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Abstract

A RANS zonal pseudo-homogeneous 1D radial heat transfer model is derived
using an homogenization technique along with high-fidelity microscopic sim-
ulation to calibrate the model free parameters. Thus, it is brought to light
the importance of the mechanical dispersion in the mixing process, the sim-
ilarity between turbulent and dispersive dynamics, the existence of a near
wall zone characterized by a channeling effect which is responsible for the
thermal resistance over the zone. A linear law for the effective thermal con-
ductivity is proposed to assess the heat transfer within the disrupted thermal
boundary layer. The model showed its ability to estimate the effective con-
ductivity and the temperature field in the radial direction with satisfaction.
Very good agreements are also found in the near wall zone where the tem-
perature gradients are the highest. The model well estimated also the value
of the wall temperature and the wall heat transfer coefficient for an imposed
heat flux at the wall.

Keywords: Packed bed, turbulence, wall temperature, dispersion, porous
medium, up-scaling, CFD, heat transfer, boundary layer

1. Introduction

Packed beds with low tube-to-particle diameters ratio are widely used in
chemical engineering, e.g. in steam methane reforming processes for Hydro-
gen production. The heat transfer problem is intensively investigated in such
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systems as the local temperature drives directly the efficiency of the catalytic5

reactions occurring on the solid particles’ surface. The accurate prediction
of the radial temperature profile from the tube wall to the middle of the bed
is an important step towards the reliable assessment of reaction rates along
the packed bed. Another critical point justifying the development of radial
heat transfer models is the wall temperature assessment. Indeed, the near10

wall region faces strong thermal resistance as shown by the high temperature
gradient profiles over this region [1]. Accurate heat control is then required
near the wall as in the operating conditions a difference of 20 K at the tube
wall can divide its life time by two or more.

For high ratio between tube and particles diameters (N � 10), the radial15

packing configuration is almost homogeneous as the wall induced inhomo-
geneity is confined in the very near vicinity of the tube. Hence, one can
assume that both the axial velocity Uz and the effective thermal conductiv-
ity λr are constant in the radial direction and the extra near wall resistance
can be lumped in a wall heat transfer coefficient hw. These are the main20

hypotheses of the extensively used classical pseudo-homogeneous two dimen-
sional plug flow heat transfer model commonly referred to as the λr − hw
model [2].

However, discrepancies between literature correlations for λr [3] and namely
for hw [4] highlight that the assumed hypotheses have no more validity for25

relatively low tube-particle diameters ratio (N < 10) packed beds. Moreover,
experimental measurements [5] and recent CFD simulations of fixed bed re-
actors [6] highlight an oscillating profile of the radial void which smoothly
decreases with the distance from the wall. However, near wall profile displays
a steep decrease from the wall (where the void is equal to one) up to a dis-30

tance of dp/2, where dp is the particle diameter. The velocity profile which
is linked to the porosity profile displays the same features [6, 7]. The wall
heat transfer coefficient which is a sort of a boundary condition is no more
suitable for an extended wall zone (its width is not negligible compared to
the bulk zone). For a comprehensive review on radial heat transfer problem,35

see [8].
An alternative model to the λr−hw model [9, 10, 11, 12, 13], which is able

to dispense with the apparent wall heat transfer coefficient hw has been first
proposed by [14]. It consists of deriving a bed effective conductivity which
depends on the radial position. It was thus highlighted that the effective40

thermal conductivity λr(r) is sharply damped in the vicinity of the wall [15].
From this observation, numerous two-layer models were developed [16, 17, 18,
19, 13] to distinguish the near wall zone heat transfers from the bulk ones.
However, deep insights into the physical mechanisms were lacking among
those models. Then, Borkink et al. [20] bring to light the existing link45
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between the near wall channeling effect and the thermal resistance showing
that the near wall particular packing configuration is responsible for the
conductivity damping in the vicinity of the wall. More realistic models were
then proposed by authors [21]. For instance, Lerou et al. and Marivoet
et al.[22, 23] resolved the energy conservation equation with a void profile50

depending on the radial position and a velocity profile calculated with the
Brinkman-Darcy-Forchheimer (BDF, [24]) model. It was shown that models
tacking into account both the radial inhomogeneity and the flow dynamic
improve significantly the temperature profile prediction [12, 25].

The aim of this paper is to derive a new pseudo-homogeneous 1D radial55

model for the heat transfer in low-N packed beds, using the high-fidelity
microscopic CFD solutions. The main features of the present model are the
physical insights brought to the modeling of the near wall heat transfer mech-
anisms. The porous medium framework is used to up-scale unequivocally
pore scale relevant data obtained via high-fidelity 3D simulations to the re-60

actor scale. This is practically achieved extending the concept of Representa-
tive Elementary Volume (REV) to anisotropic wall bounded porous medium
[26]. Afterwards, turbulent flow governing pseudo-homogeneous equations
including mechanical dispersion are derived and validated against 3D de-
tailed numerical simulations. Then, the flow features are used to describe65

the thermal mixing and derive the radial effective convective conductivity
called for the 1D radial pseudo-homogeneous heat transfer model develop-
ment. Both wall temperature and the bed temperature profile are finally
validated over the reference data obtained performing 3D fine simulations at
the pore scale.70

2. 3D high-fidelity numerical simulations of turbulent flow and
heat transfers at the pore scale in packed beds and data up-
scaling

2.1. Packing/meshing step

A tubular random and periodic packing configuration with spheres is con-75

sidered (Fig.2). The ratio between tube and particle diameters (respectively
dt and dp) is taken equal to 10 (N = dt/dp = 10). The domain is composed of
835 particles and the average porosity is equal to φmoy = 0.443 (see Table 1).
The packing is generated thanks to the commercial algorithm DigiPacTM

which has demonstrated its capability to generate reliable and realistic tubu-80

lar packings mainly for spherical particles [27, 28, 29, 30]. The packing is
considered to be homogeneous in the axial (Fig.3) and azimuthal directions
but presenting radial inhomogeneity (Fig.4).
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During the mesh generation step, one has to face high skewed cells gen-
erated in the regions surrounding particle-particle or particle-tube contact85

points. Moreover, the distribution of pore size is quite large as far as ran-
dom packings are concerned. Thus, very narrow gaps can also be found
which is another source of low quality cells. To preclude convergence prob-
lems in CFD simulations, one can slightly modify the packing configuration
[31, 32, 33, 34, 6, 35, 36]. Local modifications of the geometry are recom-90

mended against global modifications. Indeed, global modifications can lead
errors on porosity and so on the pressure drop of 4% and 12−15% respectively
[37]. The strategy employed here [26] consists in first detecting particles one
close to another with a distance less than 1% of dp. For those particles, radius
is then increased by 2% of dp. The overlapping part are removed and the95

increased particles take then back their original size. A minimal gap between
particles is thus guaranteed (Fig.1). The same approach is applied for the
particle-tube contact points or narrow gaps. The tube radius is decreased
by 2% of dp and parts of particles laying outside of the new cylinder are
removed. The tube takes then back its original dimensions.100

2.2. Computational Fluid Dynamics (CFD) model setup

The fluid domain is meshed with tetrahedral elements and numerical sim-
ulations are performed with the commercial solver ANSYS Fluent 13.0. Pe-
riodic boundary conditions are set at the inlet/outlet faces imposing a mass
flow. Particles are assumed to be adiabatic and a constant heat flux is set105

on the tube wall. The Reynolds Averaged Navier-Stokes and energy equa-
tions are solved to get flow and temperature fields in the fluid domain. The
turbulence dynamic is described with the two-equation k− ε model. The en-
hanced wall treatment which combines a two-layer model with an enhanced
wall law is set to capture the near wall dynamic: when the mesh is fine110

enough (y+ ≈ 1), the viscous affected region is solved by the two-layer model
and when the mesh is coarse, a wall law is rather used (see ANSYS Docu-
mentation for further details). The near wall treatment used here is much
more suited for complex wall flow encountered in packed beds than a stan-
dard wall law. Indeed, the y+ values are spread over a wide range as they115

depend directly on both the local mesh size and the local flow configuration
(recirculating, squeezed, downward, accelerated or stagnant flow).

As for the numerical discretization, the first order upwind scheme is used
to solve momentum, energy and turbulence equations. The standard scheme
is used to solve the pressure and the pressure-velocity coupling is realized120

with the SIMPLE scheme.
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Particle Shape Number of particles N φmoy

Spherical 835 10 0.443

Table 1: Main characteristics of the present packed bed.

Figure 1: Contact points locally handled by creating a small gap between
particles.

Figure 2: Periodic random packing of spherical particles.

2.3. upscaling

In order to derive macroscopic governing equations for a turbulent flow
in porous media, both time and spatial averaging operators are applied to
instantaneous mass, momentum and energy conservation equations. The
averaging operators split instantaneous quantity into two parts: the mean
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quantity and its fluctuation [38]. Hence the time decomposition reads,

ϕ = ϕ̄+ ϕ
′
, (1)

where ϕ̄ = 1
∆t

∫ t+∆t

t
ϕdt is the time averaged quantity and ϕ

′
the time fluctu-

ation around the mean quantity. Following the same reasoning for the spatial
averaging operator, one can write

ϕ = 〈ϕ〉i + δϕ, (2)

where 〈ϕ〉i is the intrinsic average of ϕ in the fluid and δϕ the spatial devi-
ation. According to the scale separation’s assumption between microscopic
and macroscopic quantities, one can obtain 〈δϕ〉i = ϕ̄′ = 0. The volume
averaged quantity reads,

〈ϕ〉v =
1

V

∫
V

ϕdV, (3)

where V is a volume in which the average is carried out. It is also referred to
as the REV, the Representative Elementary Volume[39, 40]. A methodology
to define the appropriate REV for wall bounded medium presenting radial
heterogeneity has been developed in [26] and is used in the present study to
upscale unequivocally pore scale data to the observation scale (bed scale).
When one uses the right REV for volume averaging, it can be showed [38]

that the two averaging operators defined above permute 〈ϕ̄〉i = 〈ϕ〉i. When
the porous medium is saturated by the fluid, one can also link the intrinsic
average and the volume average by the following expression :

〈ϕ〉v = φ 〈ϕ〉i , (4)
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where φ =
Vf
V
, denotes the porosity. While applying the space averaging

operators to flow governing equations for instance, one needs to permute
derivatives and averaging operators. It is showed from [41],

〈∇ϕ〉v = ∇〈ϕ〉v +
1

V

∫
A

nnnϕdA, (5)

with dA an element of solid surface, nnn the normal vector directed from the
solid phase toward the fluid phase and A the solid surface.

Applying the volume averaging operator to the momentum and energy
conversation equations at the pore scale one gets, after some algebra, at the
macroscopic scale:

∇j(φ〈uj〉i) = 0 (6)

∇j[−φ〈uj〉i〈ui〉i + ν∇j[φ〈ui〉i]− δijφ
〈P 〉i

ρ
−φ〈Rij〉i︸ ︷︷ ︸

turbulent diffusion

−φ〈δuiδuj〉i︸ ︷︷ ︸
dispersion

]

+
ν

V

∫
∇juinjdS −

1

V ρ

∫
PnidS︸ ︷︷ ︸

viscous and pressure drag

= 0
(7)

where u
′
iu

′
j = Rij.

0 = (ρCp)f∇i

[
− φ〈ūi〉i〈T̄ 〉i−φ〈δūiδT̄ 〉i︸ ︷︷ ︸

dispersion

−φ〈u′iT ′〉i︸ ︷︷ ︸
turbulent diffusion

]
+∇i

[
(λfφ)∇i〈T̄ 〉i +

1

V

∫
niλfδT̄fds︸ ︷︷ ︸

tortuosity

] (8)

Both the second order moments and surface terms need a closure and those125

sub-filter terms can be assessed carrying out simulations within the REV
[42, 43].

Mesh convergence study is finally achieved for REV-averaged quantities.
Radial profiles of a certain number of the REV-averaged quantities are de-
picted on Figs. 5, 6, 7, 8, 9, 10 for different mesh densities. One can observe130

that a satisfactory convergence is obtained on all quantities of interest for
the present study.
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3. Macroscopic model for turbulent flow dynamic in packed beds

3.1. Turbulence in porous medium

Turbulence structures were observed by numerous experimental studies135

[44, 45, 46, 47] as soon as the Reynolds number based on pore size was
above a few hundreds. The experimentally observed deviation of the flow
dynamic to the Darcy law was thus attributed to the development of local
turbulence [48]. Turbulence models were then developed at the macroscopic
scale by applying volume averaging operator to Reynolds averaged Navier-140

Stokes equations (RANS) [42, 49, 50, 38].
A new concept was recently introduced by Teruel et al. [51, 52]. It

consists in not distinguishing time fluctuations from the spatial ones but in
considering fluctuations as the difference between the instantaneous quantity
and the double averaged (time and space) quantity.145

ψ(r, t) = ¯̄ψ(x, t) + ψ
′′
(r,x, t) (9)

with

¯̄ψ(x, t) =
1

∆t

∫
∆t

[ 1

Vf

∫
Vf

ψdV
]
dτ =

1

Vf

∫
Vf

[ 1

∆t

∫
∆t

ψdτ
]
dV (10)

and
¯̄
ψ

′′
(r,x, t) ∼= 0,

¯̄̄̄
ψ(x, t) ∼= ¯̄ψ(x, t) (11)

Thus, the total turbulent kinetic energy at the macroscopic scale becomes,

kTeruel =
u

′′
ju

′′
j

2

=
〈u′

ju
′
j〉i

2
+
〈δūjδūj〉i

2

= 〈k〉i +
〈δūjδūj〉i

2

(12)

It is made up of a turbulent part 〈k〉i and a dispersive part 〈kd〉i =
〈δūjδūj〉i

2
.

The dispersion can be significant [53] and its contribution to the total kinetic
energy is even above 60−70% [21] as far as packed beds are concerned (Figs.
11 and 12).
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. Us is the superficial velocity.

3.2. Macroscopic 〈K〉i − 〈ε〉i model150

Following Teruel et al., a two equation model is derived at the macroscopic
scale to describe the total turbulence. The total kinetic energy is defined as

〈K〉i = 〈k〉i + 〈kd〉i (13)
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where 〈k〉i and 〈kd〉i describe respectively the time and spatial fluctuations
at the macroscopic scale. The equation governing the total kinetic energy is
obtained as follows: First, the volume averaging operator is applied to the
turbulent kinetic energy at the pore scale to up-scale it at the macroscopic
scale (see Appendix A). The governing equation for the dispersive part is155

then obtained (see Appendix B) [54]. They are finally summed up to get the
governing equation for the total fluctuations.

0 = −∇j[φ〈uj〉i〈K〉i] + ν∇2
j [φ〈K〉i]− φ[〈Rij〉i + 〈δuiδuj〉i]∇j〈ūi〉i

−∇j

(
φ[〈

P ′u
′
j

ρ
+ u

′
iu

′
iu

′
j〉i +

1

ρ
〈δujδP 〉i + 〈δuiδuiδuj〉i]

)
− φ〈ε〉i − φ〈εd〉i

−∇j[φ〈δūjδk〉i] +
ν

V

∫
∇jknjdS + 〈uj〉i∇jφ[3〈kd〉i −

〈ui〉i2

2
]

+
〈ui〉i

ρV

∫
δPnidS −

ν〈ui〉i

V

∫
∇jδuinjdS

−∇j[φ〈δuiδRij〉i]− ν∇j[∇jφ
〈ui〉i2

2
] + φ〈δuiδuj∇jδui〉i

(14)

One can recognize on the right hand side the convection term, the molecular
diffusion, the production term, the dynamic (turbulent and dispersive) dif-
fusion and the energy destruction term, respectively. The other terms stem160

from the averaging operations and the radial inhomogeneity.
For configurations under consideration, one can show that the dispersive

part of the dissipation rate (〈εd〉i = ν〈∂δūj
∂xj

∂δūj
∂xj
〉i) is negligible (Fig. 13).

Thus, 〈εT 〉i ≈ 〈ε〉i.
The governing equation for the total dissipation rate becomes,

0 = −∇j(φ〈ε〉i〈uj〉i) +∇j[
(
ν +
〈νt〉i

σε

)
∇j(φ〈ε〉i)]−

C1

〈k〉i
〈Rij〉i∇j(φ〈ui〉i)〈ε〉i

− C2φ

〈k〉i
〈ε〉i2 −∇j(φ〈δεδuj〉i) +∇j

((ν + 〈νt〉i/σε)
V

∫
εnjdS

)
+

1

V

∫
ν(∇jε)njdS +

1

σε
∇j(φ〈δνt∇jδε〉i)−

C1φ

〈k〉i
(
〈δRij∇jδui〉i〈ε〉i

+ 〈δεδRij〉i∇j〈ui〉i + 〈Rij〉i〈δε(∇jδui)〉i + 〈δRijδε(∇jδui)〉i
)
− C2

〈k〉i
φ〈δεδε〉i

(15)
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Figure 13: Radial profile of the turbulent (〈ε〉i ) an dispersive (〈εd〉i) part of
the total dissipation rate at the macroscopic scale.

3.3. Closure relations165

Considering a fully developed flow which enables to neglect the axial

macroscopic gradient (∂〈·〉
i

∂z
), (7) can be rewritten in cylindrical coordinates,

0 = −ρ
r
∇r[rφ〈ur〉i〈uz〉i]−∇z[φ〈P 〉i]−

ρ

r
∇r[rφ〈Rzr〉i + rφ〈δurδuz〉i]

+ µ
1

r
∇r[r∇r(φ〈uz〉i)] +

µ

V

∫
∇iuznidS −

1

V

∫
PnzdS

(16)

with i = z, r. It can be numerically verified that the second order moments
appearing in the macroscopic momentum conservation equation (16) can be
linked to the velocity gradient thanks to a dynamic viscosity (Fig. 14).

−φ[〈Rzr〉i + 〈δurδuz〉i] = 〈νT 〉i∇r[φ〈ūz〉i] (17)

where the dynamic viscosity reads,

〈νT 〉i = 0.09
〈K〉i2

〈ε〉i
×
[1

2

(
1− tanh[20(r − (R− dp/2))/dp]

)
× Cm1

+
1

2

(
1 + tanh[20(r − (R− dp/2))/dp]

)
× Cm2

] (18)

〈K〉i is the total kinetic energy. It is worth noting that a near wall zone
is identified with a thickness of dp/2. The dynamic viscosity is lower in the
vicinity of the wall than in the bulk zone and this property is captured thanks
to the coefficients Cm1 and Cm2.
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The surface terms is then closed with a modified two-zonal Ergun law
[55].

µ

V

∫
∇iuznidS −

1

V

∫
PnzdS = −

[1

2

(
1− tanh[20(r − (R− dp/2))/dp]

)
CF1

+
1

2

(
1 + tanh[20(r − (R− dp/2))/dp]

)
CF2

]
× ρ(1− φ)0.1

dpφ5
[φ〈ūz〉i]2

(19)

In the following, the macroscopic equations are written in their superficial
forms (ψ)s = φ〈ψ̄〉i. Thus, the macroscopic Navier-Stokes equations reads,

∇z[(uz)s] = 0 (20)

0 = −∇z(P )s +
1

r
∇r[r

{
µ+ ρ(νT )s

}
∇r(uz)s]− h(φ, dp)(uz)

2
s (21)

with

(νT )s = 0.09
(K)2

s

(ε)s
×
[1

2

(
1− tanh[20(r − (R− dp/2))/dp]

)Cm1

φ

+
1

2

(
1 + tanh[20(r − (R− dp/2))/dp]

)Cm2

φ

] (22)
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and

h(φ, dp) = ρ
(1− φ)0.1

dpφ5
×
[1

2

(
1− tanh[20(r − (R− dp/2))/dp]

)
CF1

+
1

2

(
1 + tanh[20(r − (R− dp/2))/dp]

)
CF2

] (23)

The fully developed total kinetic energy equation in the cylindrical coor-
dinates reads,

0 =
1

r
∇r(rν∇r[φ〈K〉i])− φ[〈Rzr〉i + 〈δuzδur〉i]∇r〈ūz〉i

− 1

r
∇r

(
rφ[〈P

′u′
r

ρ
+ u

′
iu

′
iu

′
r〉i −

1

ρ
〈δurδP 〉i − 〈δuiδuiδur〉i]

)
− φ〈ε〉i

− 1

r
∇r[rφ〈δūrδk〉i] +

ν

V

∫
∇iknidS

+
〈uz〉i

ρV

∫
δPnzdS −

ν〈uz〉i

V

∫
∇iδuznidS

− 1

r
∇r[rφ〈δuiδRir〉i]− ν

1

r
∇r[r∇rφ

〈uz〉i2

2
] + φ〈δuiδuj∇jδui〉i

(24)

with i, j = z, r, θ. The production term is rewritten as,

− φ[〈Rir〉i + 〈δuiδur〉i]∇r〈ūi〉i = −φ[〈Rzr〉i + 〈δuzδur〉i]∇r[φ〈ūz〉i]

− φ[〈Rzr〉i + 〈δuzδur〉i]×
[1− φ

φ
∇r[φ〈ūz〉i]−

∇rφ

φ
〈ūz〉i

]
= (νT )s

[
∇r(uz)s

]2

+ (νT )s

[
∇r(uz)s

]
×
[1− φ

φ
∇r(uz)s −

∇rφ

φ2
(uz)s

] (25)

and the flux terms can be clustered as

−
(
φ[〈P

′u′
r

ρ
+ u

′
iu

′
iu

′
r〉i −

1

ρ
〈δurδP 〉i − 〈δuiδuiδur〉i + 〈δūrδk〉i + 〈δuiδRir〉i]

+ ν∇rφ
〈uz〉i2

2

)
=

(νT )s
σK

[
∇r(K)s

]
(26)

where the macroscopic turbulent Prandtl number σK is to be determined.
The remaining terms are finally clustered as an effective production which
includes sub-filter production and the inhomogeneous part of the macroscopic
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production.

ν

V

∫
∇iknidS +

〈uz〉i

ρV

∫
δPnzdS −

ν〈uz〉i

V

∫
∇iδuznidS + φ〈δuiδuj∇jδui〉i

+ (νT )s

[
∇r(uz)s

]
×
[1− φ

φ
∇r(uz)s −

∇rφ

φ2
(uz)s

]
= f(φ)(uz)

3
s

(27)

where f(φ) is a function to be determined. The macroscopic governing equa-
tion for the total kinetic energy reads finally,

0 =
1

r
∇r[r

(
ν +

(νT )s
σK

)
∇r(K)s] + (νT )s

[
∇r(uz)s

]2

+ f(φ)(uz)
3
s − (ε)s (28)

The macroscopic dissipation rate equation becomes in cylindrical coordi-
nates,

0 =
1

r
∇r[r

(
ν +
〈νt〉i

σε

)
∇r(φ〈ε〉i)]−

C1

〈k〉i
〈Rzr〉i∇r(φ〈uz〉i)〈ε〉i −

C2φ

〈k〉i
〈ε〉i2

− 1

r
∇r[rφ〈δεδur〉i] +

1

r
∇r

(
r

(ν + 〈νt〉i/σε)
V

∫
εnrdS

)
+

1

V

∫
ν(∇iε)nidS

+
1

rσε
∇r[rφ〈δνt∇rδε〉i]−

C1φ

〈k〉i
(
〈δRij∇iδuj〉i〈ε〉i + 〈δεδRzr〉i∇r〈uz〉i

+ 〈Rir〉i〈δε(∇rδui +∇iδur)〉i + 〈δRijδε∇jδui〉i
)
− C2

〈k〉i
φ〈δεδε〉i

(29)

with i, j = z, r, θ. the production term can be rewritten as

− C1

〈k〉i
〈Rzr〉i∇r(φ〈uz〉i)〈ε〉i ≈ −φ[〈Rzr〉i + 〈δuzδur〉i]∇r[φ〈ūz〉i]

Cε1
〈K〉i

〈ε〉i

+ φ〈δuzδur〉i∇r[φ〈ūz〉i]
Cε1
〈K〉i

〈ε〉i

(30)

The overall fluxes are clustered as(〈νt〉i
σε
∇r(φ〈ε〉i)− φ〈δεδur〉i +

(ν + 〈νt〉i/σε)
V

∫
εnrdS

+
1

σε
φ〈δνt∇rδε〉i

)
=

(νT )s
σεK

[
∇r(ε)s

] (31)
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where σεK is the Prandtl number associated to the macroscopic dissipation
rate. The destruction term becomes,

−C2φ

〈k〉i
〈ε〉i2 − C2

〈k〉i
φ〈δεδε〉i ≈ −Cε2

(ε)2
s

(K)s
(32)

The remaining terms are once again clustered as an effective production

1

V

∫
ν(∇iε)nidS −

C1φ

〈k〉i
(
〈δRij∇iδuj〉i〈ε〉i + 〈δεδRir〉i∇r〈ui〉i

+ 〈Rir〉i〈δε(∇rδui +∇iδur)〉i + 〈δRijδε∇jδui〉i
)

+ φ〈δuzδur〉i∇r[φ〈ūz〉i]
Cε1
〈K〉i

〈ε〉i = g(φ, dp)(uz)
4
s

(33)

where g(φ, dp), a function to be determined.170

The governing equation describing the macroscopic dissipation rate reads
then in its superficial form,

0 =
1

r
∇r[r

(
ν +

(νT )s
σεK

)
∇r(ε)s] + Cε1

(ε)s
(K)s

(νT )s

[
∇r(uz)s

]2

+ g(φ, dp)(uz)
4
s − Cε2

(ε)2
s

(K)s

(34)

with Cε1 and Cε2 model coefficients to be determined.

3.4. model validation

The following expression is suggested to represent the radial void profile
at the macroscopic scale (Fig.15).

φ∗(r?) =

{
1 si r? = 0
0.465[1 + 1.1 exp(−48r?2)] + 0.16 exp(−0.2r?2) sin(2.46πr?) sinon

(35)
with r? = (R− r)/dp.

Both the model coefficients and functions are obtained by optimizing the
matching with the reference data. Hence, Cm1 = 0.444, Cm2 = 0.05, σK = 1,
σεK = 1.3, Cε1 = 1.44, Cε2 = 1.92. Then,

CF1(Rep) =

{
0.26Re−0.14

p − 0.02 4000 ≤ Rep ≤ 19500
0.046 19500 ≤ Rep ≤ 31000

(36)

CF2(Rep) =

{
5.5× 10−6Rep + 0.2 4000 ≤ Rep ≤ 19500
0.1 19500 ≤ Rep ≤ 31000

(37)
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Figure 15: Validation of the suggested expression for the porosity profile (φ∗)
against the porosity characterizing the reference system (φ).

f(φ∗) = ρCK1(Rep)
(1− φ∗)
φ∗2

× 1

2

(
1− tanh[20(r − (R− dp/2))/dp]

)
+
[
ρCK2(Rep)φ

∗5 + ρCK3(Rep)
(1− φ∗)
φ∗4

exp(−4(r − (R− dp/2))/dp)
]

× 1

2

(
1 + tanh[20(r − (R− dp/2))/dp]

)
(38)

with,

CK1(Rep) =

{
−0.78Re0.5

p + 132 4000 ≤ Rep ≤ 15600
38.41 15600 ≤ Rep ≤ 31000

(39)

CK2(Rep) =

{
−8× 10−4Rep + 20 4000 ≤ Rep ≤ 19600
5.6 19600 ≤ Rep ≤ 31000

(40)

and

CK3(Rep) =

{
(5× 10−6Rep)

−1 + 12 4000 ≤ Rep ≤ 19600
23.11 19600 ≤ Rep ≤ 31000

(41)

17



Finally,

g(φ∗, dp) = ρCE1(Rep)
(1− φ∗)0.5

d2
pφ
∗5 × 1

2

(
1− tanh[20(r − (R− dp/2))/dp]

)
+ ρCE2(Rep)

(1− φ∗)0.4

d2
pφ
∗8 × 1

2

(
1 + tanh[20(r − (R− dp/2))/dp]

)
(42)

with

CE1(Rep) =

{
−0.049Re0.26

p + 0.66 4000 ≤ Rep ≤ 15600
0.069 1560 ≤ Rep ≤ 31000

(43)

and

CE2(Rep) =

{
(0.01Rep)

−0.8 4000 ≤ Rep ≤ 19600
0.016 19600 ≤ Rep ≤ 31000

(44)

One has to notice that all those coefficients tend towards a constant value at
high Rep (Fig. 16, 17, 18).
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Figure 16: Reynolds dependence of CF1 and CF2.

175

In the following, superscript ∗ stands for quantities obtained performing
macro-scale simulations. Pressure drops evaluated with 3D simulations at
the pore scale and the ones assessed performing macroscopic simulations are
reported on the Table 2 for a few chosen Reynolds numbers. Very good agree-
ments are found between pore and bed scale simulations. Radial profiles of180

the mean velocity, the total turbulent kinetic energy and the macroscopic
dissipation rate obtained performing macroscopic simulations are validated

18
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Figure 17: Reynolds dependence of CK1, CK2 and CK3.
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Figure 18: Reynolds dependence of CE1 and CE2

against the up-scaled microscopic ones (Figs. 19, 20, 21). Indeed, the os-
cillating profile and the near wall maximum are quite well recovered for all
those quantities, even if the radial oscillations for the dissipation rate are not185

recovered by the macroscopic model. This shows that there exists local diffu-
sion damping that should be taken into account by a radially varying Prandtl
number associated to the dissipation rate, σεK . However, it is particularly
worth noting that the near wall zone flow dynamic is well assessed.



Rep ∆P/∆L(Pascal/m) (∆P )∗/∆L(Pascal/m) Error

2 000 -2272.8 -2148.9 5.45 %
4 000 -7841.1 -7582.1 3.30 %
7 800 -26668.3 -26829.5 0.6 %
15 600 -89880.4 -91042.5 1.3 %
19 600 -133767.5 -130105.8 2.7%
23 300 -185831.1 -186726.7 0.5 %

Table 2: Pressure drop evaluation. Micro(∆P/∆L) vs. Macro ((∆P )∗/∆L)
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Figure 19: Radial profile of the mean velocity, Micro (uz)s vs. Macro (uz)
∗
s.
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Figure 20: Radial profile of the total kinetic energy, Micro (k)s vs. Macro
(k)∗s.
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4. Pseudo-homogeneous 1D macroscopic radial model for heat trans-190

fer

4.1. Model of Mathey

The macroscopic equation governing the heat transfer (8) can be rewritten
in cylindrical coordinates as,

(ρCp)fφ〈ūz〉i
∂

∂z
〈T̄ 〉i =− (ρCp)f

1

r

∂

∂r

[
rφ[〈δurδT 〉i + 〈u′rT ′〉i + 〈ūr〉i〈T̄ 〉i]

]
+

1

r

∂

∂r
r
[
(λfφ)

∂

∂r
〈T̄ 〉i +

1

V

∫
nrλfδT̄fds

]
(45)

As far as packed bed configurations are concerned, the surface term which
represents the tortuosity can be neglected compared to the turbulent and
dispersive fluxes (Fig.22).
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Figure 22: Radial profile of the tortuosity ( 1
V

∫
nrλfδT̄fds), turbulent flux (

−φ(ρCp)f〈u′rT ′〉i) and dispersive flux (−φ(ρCp)f〈δurδT 〉i). Rep = 14400.

195

The concept of Teruel et al.[51, 52] which consists of clustering disper-
sive and turbulent fluctuations was extended by Mathey [21] to heat transfer
problems. Indeed, the second order terms appearing in the energy conser-
vation equation (45) were related to the temperature gradient through an
effective conductivity depending on the radial position.

−(ρCp)fφ[〈δurδT 〉i + 〈u′rT ′〉i] = λeff (r)
∂

∂r
〈T̄ 〉i (46)



with,

λeff = φ(ρCp)f
〈νT 〉i

σt
(47)

where σt is the macroscopic Prandtl number. The dynamic viscosity is de-
fined as

〈νT 〉i = Cµ
〈K〉i2

〈ε〉i
(48)

where 〈K〉i is the total kinetic energy (turbulence and dispersion are both
included in it). With this approach, Mathey was able to derive a simple
correlation for the medium effective conductivity [21],

λeff (r)

λf
= φ(ρCp)f

〈νT 〉i∞
λfσt

=
C2
kCµ
σtCε

f 2
k (φ(r))

fε(φ(r))
Pr ·Rep

(49)

with Pr the molecular Prandtl number, Rep the Reynolds number based
on the superficial velocity and the particle diameter, Ck and Cε are model
constants which represent respectively the strength of the kinetic energy sub-
filter production and the dissipation rate sub-filter production. fε(φ(r)) and
fk(φ(r)) are functions depending on the porosity and damping to zero when200

getting closer to the wall. The radial profile of the effective conductivity was
hence successfully estimated particularly in the bulk zone [56]. The model
proposed by Mathey is improved here by tacking into account the radial
inhomogeneity and the near wall zone heat transfer.

4.2. The bulk zone: r < R− dp/2205

The effective convective conductivity in the radial direction is defined as

λeff (r) = −ρfφ(Cp)f
〈δurδT 〉i + 〈u′rT ′〉i + 〈ūr〉i〈T̄ 〉i

∂
∂r
〈T̄ 〉i

(50)

The model proposed by Mathey [21] becomes,

(λeff )s = ρf (Cp)f
φ(νT )s
σt1(Rep)

(
1− a1(Rep)R∇rφ

)
(51)

with (νT )s the dynamic viscosity defined in the previous section (νT )s =

0.09 (K)2s
(ε)s

Cm1

φ
(see equation (18)), ρf the fluid density, (Cp)f the fluid heat

capacity, R the tube radius, σt1(Rep) the macroscopic Prandtl number and
a1(Rep) a Reynolds depending constant measuring the inhomogeneity effect.



The porosity gradient is related to the solid surface distribution within the
REV according to the following expression [41]

∇iφ = − 1

V

∫
S

nidS (52)

When the medium is homogeneous (− 1
V

∫
S
nidS = 0), one gets (λeff )s =

ρf (Cp)f
φ(νT )s
σt1b(Rep)

.

4.3. The near wall zone: R− dp/2 ≤ r < R− dp/10

It was shown that the near wall zone is affected by a channeling effect.
Indeed, the near wall dispersive mixing is reduced with the near wall void
increase imposed by the packing configuration. Thus, even if the Reynolds
number is locally increased, a significant part of the supplied heat at the
wall is convected along the tube wall by the channeling effect. Therefore, the
effective conductivity is weighted by the ratio between the total (turbulent
and dispersive) mixing strength and the near wall channeling effect in order
to assess the heat transfer efficiency in the near wall region.

(λeff )s = ρf (Cp)f
φ(νT )s
σt2(Rep)

(
1− a2(Rep)R∇rφ

)
×
(√(K)s

(uz)s

)γ
(53)

with γ a constant.

4.4. Heat transfer in the boundary layer: R− dp/10 ≤ r < R210

In the viscous sublayer, the convective part is damped to zero and the
effective conductivity is reduced to the molecular conductivity.

(λeff )s = φλf r+ < r+
L (54)

with λf the fluid conductivity, r+ = (R − r)uτ/ν wall distance expressed in
wall unit and r+

L the viscous sublayer thickness of the macroscopic model.
For the range of Reynolds numbers considered in the study (operating

conditions), the boundary layer zone r+
Lν/uτ ≤ R − r < dp/10 includes

both the logarithmic and buffer zones. The macroscopic energy conservation
equation over the boundary layer zone can be simplified as

1

r

∂

∂r
r
[
(φλeff )

∂

∂r
〈T̄ 〉i

]
= A (55)

where A a constant assessing the boundary layer overall heat transfer in the
axial direction.



We consider the case where the solid particles slightly disturb the thermal
boundary layer. The temperature field can then be split up according to

〈T̄ 〉i = 〈T̄ 〉i0 + ε〈T̄ 〉i1 (56)

with ε << 1.215

0 order term in ε:
The temperature field is assumed to be logarithmic over the considered

zone in the absence of solid particles. Thus,

1

d2
p(R/dp − r?)

∂

∂r?
(R/dp − r?)

[
(φλeff )

∂

∂r?
〈T̄ 〉i0

]
= A

∂

∂r?

[
(φλeff )

∂

∂r?
〈T̄ 〉i0

]
= A · d2

p as r? <<
R

dp[
(φλeff )

∂

∂r?
[a log(r?) + b]

]
= A(1)r? +B(Rep)

φλeff (r
?) = A(2)r?2 +B(1)(Rep)r

?

φλeff (r
?) u B(1)(Rep)r

? as r? << 1

(57)

where r? = (R− r)/dp.
One can deduce that the effective conductivity is linear when the solid

particles are considered to keep weak interactions with the wall boundary
layer. It is consistent with the empirical correlation derived by [57]. The220

case of a strongly disturbed boundary layer is discussed in Appendix C.
Finally, the effective conductivity in the entire medium reads,
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Rep K1 K2 a1 a2 B(1)

4 000 2.71× 10−1 3.81× 10−2 5× 10−2 6.25× 10−2 8.55× 10−1

7 800 2.85× 10−1 3.69× 10−2 5.26× 10−2 6.07× 10−2 1.71
15 600 3.61× 10−1 3.59× 10−2 6.67× 10−2 5.88× 10−2 2.56
19 500 3.61× 10−1 3.39× 10−2 6.67× 10−2 5.56× 10−2 2.56
23 300 3.61× 10−1 3.39× 10−2 6.67× 10−2 5.56× 10−2 2.56

Table 3: The macroscopic heat transfer coefficients values at different
Reynolds numbers.

where (νT )s is the dynamic viscosity defined by (22), the total kinetic
energy (K)s and the axial velocity (uz)s are obtained resolving the sys-
tem of equations (20), (21), (28) and (34). Macorscopic thermal Prandtl225

numbers can be related to the molecular Prandtl number Pr, σt1(Rep) =
Pr ·K1(Rep)/φ and σt2(Rep) = Pr ·K2(Rep)/φ with Pr = 0.72 for the con-
sidered fluid. Finally, γ = 0.5 and r+

L = 3. The other coefficients values are
reported in Table 3. It is worth noting that all coefficients tend to a constant
value at high Reynolds, showing that the heat transfer mechanisms reach an230

equilibrium at high Reynolds.

4.5. Model validation

Macroscopic simulations are performed with the following boundary con-
ditions: a constant heat flux at the wall, inlet and outlet boundaries are
linked as periodic imposing a mass flow, then the overall heat flux brought235

at the tube wall is removed at the outlet (ṁCp[Tbulk,exit − Tbulk,inlet]). The
near wall mesh is fine enough to keep y+ ≈ 1.

The radial profile of the effective thermal conductivity is well recovered
and very good agreements are found in the near wall region where the tem-
perature gradients are huge (Fig. 23). Thus, the radial profile of the tem-240

perature field matches well with the up-scaled pore scale reference data (Fig.
24). The wall temperature is also assessed with satisfaction (Table 4). The
wall heat flux coefficient is then computed and very good agreements are
found between the 1D macroscopic model and the REV-averaged 3D pore
scale simulations (Tables 5 and 6).245

From the simulation data a correlation for the wall heat transfer can be
deduced (Fig. 25):

Nuw =
Qdp

λf (Tw − Tb)
= 0.1Re0.81

p (59)



Rep Tw micro (K) Tw macro (K) |∆Tw| (K)
4 000 1333.59 1334.724 1.134
7 800 1090.04 1091.4664 1.426
15 600 968.54 961.153 7.39
19 500 942.655 944.04 1.39
23 300 924.75 932.47 7.72

Table 4: Wall temperature, Micro vs. Macro.

Rep Tb micro (K) Tb macro (K) |∆Tb| (K)
4 000 829.46 822.87 6.59
7 800 813.88 811.96 1.92
15 600 806.55 805.35 1.2
19 500 805.22 804.14 1.08
23 300 804.18 801.3 2.88

Table 5: Bulk temperature, Micro vs. Macro.

with the bulk temperature Tb =
∫R
0 rφ〈ūz〉i〈T̄ 〉idr∫R

0 rφ〈ūz〉idr
.

The correlation found in the present study agrees well with the correla-
tions one can find in the literature. As it can be seen in the figure 26, the
present correlation’s trend and the range of the wall heat transfer coefficient
values are consistent with those existing in the literature. Indeed, the slope250

given by the present correlation is very close to the one reported by [4]. It
is worth noting that correlations, except the one presented in the present
study and the one derived in [58], consider the temperature jump between
the wall temperature and the fluid temperature at the wall Tw − T (r = R)
( Nuw = Qdp

λf (Tw−T (r=R))
). Consequently, the range of values for the wall heat255

transfer coefficient found in this study has to be compared to the correlation
derived in [58]. One can thus be satisfied by the agreement found between
the two of them.



Rep Nuw micro Nuw macro |∆Nuw|
4 000 78.84 77.65 1.5%
7 600 143.92 142.2 1.2%
15 600 245.35 255.09 3.98%
19 500 289.18 284.09 1.76%
23 300 329.63 303 8.08%

Table 6: Evaluation of the wall heat transfer coefficient Nuw = Qdp
λf (Tw−Tb)

.
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Figure 23: Radial profile of the effective thermal conductivity, Micro φλeff
vs. Macro φ∗λ∗eff .
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5. Conclusion

The present study can be seen as an elaboration and an extension of the260

previous work achieved namely by [26] and [21]. Here, a flow dynamic based
two-zonal pseudo-homogeneous 1D radial heat transfer model is derived with
a deep insight into the near wall zone heat resistance, which is the most
critical point as far as heat control in tubular catalytic reactors is concerned.
Even if the model is quite complex and depends on numerous correlations265

fitted on 3D CFD pore scale simulations results, the present model has the
merit of depicting clearly physical mechanisms responsible for the near wall
heat resistances and proposing a methodology to take them into account in
a 1D radial model. It can be easily coupled to the 1D plug flow model when
a detailed analysis is needed for instance in attempts to reduce the near wall270

heat resistance for safety analysis or process optimization studies.
The methodology developed in the present study and the main results are

summarized as follow: a reference data describing the pore scale flow dynamic
and heat transfers in packed bed systems is generated by tacking advantage
of the CFD tools. A set of criteria is defined to enable the pore scale data’s275

unequivocal up-scaling to the bed scale [26]. The collected information is
then used to construct a set of equations which is able to predict the flow
dynamic (turbulent and dispersive mixing) mechanisms and the radial heat
transfers at the macroscopic scale. It is for instance highlighted that transfer
mechanisms are mainly driven by the dispersion and that the second order280

dispersive fluctuations observe the Boussinesq hypothesis at the macroscopic
level. Moreover, a near wall zone with a thickness of dp/2 is identified. The
channeling effect occurring in the near wall zone is observed to be responsible
for the thermal resistance existing in this zone. Indeed, The dynamic viscos-
ity is damped (decrease of the dispersive mixing) which leads to a damped285

heat transfers over this region. Finally, considering a weakly disrupted ther-
mal boundary layer, a linear law for the effective conductivity is proposed to
estimate the boundary layer heat transfer. It enabled to succesfully assess
the wall temperature and the wall heat transfer coefficient.

Appendix A. up-scaling the turbulent kinetic energy290

the governing equation for the turbulent kinetic energy at the pore scale
reads,

∂k

∂t
+∇jkuj = −∇j[

P ′u
′
j

ρ
+ u

′
iu

′
iu

′
j] + ν∇2

jk − u
′
iu

′
j

∂ui
∂xj
− ε (A.1)



Applying the volume averaging operator to (A.1), one gets,

φ
∂〈k〉i

∂t
= −∇j[φ〈uj〉i〈k〉i] + ν∇2

j [φ〈k〉i]− 〈Rij〉i∇j[φ〈ūi〉i]

−∇j

(
φ〈[

P ′u
′
j

ρ
+ u

′
iu

′
iu

′
j]〉i
)
− φ〈ε〉i

− φ〈δRij∇jδūi〉i +
ν

V

∫
∇jknjdS −∇j[φ〈δūjδk〉i]

(A.2)

where u
′
iu

′
j = Rij.

Appendix B. dispersive kinetic energy

Subtracting (7) from the pore scale momentum conservation equation and
multiplying by δui the obtained equation and finally applying the volume
averaging operator, one gets

0 = −〈δui∇j[〈ui〉iδuj]〉v − 〈δui∇j[〈uj〉iδui]〉v − 〈δui∇i
δP

ρ
〉v

+ ν〈δui∇2
jδui〉v − 〈δui∇j[δuiδuj]〉v − 〈δui∇jδRij〉v

(B.1)

which can be rearranged to obtain the governing equation for the kinetic
energy of the dispersive fluctuations.

0 = −∇j[φ〈uj〉i〈kd〉i]−
1

ρ
∇i[φ〈δuiδP 〉i]−∇j[φ〈δuiδuiδuj〉i]

+ ν∇2
j [φ〈kd〉i]− φ〈εd〉i − 〈δuiδuj〉i∇j[φ〈ui〉i] +

〈ui〉i

ρV

∫
δPnidS

− ν〈ui〉i

V

∫
∇jδuinjdS + 〈uj〉i∇jφ[3〈kd〉i −

〈ui〉i2

2
]

− ν∇j[∇jφ
〈ui〉i2

2
] + φ〈δuiδuj∇jδui〉i + φ〈δRij∇jδui〉i

−∇j[φ〈δuiδRij〉i] + [〈Rij〉i + 〈δuiδuj〉i]〈ui〉i∇jφ

(B.2)

Appendix C. Strongly disrupted boundary layer

In this case, the temperature field can be split up according to

〈T̄ 〉i = 〈T̄ 〉i0 +
〈T̄ 〉i1

ε
(C.1)



with ε << 1. Thus,

∂

∂r?

[
(φλeff )

∂

∂r?
〈T̄ 〉i

]
= A(3)

∂

∂r?

[
(φλeff )

∂

∂r?

(
ε〈T̄ 〉i0 + 〈T̄ 〉i1

)]
= εA(3)

(C.2)

0 order term in ε:

∂

∂r?

[
(φλeff )

∂

∂r?
〈T̄ 〉i1

]
= 0 (C.3)

As the disruption is generated by the solid particles, one can relate it to295

the spatial fluctuation and seek 〈T̄ 〉i1 in the form [63],

〈T̄ 〉i1 = η(Rep)∇r〈T̄ 〉i0 (C.4)

Tacking into account the closure (C.4) in (C.3) one can deduce,

φλeff (r
?) = η(1)(Rep)r

?2 (C.5)

The profile is hence showed to be quadratic within a highly disturbed bound-
ary layer. It is consistent with the empirical expression derived in [10].

References300

[1] A. P. D. Wasch, G. F. Froment, Heat transfer in packed beds, Chem.
Eng. Sci. 27 (1972) 567–576.

[2] G. Froment, Analysis and design of fixed bed catalytic reactors, Chem.
Reaction Eng. 109 (1972) 1–55.

[3] J. Beek, Design of packed catalytic reactors, Adv. Chem. Eng. 3 (1962)305

203–271.

[4] C. Li, B. Finlayson, Heat transfer in packed beds - a reevaluation, Chem.
Eng. Sci. 32 (1977) 1055–1066.

[5] O. Bey, G. Eigenberger, Fluid flow through catalyst filled tubes, Chem
Eng. Sci. 52 (1997) 1365–1376.310

[6] T. Eppinger, K. Seidler, M. Kraume, Dem-cfd simulations of fixed bed
reactors with small tube to particle diameter ratios, Chem. Eng. J. 166
(2011) 324–331.



[7] M. Behnam, A. Dixon, M. Nijemeisland, E. Stitt, A new approach to
fixed bed radial heat transfer modeling using velocity fields from com-315

putational fluid dynamics simulations, Ind. Eng. Chem. Res. 52 (2013)
15244–15261.

[8] A. Dixon, Fixed bed catalytic reactor modelling - the radial heat transfer
problem, Canadian J. Chem. Eng. 90 (2012) 507–527.

[9] J. Papageorgiou, G. Froment, Simulation models accounting for radial320

voidage profiles in fixed bed reactors, Chem Eng. Sci. 50 (1995) 3043–
3056.

[10] M. Winterberg, E. Tsotsas, A simple and coherent set of coefficients
for modelling of heat and mass transport with and without chemical
reaction in tubes filled with spheres, Chem. Eng. Sci. 55 (2000) 967–325

979.

[11] M. Winterberg, E. Tsotsas, Correlations for effective heat transport co-
efficients in beds packed with cylindrical particles, Chem Eng. Sci. 55
(2000) 5937–5943.

[12] D. Vortmeyer, E. Haidegger, Discrimination of three approaches to eval-330

uate heat fluxes for wall-cooled fixed bed chemical reactors, Chem. Eng.
Sci. 46 (1991) 2951–2660.

[13] E. Smirnov, A. Muzykantov, V. Kuzmin, A. Kronberg, I. Zolotarskii,
Radial heat transfer in packed beds of spheres, cylinders and rashing
rings. verification of model with a linear variation of λer in the vicinity335

of the wall, Chem Eng. J. 91 (2003) 243–248.

[14] D. Bunnell, H. Irvin, R. Olson, J. Smith, Effective thermal conductivities
in gas-solid systems, Ind. Eng. Chem. 41 (1949) 1977–1981.

[15] S. Kwong, J. Smith, Radial heat transfer in packed beds, Ind. Eng.
Chem. 49 (1957) 894–903.340

[16] M. Ahmed, R. Fahien, Tubular reactor design-i, Chem. Eng. Sci. 35
(1980) 889–895.

[17] D. Gunn, M. Ahmed, The characterisation of radial heat transfer in
fixed beds, IChemE Symp. Ser. 86 (1984) 513–520.

[18] D. Gunn, M. Ahmed, M. Sabri, Radial heat transfer to fixed beds of345

particles, Chem. Eng. Sci. 42 (1987) 2163–2171.



[19] D. Gunn, M. Sabri, A distributed model for liquid-phase heat transfer
in fixed beds, Int. J. Heat Mass Transfer 30 (1987) 1693–1702.

[20] J. Borkink, K. Westerterp, Significance of the radial porosity profile for
the description of heat transport in wall-cooled packed beds, Chem. Eng.350

Sci. 49 (1994) 863–876.

[21] F. Mathey, Numerical up-scaling approach for the simulation of heat-
transfer in randomly packed beds, Int. J. Heat Mass Transfer 61 (2013)
451–463.

[22] J. Lerou, G. Froment, Velocity, temperature and conversion profiles in355

fixed bed catalytic reactors, Chem. Eng. Sci. 32 (1977) 853–861.

[23] J. Marivoet, P. Teodoriou, S. Wajc, Porosity, velocity and temperature
profiles in cylindrical packed beds, Chem. Eng. Sci. 29 (1974) 1836–1840.

[24] D. Vortmeyer, J. Schuster, Evaluation of steady flow profiles in rectan-
gular and circular packed beds by a variational method, Chem. Eng. Sci.360

38 (1983) 1691–1699.

[25] O. Kalthoff, D. Vortmeyer, Ignition/extinction phenomena in a wall
cooled fixed bed reactor. experiments and model calculations including
radial porosity and velocity distributions, Chem. Eng. Sci. 35 (1980)
1637–1643.365

[26] I. Thiagalingam, I. Bennaceur, M. Dallet, S. Cadalen, P. Sagaut, Exact
non local expression for the wall heat transfer coefficient for in tubular
catalytic reactors, Int. J. Heat Fluid Flow 54 97–106.

[27] X. Jia, M. Gan, R. Williams, D. Rhodes, Validation of a digital packing
algorithm in predicting powder packing densities, Powder Technology370

174 (2007) 10–13.

[28] R. Caulkin, A.Ahmad, M. Fairweather, X. Jia, R. Williams, Digital
prediction of complex cylinder packed columns, Comp. and Chem. Eng.
33 (2009) 10–21.

[29] R. Caulkin, M. Fairweather, X. Jia, R. Williams, A numerical case study375

of packed columns, in: European Symposium on Computer Aided pro-
cess Engineering, Elsevier Science B.V., 2005.

[30] X. Jia, R. Williams, A packing algorithm for particles of arbitrary
shapes, Powder Technology 120 (2001) 175–186.



[31] A. Guardo, M. Coussirat, F. Recasens, M. Larrayoz, X. Escaler, Cfd380

study on particle-to-fluid heat transfer in fixed bed reactors: convective
heat transfer at low and high pressure, Chem. Eng. Sci. 61 (2006) 4341–
4353.

[32] F. Augier, F. Idoux, J. Delenne, Numerical simulations of transfer and
transport properties inside packed beds of spherical particles, Chem.385

Eng. Sci. 65 (2010) 1055–1064.

[33] M. Nijemeisland, A. Dixon, Comparison of cfd simulations to experiment
for convective heat transfer in a gas-solid fixed bed, Chem. Eng. J. 82
(2001) 231–246.

[34] T. Atmakidis, E. Y. Kenig, Cfd-based analysis of the wall effect on390

the pressure drop in packed beds with moderate tube/particle ratios in
laminar flow regime, Chem. Eng. J. 155 (2009) 404–410.

[35] A. Dixon, G. Walls, H. Stanness, M. Nijemeisland, E. H. Stitt, Ex-
perimental validation of high reynolds number cfd simulations of heat
transfer in a pilot-scale fixed bed tube, Chem. Eng. J. 200 (2012) 344–395

356.

[36] S. Ookawara, M. Kuroki, D. Street, K. Ogawa, High-fidelity dem-cfd
modeling of packed bed reactors for process intensification, in: Proceed-
ings of European Congress of Chemical Engineering, Copenhagen, 2007.

[37] A. Dixon, M. Nijemeisland, E. H. Stitt, Systematic mesh development400

for 3d cfd simulation of fixed beds: Contact points study, Computers
Chem. Eng. 48 (2013) 135–153.

[38] M. J. S. de Lemos, Turbulence in porous media, Elsevier, 2006.

[39] M. Quintard, S. Whitaker, Transport in ordered and disordered media
i: the cellular average and the use of weighting functions, Transport in405

porous media 14 (1994) 163–177.

[40] M. Quintard, S. Whitaker, Transport in ordered and disordered media
i: generalized volume averaging, Transport in porous media 14 (1994)
179–206.

[41] W. Gray, P. Lee, On the theorems for local volume averaging of multi-410

phase systems, Int. J. Multiphase Flow 3 (1977) 333–340.

[42] A. Nakayama, F. Kuwahara, A macroscopic turbulence model for flow
in a porous medium, J. Fluids Eng. 121 (1999) 427–433.



[43] M. Chandesris, G. Serre, P. Sagaut, A macroscopic turbulence model
for flow in porous media suited for channel, pipe and rod bundle flows,415

Int. J. Heat Mass Transfer 49 (2006) 2739–2750.

[44] H. Mickeley, K. Smith, E. Korchak, Fluid flow in packed beds, Chem.
Eng. Sci. 23 (1965) 237–246.

[45] I. Macdonald, M. El-Sayed, K. Mow, F. Dullien, Flow through porous
media- ergun equation revisited, Ind. Eng. Chem. Fund. 18 (1979) 199–420

208.

[46] D. van der Merwe, W. Gauvin, Velocity and turbulence measurements
of air flow through packed bed, A.I.Ch.E. J. 17 (1971) 519–528.

[47] A. Dybbs, R. Edwards, A new look at porous media fluid mechanics-
darcy to turbulent, Fund. Trans. Phenom. Porous Media 82 (1984) 199–425

256.

[48] T. Masuoka, Y. Takatsu, Turbulence model for flow through porous
media, Int. J. Heat Mass Trans. 39 (1996) 2803–2809.

[49] M. de Lemos, M. Pedras, Recent mathematical models for turbulent flow
in saturated rigid porous media, J. Fluids Eng. 123 (2002) 935–940.430

[50] M. Pedras, M. de Lemos, Macroscopic turbulence modeling for incom-
pressible flow through undeformable porous media, Int. J. Heat Mass
Transfer 44 (2001) 1081–1093.

[51] F. Teruel, Rizwan-uddin, A new turbulence model for porous media
flows. part i: Constitutive equations and model closure, Int. J. Heat435

Mass Trans. 52 (2009) 4264–4272.

[52] F. Teruel, Rizwan-uddin, A new turbulence model for porous media
flows. part ii: Analysis and validation using microscopic simulations,
Int. J. Heat Mass Trans. 52 (2009) 5193–5203.

[53] F. Teruel, Rizwan-uddin, Numerical computation of macroscopic tur-440

bulence quantities in representative elementary volume of the porous
medium, Int. J. Heat Mass Trans. 53 (2010) 5190–5198.

[54] F. Pinson, O. Gregoire, O. Simonin, k-e macro-scale modeling of turbu-
lence based on a two scale analysis in porous media, Int. J. Heat Fluid
Flow 27 (2006) 955–966.445



[55] S.Ergun, Fluid flow through packed columns, Chem. Eng. Prog. 48
(1952) 89–94.

[56] F. Mathey, Macroscopic turbulent models for heat and mass transfer in
catalyst reactors, in: AIP Conf. Proc. 1453, 2012.

[57] P. Cheng, D. Vortmeyer, Transverse thermal dispersion and wall chan-450

neling in a packed bed with forced convective flow, Chem. Eng. Sci. 43
(1988) 2523–2532.

[58] Y. Demirel, R. Sharma, H. Al-Ali, On the effective heat transfer param-
eters in a packed bed, Int. J. Heat Mass Trans. 43 (2000) 327–332.

[59] A. Dixon, M. DiCostanzo, B. Soucy, Fluid-phase radial transport in455

packed beds of low tube-to-particle diameter ratio, Int. J. Heat and
Mass Transfer 27 (1984) 1701–1713.

[60] A. Dixon, Heat transfer in fixed beds at very low(< 4)tube-to-particle
diameter ratio, Ind. Eng. Res. 36 (1997) 3053–3064.

[61] P. Peters, R. Schiffino, P. Harriott, Heat transfer in packed tube reactors,460

Int. Eng. Chem. Res. 27 (1988) 226–233.

[62] A. Dixon, L. Labua, Wall-to-fluid coefficients for fixed bed heat and
mass transfer, Int. J. Heat Mass Transfer 28 (1985) 879–881.
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