Inorganic Chemistry, vol.43, issue.8, pp.2474-2485, 2004.
DOI : 10.1021/ic049956r

R. K. Harris, P. Jackson, L. H. Merwin, B. J. Say, and G. Hagele, Perspectives in high-resolution solid-state nuclear magnetic resonance, with emphasis on combined rotation and multiple-pulse spectroscopy, Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, vol.84, issue.11, pp.3649-3672, 1988.
DOI : 10.1039/f19888403649