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Abstract

A RANS zonal pseudo-homogeneous 1D radial heat transfer model is derived
using an homogenization technique along with high-fidelity microscopic sim-
ulation to calibrate the model free parameters. Thus, it is brought to light
the importance of the mechanical dispersion in the mixing process, the sim-
ilarity between turbulent and dispersive dynamics, the existence of a near
wall zone characterized by a channeling effect which is responsible for the
thermal resistance over the zone. A linear law for the effective thermal con-
ductivity is proposed to assess the heat transfer within the disrupted thermal
boundary layer. The model showed its ability to estimate the effective con-
ductivity and the temperature field in the radial direction with satisfaction.
Very good agreements are also found in the near wall zone where the tem-
perature gradients are the highest. The model well estimated also the value
of the wall temperature and the wall heat transfer coefficient for an imposed
heat flux at the wall.

Keywords: Packed bed, turbulence, wall temperature, dispersion, porous
medium, up-scaling, CFD, heat transfer, boundary layer

1. Introduction

Packed beds with low tube-to-particle diameters ratio are widely used in
chemical engineering, e.g. in steam methane reforming processes for Hydro-
gen production. The heat transfer problem is intensively investigated in such

*Corresponding author
Email address: ilango.thiagalingam@gmail.com (I. Thiagalingam)

Preprint submitted to Journal of Heat and Fluid Flow October 18, 2016



10

15

20

25

30

35

40

45

systems as the local temperature drives directly the efficiency of the catalytic
reactions occurring on the solid particles’ surface. The accurate prediction
of the radial temperature profile from the tube wall to the middle of the bed
is an important step towards the reliable assessment of reaction rates along
the packed bed. Another critical point justifying the development of radial
heat transfer models is the wall temperature assessment. Indeed, the near
wall region faces strong thermal resistance as shown by the high temperature
gradient profiles over this region [I]. Accurate heat control is then required
near the wall as in the operating conditions a difference of 20 K at the tube
wall can divide its life time by two or more.

For high ratio between tube and particles diameters (N > 10), the radial
packing configuration is almost homogeneous as the wall induced inhomo-
geneity is confined in the very near vicinity of the tube. Hence, one can
assume that both the axial velocity U, and the effective thermal conductiv-
ity A, are constant in the radial direction and the extra near wall resistance
can be lumped in a wall heat transfer coefficient h,,. These are the main
hypotheses of the extensively used classical pseudo-homogeneous two dimen-
sional plug flow heat transfer model commonly referred to as the \. — h,,
model [2].

However, discrepancies between literature correlations for A, [3] and namely
for h, [4] highlight that the assumed hypotheses have no more validity for
relatively low tube-particle diameters ratio (N < 10) packed beds. Moreover,
experimental measurements [5] and recent CFD simulations of fixed bed re-
actors [0] highlight an oscillating profile of the radial void which smoothly
decreases with the distance from the wall. However, near wall profile displays
a steep decrease from the wall (where the void is equal to one) up to a dis-
tance of d,/2, where d, is the particle diameter. The velocity profile which
is linked to the porosity profile displays the same features [0, [7]. The wall
heat transfer coefficient which is a sort of a boundary condition is no more
suitable for an extended wall zone (its width is not negligible compared to
the bulk zone). For a comprehensive review on radial heat transfer problem,
see [8].

An alternative model to the A, —h,, model [9] 10} 1T}, 12} T3], which is able
to dispense with the apparent wall heat transfer coefficient h,, has been first
proposed by [14]. Tt consists of deriving a bed effective conductivity which
depends on the radial position. It was thus highlighted that the effective
thermal conductivity A.(r) is sharply damped in the vicinity of the wall [15].
From this observation, numerous two-layer models were developed [16, 17, 18|
19, T3] to distinguish the near wall zone heat transfers from the bulk ones.
However, deep insights into the physical mechanisms were lacking among
those models. Then, Borkink et al. [20] bring to light the existing link
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between the near wall channeling effect and the thermal resistance showing
that the near wall particular packing configuration is responsible for the
conductivity damping in the vicinity of the wall. More realistic models were
then proposed by authors [2I]. For instance, Lerou et al. and Marivoet
et al.[22, 23] resolved the energy conservation equation with a void profile
depending on the radial position and a velocity profile calculated with the
Brinkman-Darcy-Forchheimer (BDF, [24]) model. It was shown that models
tacking into account both the radial inhomogeneity and the flow dynamic
improve significantly the temperature profile prediction [12} 25].

The aim of this paper is to derive a new pseudo-homogeneous 1D radial
model for the heat transfer in low-N packed beds, using the high-fidelity
microscopic CFD solutions. The main features of the present model are the
physical insights brought to the modeling of the near wall heat transfer mech-
anisms. The porous medium framework is used to up-scale unequivocally
pore scale relevant data obtained via high-fidelity 3D simulations to the re-
actor scale. This is practically achieved extending the concept of Representa-
tive Elementary Volume (REV) to anisotropic wall bounded porous medium
[20]. Afterwards, turbulent flow governing pseudo-homogeneous equations
including mechanical dispersion are derived and validated against 3D de-
tailed numerical simulations. Then, the flow features are used to describe
the thermal mixing and derive the radial effective convective conductivity
called for the 1D radial pseudo-homogeneous heat transfer model develop-
ment. Both wall temperature and the bed temperature profile are finally
validated over the reference data obtained performing 3D fine simulations at
the pore scale.

2. 3D high-fidelity numerical simulations of turbulent flow and
heat transfers at the pore scale in packed beds and data up-
scaling

2.1. Packing/meshing step

A tubular random and periodic packing configuration with spheres is con-
sidered (Fig[2). The ratio between tube and particle diameters (respectively
d; and d,,) is taken equal to 10 (N = d;/d, = 10). The domain is composed of
835 particles and the average porosity is equal t0 ¢y,0, = 0.443 (see Table .
The packing is generated thanks to the commercial algorithm DigiPac'™
which has demonstrated its capability to generate reliable and realistic tubu-
lar packings mainly for spherical particles [27, 28, 29, [30]. The packing is
considered to be homogeneous in the axial (Fig. and azimuthal directions
but presenting radial inhomogeneity (Fig]).
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During the mesh generation step, one has to face high skewed cells gen-
erated in the regions surrounding particle-particle or particle-tube contact
points. Moreover, the distribution of pore size is quite large as far as ran-
dom packings are concerned. Thus, very narrow gaps can also be found
which is another source of low quality cells. To preclude convergence prob-
lems in CFD simulations, one can slightly modify the packing configuration
[31, B2, B3, B4 6, B85, B6]. Local modifications of the geometry are recom-
mended against global modifications. Indeed, global modifications can lead
errors on porosity and so on the pressure drop of 4% and 12—15% respectively
[37]. The strategy employed here [26] consists in first detecting particles one
close to another with a distance less than 1% of d,,. For those particles, radius
is then increased by 2% of d,. The overlapping part are removed and the
increased particles take then back their original size. A minimal gap between
particles is thus guaranteed (Fig. The same approach is applied for the
particle-tube contact points or narrow gaps. The tube radius is decreased
by 2% of d, and parts of particles laying outside of the new cylinder are
removed. The tube takes then back its original dimensions.

2.2. Computational Fluid Dynamics (CFD) model setup

The fluid domain is meshed with tetrahedral elements and numerical sim-
ulations are performed with the commercial solver ANSYS Fluent 13.0. Pe-
riodic boundary conditions are set at the inlet/outlet faces imposing a mass
flow. Particles are assumed to be adiabatic and a constant heat flux is set
on the tube wall. The Reynolds Averaged Navier-Stokes and energy equa-
tions are solved to get flow and temperature fields in the fluid domain. The
turbulence dynamic is described with the two-equation k£ — e model. The en-
hanced wall treatment which combines a two-layer model with an enhanced
wall law is set to capture the near wall dynamic: when the mesh is fine
enough (y™ = 1), the viscous affected region is solved by the two-layer model
and when the mesh is coarse, a wall law is rather used (see ANSYS Docu-
mentation for further details). The near wall treatment used here is much
more suited for complex wall flow encountered in packed beds than a stan-
dard wall law. Indeed, the y* values are spread over a wide range as they
depend directly on both the local mesh size and the local flow configuration
(recirculating, squeezed, downward, accelerated or stagnant flow).

As for the numerical discretization, the first order upwind scheme is used
to solve momentum, energy and turbulence equations. The standard scheme

is used to solve the pressure and the pressure-velocity coupling is realized
with the SIMPLE scheme.



| Particle Shape | Number of particles | N | Dmoy |
| Spherical | 835 | 10 | 0.443 |

Table 1: Main characteristics of the present packed bed.

Figure 1: Contact points locally handled by creating a small gap between
particles.

Figure 2: Periodic random packing of spherical particles.

2.3. upscaling

In order to derive macroscopic governing equations for a turbulent flow
in porous media, both time and spatial averaging operators are applied to
instantaneous mass, momentum and energy conservation equations. The
averaging operators split instantaneous quantity into two parts: the mean
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Figure 3: Axial porosity. Figure 4: Radial porosity.

quantity and its fluctuation [38]. Hence the time decomposition reads,

p=90+, (1)
where ¢ = A%: tt+At @dt is the time averaged quantity and ¢’ the time fluctu-
ation around the mean quantity. Following the same reasoning for the spatial
averaging operator, one can write

o = () + dp, (2)

where ()" is the intrinsic average of ¢ in the fluid and d¢ the spatial devi-
ation. According to the scale separation’s assumption between microscopic
and macroscopic quantities, one can obtain (dp)’ = ¢ = 0. The volume
averaged quantity reads,

<¢V=€i£wﬂﬁ (3)

where V' is a volume in which the average is carried out. It is also referred to
as the REV, the Representative Elementary Volume[39, [40]. A methodology
to define the appropriate REV for wall bounded medium presenting radial
heterogeneity has been developed in [26] and is used in the present study to
upscale unequivocally pore scale data to the observation scale (bed scale).
When one uses the right REV for volume averaging, it can be showed [3§]

that the two averaging operators defined above permute (@)" = (). When
the porous medium is saturated by the fluid, one can also link the intrinsic
average and the volume average by the following expression :

(0) = ¢ (o), (4)
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where ¢ = %, denotes the porosity. While applying the space averaging
operators to flow governing equations for instance, one needs to permute
derivatives and averaging operators. It is showed from [41],

(Vo) =V )"+ [ moda, )

with dA an element of solid surface, n the normal vector directed from the
solid phase toward the fluid phase and A the solid surface.

Applying the volume averaging operator to the momentum and energy
conversation equations at the pore scale one gets, after some algebra, at the
macroscopic scale:

Vi((E;)") =0 (6)
(P)’
p

Vil=o(w) (@) + vVle)] — 8¢ —0(Ry;)  —o(0w0w;)']

turbulent dif fusion  dispersion

v _ 1 (7)

viscous and pressure drag

!’ !/
where wu; = R;j.

0= (pCy)s V| = o{w)(T)' ~o{pudT):  —o(uT)' |

7
J/

dispersion  turbulent dif fusion

4V, [(Am)%(ﬂi +% / nixfaffds}

(&

(8)

Vv
tortuosity

Both the second order moments and surface terms need a closure and those
sub-filter terms can be assessed carrying out simulations within the REV
[42, 143].

Mesh convergence study is finally achieved for REV-averaged quantities.
Radial profiles of a certain number of the REV-averaged quantities are de-
picted on Figs. [} [6] [7], [§}, [0} [10] for different mesh densities. One can observe
that a satisfactory convergence is obtained on all quantities of interest for
the present study.
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3. Macroscopic model for turbulent flow dynamic in packed beds

3.1. Turbulence in porous medium

Turbulence structures were observed by numerous experimental studies
[44, 45, 46l [47] as soon as the Reynolds number based on pore size was
above a few hundreds. The experimentally observed deviation of the flow
dynamic to the Darcy law was thus attributed to the development of local
turbulence [4§]. Turbulence models were then developed at the macroscopic
scale by applying volume averaging operator to Reynolds averaged Navier-
Stokes equations (RANS) [42] [49] 50, [38].

A new concept was recently introduced by Teruel et al. [51, 52]. It
consists in not distinguishing time fluctuations from the spatial ones but in
considering fluctuations as the difference between the instantaneous quantity
and the double averaged (time and space) quantity.

?/)(T'a t) = @Z(mj) + 77/}”(']“, Cl’,',t) (9)
with
= 1 1
Y(x,t) = ~ /At[Vf szpdv dr—— ; At Atwdr] (10)
and _ = _
W at) 20, O, t) = (i) (11)

Thus, the total turbulent kinetic energy at the macroscopic scale becomes,

kT eruel — 9

(ujus)' . (0u01;)" (12)
2 2'
_ <k>z + <5u15u3>

It is made up of a turbulent part (k)" and a dispersive part (kq)" = Cagbiy)’

The dispersion can be significant [53] and its contribution to the total kinetic
energy is even above 60— 70% [21] as far as packed beds are concerned (Figs.

and.
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s

3.2. Macroscopic (K)" — (€)' model
Following Teruel et al., a two equation model is derived at the macroscopic
scale to describe the total turbulence. The total kinetic energy is defined as

(K)' = (k)" + (ka)' (13)

10
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where (k)* and (k4)" describe respectively the time and spatial fluctuations
at the macroscopic scale. The equation governing the total kinetic energy is
obtained as follows: First, the volume averaging operator is applied to the
turbulent kinetic energy at the pore scale to up-scale it at the macroscopic
scale (see [Appendix Al). The governing equation for the dispersive part is
then obtained (see|Appendix BJ) [564]. They are finally summed up to get the
governing equation for the total fluctuations.

0 =~V [6(m) UK)) + v 3I0()] = 6l(Ry)' + (00%) 1V, (1)

Pu, — . . . .
= V(G2 + i) + - (OTP) -+ (GO ) — 0le) = o)

]

<u—l> 2

2

= V,{6(Ga8k))+ 1 [V hnsdS + () V050 -

T [ s T [5,5m
P . — . . .
+ v dPn;dS v Voun;dS
— V,[6(0W0R;)"] — vV;[V ;¢

| + ¢(6w:0u;V ;6u;)’
(14)

One can recognize on the right hand side the convection term, the molecular
diffusion, the production term, the dynamic (turbulent and dispersive) dif-
fusion and the energy destruction term, respectively. The other terms stem
from the averaging operations and the radial inhomogeneity.

For configurations under consideration, one can show that the dispersive
part of the dissipation rate ({e;)" = y(%ﬁ?%ﬁ) is negligible (Fig. .
Thus, {er)" ~ ()"

The governing equation for the total dissipation rate becomes,

LRV () )

0= = o(e)m)) + Vil (v + ) vyt - 7

B ?]j;i)<€>12 B Vj(¢<5€5u_j>i) + Vj(%‘/M/EHJdS)
Ci¢

1 1 i —\i/ o\
+o / (Vi nydS + V(00 00)) — ((0R:7,0m)"(e)

+ (00 Rij)'V i (@)" + (Ryj) (0e(V;075))" + <5Rz'j5€(vj5u_i)>i> - %M&&V
(15)

11
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Figure 13: Radial profile of the turbulent ({€)* ) an dispersive ((e4)*) part of
the total dissipation rate at the macroscopic scale.

3.3. Closure relations
Considering a fully developed flow which enables to neglect the axial
a()"

macroscopic gradient (=), can be rewritten in cylindrical coordinates,

0= LV, o) (@.)] = VL[6(P)] = PV, [ré{ R, + roloimo)]
| (16)
+ M%VT[TVT((;S(@)Z)] + % / Vit nidS — % / Pn.dS

with ¢ = z,r. It can be numerically verified that the second order moments
appearing in the macroscopic momentum conservation equation can be
linked to the velocity gradient thanks to a dynamic viscosity (Fig. .

where the dynamic viscosity reads,

<K>z2
(€)’

+ %(1 + tanh[20(r — (R — d,/2)) /dp]) x omQ]

(wr) = 0,093 [% (1~ tanb[20(r — (R — d,/2))/d,]) * Co

(18)

(K)" is the total kinetic energy. It is worth noting that a near wall zone
is identified with a thickness of d,/2. The dynamic viscosity is lower in the
vicinity of the wall than in the bulk zone and this property is captured thanks
to the coefficients C),; and C,,s.

12
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The surface terms is then closed with a modified two-zonal Ergun law
[55].
7 _ 1 1
= | Vinids - — [ Pn.ds = - [5 (1 — tanh[20(r — (R — d,/2)) /dp]>C’F1

+ %(1 +tanh[20(r — (R — d,/2)) /dp])cm] X p“;p—(fg'wuz)i]?

(19)

In the following, the macroscopic equations are written in their superficial
forms (¢), = ¢(1)". Thus, the macroscopic Navier-Stokes equations reads,

V.[(u.)s] =0 (20)

0= —VoP)y + Tl (it plor) Vo) = b6 d) (s (21)

with
(vr)s = 009_(([:))? y [% (1 - tanh{20(r — (R - dp/z))/dp])% "
) 22
1 Cm2
+ 5 (1 + tanb[20(r — (R — d,/2))/d,)) 7]

13
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h(o, dy) = p% x [%(1 ~ tanh[20(r — (R — d,/2))/d;] ) Cr

1 (23)
+5 (1 + tanh[20(r — (R — dp/Q))/dPDCFz}

The fully developed total kinetic energy equation in the cylindrical coor-
dinates reads,

0=~V (Y, B(K)]) — Gl{Rer) + (G079 i)
= 2 (ol 4 ) — S omaP) — (o) ) - ole)
% [ro (0, 0k)) / Vikn,dS (24)
(@) [ = —

1 ) 1 12 )
- ;Vr[rgb(éu_i(SRiTY] —vs V. [rV, ¢< 2) | + ¢(0w;0w; V j0u;)"
with 4,7 = z,r,60. The production term is rewritten as,

—¢

— 0l + (b x [0 o)) - 22wy ] )
= ) Vo] O [Va().] x [V = S ),

and the flux terms can be clustered as

- (¢[<P7“+ ity ) — %<6u—r6F>"— (0w0W0T;)" + (34,0k)" + (90 Riy)']

+ VVTQS(u_;)iQ) - (st {VT(K)S}

(26)

where the macroscopic turbulent Prandtl number oy is to be determined.
The remaining terms are finally clustered as an effective production which
includes sub-filter production and the inhomogeneous part of the macroscopic

14
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p
+ (v7)s [Vr(uz)s} « [1 ; ¢ V.o

Volus)s = (2| = F(0) ()}

(27)

where f(¢) is a function to be determined. The macroscopic governing equa-
tion for the total kinetic energy reads finally,

0= 29,0 (v + PN, (1)) 4 ) [T)] 4 FO))E - (9 (29)

OK

The macroscopic dissipation rate equation becomes in cylindrical coordi-
nates,

e
5

O RV () ) )

0= %VT[T(V"‘ TRy

<€>i2

- %VT[T¢<5€5u_T>i] + %vr(rw‘;waf) / en,dS) +% / v(Vie)ndS
9, [0 (V6] - %Qmwviau—ij + (0ed RV (T2

+ (Ri) (0e(V,.0T; + V,;01,))" + <5Rij56Vj§u_i>i) — %(}5<(56(56>i
with 4,7 = z,r,60. the production term can be rewritten as

4

(k)*

+ G(O=0;) 'V, [$1r)']

Oel

(Rer)'Vi(0(w2) ) (e)' = —¢[(Rar) + (00:00:)' |V, [6(i22)']

Ca , i
iy

The overall fluxes are clustered as

(9, 0t6y) - ptsesmy + LI [ e
+ Oie¢<6utvr(5€>i> - s [Vr(e)s]

OeK

15
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where 0.k is the Prandtl number associated to the macroscopic dissipation
rate. The destruction term becomes,

G20z G
(k)! (k)!

The remaining terms are once again clustered as an effective production

d(Jede)t ~ ()5 (32)

) ~Carg),

% / (Ve nidS — % (R VST) (6 + (5ed R, )V, ()’
Cel

+ OO 0U) V [p(11) | = () = g(, dp) (u2),

(K)!

where g(¢, d,), a function to be determined.
The governing equation describing the macroscopic dissipation rate reads
then in its superficial form,

0= 29,0 (v + 25) 9,0+ Cag ). [9 0.
()s

(K)s

(34)
+9(¢,dy)(uz); — Cez

with C.; and C., model coefficients to be determined.

3.4. model validation

The following expression is suggested to represent the radial void profile
at the macroscopic scale (Fig{L5).

1 sir*=10

o) = { 0.465[1 + 1.1 exp(—48r*?)] + 0.16 exp(—0.2r*?) sin(2.467r*) sinon
(35)
with 7 = (R —r)/d,.
Both the model coefficients and functions are obtained by optimizing the
matching with the reference data. Hence, C,,; = 0.444, C,,,5 = 0.05, 0 = 1,
ok = 1.3, Coq = 1.44, Cy = 1.92. Then,

0.26Re; %™ —0.02 4000 < Re, < 19500
e p - P —
Cri(Bey) { 0.046 19500 < Re, < 31000 0
[ 5.5x107%Re, + 0.2 4000 < Re, < 19500
Cra(fiey) = { 0.1 19500 < Re, < 31000 )

16
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against the porosity characterizing the reference system (¢).

F(6) = pCra(Rey) L) %(1 ~ tanh[20(r — (R — d,/2))/d,))

+ [oCiatBey)s™ + pCua(Ren) T exp(—a(r = (R - dy/2) 4

x 2 (14 tanh 200 — (R — d,/2))/d,))

(38)
with,
—0.78Rel® 4 132 4000 < Re,, < 15600
_ D — p —
Crer(Rey) = { 38.41 15600 < Re, < 31000 (39)
[ —8x107*Re, +20 4000 < Re, < 19600
Cralfiey) = { 5.6 19600 < Re, < 31000 10)
and
[ (5x107%Re,)" +12 4000 < Re, < 19600
Crca(Fep) = { 23.11 19600 < Re,, < 31000 (41)

17
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Finally,

* (1 B ¢*)0.5 1
96", dy) = pCr(Rey)—o— x 5 (1 = tanh[20(r — (R — d,/2))/d,))
20
1— (b* 0.4 1
+ pCEg(Rep)(dQ—*g) x 3 (1 +tanh[20(r — (R — d,/2)) /dp]>
0
(42)
with
—0.049Re%%0 +0.66 4000 < Re, < 15600
fd p - P —=
Cri(fiey) { 0.069 1560 < Re, < 31000 (43)
and ( -os
~ f (0.01Re,)™"% 4000 < Re, < 19600
Cra(Rep) = { 0.016 19600 < Re, < 31000 (44)

One has to notice that all those coeflicients tend towards a constant value at

high Re, (Fig. , .

0.2 C T
018 Cr » -
0.16
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0.1 A
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0.04

5000 10000 15000 20000
Re

p

Figure 16: Reynolds dependence of C'rq and Cpg.

In the following, superscript * stands for quantities obtained performing
macro-scale simulations. Pressure drops evaluated with 3D simulations at
the pore scale and the ones assessed performing macroscopic simulations are
reported on the Table [2|for a few chosen Reynolds numbers. Very good agree-
ments are found between pore and bed scale simulations. Radial profiles of
the mean velocity, the total turbulent kinetic energy and the macroscopic
dissipation rate obtained performing macroscopic simulations are validated

18
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Figure 18: Reynolds dependence of C'g; and Cgo

against the up-scaled microscopic ones (Figs. , . Indeed, the os-
cillating profile and the near wall maximum are quite well recovered for all
those quantities, even if the radial oscillations for the dissipation rate are not
recovered by the macroscopic model. This shows that there exists local diffu-
sion damping that should be taken into account by a radially varying Prandtl
number associated to the dissipation rate, o.x. However, it is particularly
worth noting that the near wall zone flow dynamic is well assessed.



| Re, | AP/AL(Pascal/m) | (AP)*/AL(Pascal/m) | Error |

2 000 -2272.8 -2148.9 5.45 %
4 000 -7841.1 -7582.1 3.30 %
7 800 -26668.3 -26829.5 0.6 %
15 600 -89880.4 -91042.5 1.3 %
19 600 -133767.5 -130105.8 2.7%
23 300 -185831.1 -186726.7 0.5 %

Table 2: Pressure drop evaluation. Micro(AP/AL) vs. Macro ((AP)*/AL)
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Figure 19: Radial profile of the mean velocity, Micro (u,)s vs. Macro (u,)?.
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1w 4. Pseudo-homogeneous 1D macroscopic radial model for heat trans-
fer

4.1. Model of Mathey

The macroscopic equation governing the heat transfer (8) can be rewritten
in cylindrical coordinates as,

(0C)56(2) - (T) = = (pCy) o [rolTardTY + Ty + () ()] +

10 0 - 1 i
;a—r[(Af¢)§<T> —l—v/nr)\chdes]

r

(45)

As far as packed bed configurations are concerned, the surface term which
represents the tortuosity can be neglected compared to the turbulent and
dispersive fluxes (Fig[22).
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70000 r flux turbulent - \
60000 terme de surface ---------

50000 /d \
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10000
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Figure 22: Radial profile of the tortuosity (3 [ n,A;6Tyds), turbulent flux (
—¢(pC,) s (W T")?) and dispersive flux (—¢(pC,) s (du,0T)?). Re, = 14400.
195

The concept of Teruel et al.[51, [52] which consists of clustering disper-
sive and turbulent fluctuations was extended by Mathey [21] to heat transfer
problems. Indeed, the second order terms appearing in the energy conser-
vation equation were related to the temperature gradient through an
effective conductivity depending on the radial position.

0 -

= (pCp) sOL(0urdT)" + (i T')] = Acyy(r)5-(T)' (46)




with, }
{vr)*
Acgr = O(pCh) = (47)
where o, is the macroscopic Prandtl number. The dynamic viscosity is de-
fined as

(48)

where (K)" is the total kinetic energy (turbulence and dispersion are both
included in it). With this approach, Mathey was able to derive a simple
correlation for the medium effective conductivity [21],

Aess(r) _ (V1)
% - qb(pCP)f )‘fat
_ CEC, JR6(r))

0Ce fe(9(r))

with Pr the molecular Prandtl number, Re, the Reynolds number based
on the superficial velocity and the particle diameter, C}, and C, are model
constants which represent respectively the strength of the kinetic energy sub-
filter production and the dissipation rate sub-filter production. f.(¢(r)) and
fr(@(r)) are functions depending on the porosity and damping to zero when
getting closer to the wall. The radial profile of the effective conductivity was
hence successfully estimated particularly in the bulk zone [56]. The model
proposed by Mathey is improved here by tacking into account the radial
inhomogeneity and the near wall zone heat transfer.

(49)

Pr - Re,

4.2. The bulk zone: r < R —d,/2

The effective convective conductivity in the radial direction is defined as

(ST(STZ ;T’Z _TiTi
Aess(r) = —Pf¢(Cp)f< wol) <§<T>>i + (o)) (50)
The model proposed by Mathey [21] becomes,
o P(vr)s
(Aesr)s = Pf(%)fm (1 - al(Rep)RVréb) (51)

with (vr)s the dynamic viscosity defined in the previous section (vr)s =

0.09 ((I:))f% (see equation (18))), ps the fluid density, (C,); the fluid heat

capacity, R the tube radius, o4 (Re,) the macroscopic Prandtl number and
ai(Re,) a Reynolds depending constant measuring the inhomogeneity effect.
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The porosity gradient is related to the solid surface distribution within the
REV according to the following expression [41]

1
Vio =~ /Snz-dS (52)

When the medium is homogeneous (—+ [¢n;dS = 0), one gets (Aesp)s =

p1(Co) it

4.3. The near wall zone: R —d,/2 <r < R—d,/10

It was shown that the near wall zone is affected by a channeling effect.
Indeed, the near wall dispersive mixing is reduced with the near wall void
increase imposed by the packing configuration. Thus, even if the Reynolds
number is locally increased, a significant part of the supplied heat at the
wall is convected along the tube wall by the channeling effect. Therefore, the
effective conductivity is weighted by the ratio between the total (turbulent
and dispersive) mixing strength and the near wall channeling effect in order
to assess the heat transfer efficiency in the near wall region.

P(vr)s (K)s>'y

aiz(Rep) <1 - aQ(Rep)er¢> ) < (u2)s (53)

(Aerr)s = pr(Cp)s

with v a constant.

4.4. Heat transfer in the boundary layer: R —d,/10 <r < R

In the viscous sublayer, the convective part is damped to zero and the
effective conductivity is reduced to the molecular conductivity.

(Aegf)s = dAp 17 <rf (54)

with A the fluid conductivity, r* = (R — r)u,/v wall distance expressed in
wall unit and 7} the viscous sublayer thickness of the macroscopic model.

For the range of Reynolds numbers considered in the study (operating
conditions), the boundary layer zone rfv/u, < R —r < d,/10 includes
both the logarithmic and buffer zones. The macroscopic energy conservation
equation over the boundary layer zone can be simplified as

10 0

o (¢)\eff)§<T>i =A (55)

where A a constant assessing the boundary layer overall heat transfer in the
axial direction.



We consider the case where the solid particles slightly disturb the thermal
boundary layer. The temperature field can then be split up according to

(T)' =(T)" +e(T)" (56)

a5 with € << 1.
0 order term in €:
The temperature field is assumed to be logarithmic over the considered
zone in the absence of solid particles. Thus,

1 9 0 s

B(Rjd, =) ar T =) [(¢Aeff)%<T>zo] =4
0 0 i R

% [(QS)\eff)a’l“* <T>ZO] =A- dZQ) as << d_p

P (57)
[(@Xes) 5 lalog(r) + 8] | = AVr* + B(Re,)
PAesr (1) = APDr*2 4 B (Re, )1

PAesr(r*) = BYO(Re,)r* as 1 << 1

where 7 = (R —r)/d,.
One can deduce that the effective conductivity is linear when the solid
particles are considered to keep weak interactions with the wall boundary
20 layer. It is consistent with the empirical correlation derived by [57]. The

case of a strongly disturbed boundary layer is discussed in [Appendix C]
Finally, the effective conductivity in the entire medium reads,
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230

235

240

245

BM

Re, K Ky ay ao

4000 |2.71x107']3.81x 1072 5x 1072 6.25 x 1072 | 8.55 x 107!
7800 |2.85x 1071 |3.69x107%|5.26x 1072 | 6.07 x 1072 1.71

15 600 | 3.61 x 10~ | 3.59 x 1072 | 6.67 x 1072 | 5.88 x 1072 2.56

19 500 | 3.61 x 107! | 3.39 x 1072 | 6.67 x 1072 | 5.56 x 1072 2.56

23 300 | 3.61 x 107" | 3.39 x 1072 | 6.67 x 1072 | 5.56 x 1072 2.56

Table 3: The macroscopic heat transfer coefficients values at different

Reynolds numbers.

where (vr)s is the dynamic viscosity defined by (22)), the total kinetic
energy (K)s and the axial velocity (u,)s are obtained resolving the sys-
tem of equations (20)), (21)), and (B4). Macorscopic thermal Prandtl
numbers can be related to the molecular Prandtl number Pr, o4 (Re,) =
Pr - Ki(Re,)/¢ and o(Re,) = Pr- Ky(Re,)/¢ with Pr = 0.72 for the con-
sidered fluid. Finally, ¥ = 0.5 and r] = 3. The other coefficients values are
reported in Table |3 It is worth noting that all coefficients tend to a constant
value at high Reynolds, showing that the heat transfer mechanisms reach an
equilibrium at high Reynolds.

4.5. Model validation

Macroscopic simulations are performed with the following boundary con-
ditions: a constant heat flux at the wall, inlet and outlet boundaries are
linked as periodic imposing a mass flow, then the overall heat flux brought
at the tube wall is removed at the outlet (7Cy[Thuk.exit — Thutk,iniet]). The
near wall mesh is fine enough to keep y* ~ 1.

The radial profile of the effective thermal conductivity is well recovered
and very good agreements are found in the near wall region where the tem-
perature gradients are huge (Fig. [23)). Thus, the radial profile of the tem-
perature field matches well with the up-scaled pore scale reference data (Fig.
24). The wall temperature is also assessed with satisfaction (Table [4)). The
wall heat flux coefficient is then computed and very good agreements are
found between the 1D macroscopic model and the REV-averaged 3D pore
scale simulations (Tables [ and [6).

From the simulation data a correlation for the wall heat transfer can be

deduced (Fig. [29)):

Qd,

Nty = ——F
M (T, —Ty)

=0.1Re)® (59)
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Re, T, micro (K) | T, macro (K) | |AT,| (K)
4 000 1333.59 1334.724 1.134
7 800 1090.04 1091.4664 1.426
15 600 968.54 961.153 7.39
19 500 942.655 944.04 1.39
23 300 924.75 932.47 7.72

Table 4: Wall temperature, Micro vs. Macro.

Re, T, micro (K) | T, macro (K) | |AT| (K)
4 000 829.46 822.87 6.59
7 800 813.88 811.96 1.92
15 600 806.55 805.35 1.2
19 500 805.22 804.14 1.08
23 300 804.18 801.3 2.88

Table 5: Bulk temperature, Micro vs. Macro.

Jotro(@) (T dr
fOR ré(uz)tdr

The correlation found in the present study agrees well with the correla-
tions one can find in the literature. As it can be seen in the figure the
present correlation’s trend and the range of the wall heat transfer coefficient
values are consistent with those existing in the literature. Indeed, the slope
given by the present correlation is very close to the one reported by [4]. It
is worth noting that correlations, except the one presented in the present
study and the one derived in [58], consider the temperature jump between
the wall temperature and the fluid temperature at the wall 7, — T'(r = R)
( Nuy, = %). Consequently, the range of values for the wall heat
transfer coefficient found in this study has to be compared to the correlation
derived in [58]. One can thus be satisfied by the agreement found between

the two of them.

with the bulk temperature T, =



Re, Nu,, micro | Nuy, macro | |ANuy,|
4 000 78.84 77.65 1.5%
7 600 143.92 142.2 1.2%
15 600 245.35 255.09 3.98%
19 500 289.18 284.09 1.76%
23 300 329.63 303 8.08%
Table 6: Evaluation of the wall heat transfer coefficient Nu,, = Qdy
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Figure 23: Radial profile of the effective thermal conductivity, Micro ¢A.s¢
vs. Macro ¢*Ag;;.
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Figure 25: Correlation for the Nusselt number.



1000 ¢
100 E
10 ¢ E
1 N MR | N PR | N PR | MR
10 100 1000 10000 100000
Rep

Figure 26: Correlations for the wall heat transfer coefficient. Nul:[26]; Nu2:
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5. Conclusion

The present study can be seen as an elaboration and an extension of the
previous work achieved namely by [26] and [21]. Here, a flow dynamic based
two-zonal pseudo-homogeneous 1D radial heat transfer model is derived with
a deep insight into the near wall zone heat resistance, which is the most
critical point as far as heat control in tubular catalytic reactors is concerned.
Even if the model is quite complex and depends on numerous correlations
fitted on 3D CFD pore scale simulations results, the present model has the
merit of depicting clearly physical mechanisms responsible for the near wall
heat resistances and proposing a methodology to take them into account in
a 1D radial model. It can be easily coupled to the 1D plug flow model when
a detailed analysis is needed for instance in attempts to reduce the near wall
heat resistance for safety analysis or process optimization studies.

The methodology developed in the present study and the main results are
summarized as follow: a reference data describing the pore scale flow dynamic
and heat transfers in packed bed systems is generated by tacking advantage
of the CFD tools. A set of criteria is defined to enable the pore scale data’s
unequivocal up-scaling to the bed scale [26]. The collected information is
then used to construct a set of equations which is able to predict the flow
dynamic (turbulent and dispersive mixing) mechanisms and the radial heat
transfers at the macroscopic scale. It is for instance highlighted that transfer
mechanisms are mainly driven by the dispersion and that the second order
dispersive fluctuations observe the Boussinesq hypothesis at the macroscopic
level. Moreover, a near wall zone with a thickness of d,/2 is identified. The
channeling effect occurring in the near wall zone is observed to be responsible
for the thermal resistance existing in this zone. Indeed, The dynamic viscos-
ity is damped (decrease of the dispersive mixing) which leads to a damped
heat transfers over this region. Finally, considering a weakly disrupted ther-
mal boundary layer, a linear law for the effective conductivity is proposed to
estimate the boundary layer heat transfer. It enabled to succesfully assess
the wall temperature and the wall heat transfer coefficient.

Appendix A. up-scaling the turbulent kinetic energy

the governing equation for the turbulent kinetic energy at the pore scale
reads,

/ /

ok .
5 T VikG ==Vl PR

9 7 2 G 1
+udu] + vV — w2 -
UUU] v g UZU] ;

€ (A.1)



Applying the volume averaging operator to (A.1]), one gets,

o ol ) + VTR — (R V(]

-V (02 + ) - ot (A2)
— G(ORy V00 + / Vkn,dS — V,[6(6,0k)]

!/ /
where wu; = R;j;.

Appendix B. dispersive kinetic energy

Subtracting (7)) from the pore scale momentum conservation equation and
multiplying by dw; the obtained equation and finally applying the volume
averaging operator, one gets

0=~V (T 0T])" — DRV )~ GEYS)

+ (0T V30Tm)" — (0T V,[0w0w))" — (0T V0 Ryj)"

which can be rearranged to obtain the governing equation for the kinetic
energy of the dispersive fluctuations.

0 = — V() ha) ] — %viwu—iam V(65T

+ V2B (ka)] — Slea)’ — (T [0(w)] + <§;V> / 5PnidS

<U_i>i2

(B.2)
5 )

Sk / V,0n;dS + (5)'V,6[3(ke)’ —

—\12 ' '
— vV [Vj¢<u;> | + ¢(6w6; V ;01:)" + ¢(6Ri;V ;00;)"

~ VT Ry + (i) + (07007)) (1) V50

Appendix C. Strongly disrupted boundary layer

In this case, the temperature field can be split up according to

@y = gy 4 0

€



with € << 1. Thus,

0 @hers) oA Ty] = 4@
or* or* (C 2)
9 9 N0 il )] A (3) '
or* [(w"’ff)ar* (€<T> + <T> ﬂ =4
0 order term in e:
0 0 =i
T |(@OAesn) 5 (D) =0 (C.3)
205 As the disruption is generated by the solid particles, one can relate it to
the spatial fluctuation and seek (T)% in the form [63],
()" = n(Re,)V(T)" (C.4)
Tacking into account the closure (C.4]) in (C.3)) one can deduce,
Pess (1) = ' (Re,)r™? (C.5)

The profile is hence showed to be quadratic within a highly disturbed bound-
ary layer. It is consistent with the empirical expression derived in [10].

s0 References

[1] A. P. D. Wasch, G. F. Froment, Heat transfer in packed beds, Chem.
Eng. Sci. 27 (1972) 567-576.

[2] G. Froment, Analysis and design of fixed bed catalytic reactors, Chem.
Reaction Eng. 109 (1972) 1-55.

ws  [3] J. Beek, Design of packed catalytic reactors, Adv. Chem. Eng. 3 (1962)
203-271.

[4] C.Li, B. Finlayson, Heat transfer in packed beds - a reevaluation, Chem.
Eng. Sci. 32 (1977) 1055-1066.

[5] O. Bey, G. Eigenberger, Fluid flow through catalyst filled tubes, Chem
310 Eng. Sci. 52 (1997) 1365-1376.

[6] T. Eppinger, K. Seidler, M. Kraume, Dem-cfd simulations of fixed bed
reactors with small tube to particle diameter ratios, Chem. Eng. J. 166
(2011) 324-331.



315

320

325

330

335

340

345

[7]

[14]

[15]

[16]

[17]

[18]

M. Behnam, A. Dixon, M. Nijemeisland, E. Stitt, A new approach to
fixed bed radial heat transfer modeling using velocity fields from com-

putational fluid dynamics simulations, Ind. Eng. Chem. Res. 52 (2013)
15244-15261.

A. Dixon, Fixed bed catalytic reactor modelling - the radial heat transfer
problem, Canadian J. Chem. Eng. 90 (2012) 507-527.

J. Papageorgiou, G. Froment, Simulation models accounting for radial
voidage profiles in fixed bed reactors, Chem Eng. Sci. 50 (1995) 3043
3056.

M. Winterberg, E. Tsotsas, A simple and coherent set of coefficients
for modelling of heat and mass transport with and without chemical
reaction in tubes filled with spheres, Chem. Eng. Sci. 55 (2000) 967—
979.

M. Winterberg, E. Tsotsas, Correlations for effective heat transport co-
efficients in beds packed with cylindrical particles, Chem Eng. Sci. 55
(2000) 5937-5943.

D. Vortmeyer, E. Haidegger, Discrimination of three approaches to eval-
uate heat fluxes for wall-cooled fixed bed chemical reactors, Chem. Eng.
Sci. 46 (1991) 2951-2660.

E. Smirnov, A. Muzykantov, V. Kuzmin, A. Kronberg, 1. Zolotarskii,
Radial heat transfer in packed beds of spheres, cylinders and rashing
rings. verification of model with a linear variation of A, in the vicinity
of the wall, Chem Eng. J. 91 (2003) 243-248.

D. Bunnell, H. Irvin, R. Olson, J. Smith, Effective thermal conductivities
in gas-solid systems, Ind. Eng. Chem. 41 (1949) 1977-1981.

S. Kwong, J. Smith, Radial heat transfer in packed beds, Ind. Eng.
Chem. 49 (1957) 894-903.

M. Ahmed, R. Fahien, Tubular reactor design-i, Chem. Eng. Sci. 35
(1980) 889-895.

D. Gunn, M. Ahmed, The characterisation of radial heat transfer in
fixed beds, IChemE Symp. Ser. 86 (1984) 513-520.

D. Gunn, M. Ahmed, M. Sabri, Radial heat transfer to fixed beds of
particles, Chem. Eng. Sci. 42 (1987) 2163-2171.



350

355

360

365

370

375

[19] D. Gunn, M. Sabri, A distributed model for liquid-phase heat transfer
in fixed beds, Int. J. Heat Mass Transfer 30 (1987) 1693-1702.

[20] J. Borkink, K. Westerterp, Significance of the radial porosity profile for
the description of heat transport in wall-cooled packed beds, Chem. Eng.
Sci. 49 (1994) 863-876.

[21] F. Mathey, Numerical up-scaling approach for the simulation of heat-
transfer in randomly packed beds, Int. J. Heat Mass Transfer 61 (2013)
451-463.

[22] J. Lerou, G. Froment, Velocity, temperature and conversion profiles in
fixed bed catalytic reactors, Chem. Eng. Sci. 32 (1977) 853-861.

[23] J. Marivoet, P. Teodoriou, S. Wajc, Porosity, velocity and temperature
profiles in cylindrical packed beds, Chem. Eng. Sci. 29 (1974) 1836-1840.

[24] D. Vortmeyer, J. Schuster, Evaluation of steady flow profiles in rectan-
gular and circular packed beds by a variational method, Chem. Eng. Sci.
38 (1983) 1691-1699.

[25] O. Kalthoff, D. Vortmeyer, Ignition/extinction phenomena in a wall
cooled fixed bed reactor. experiments and model calculations including
radial porosity and velocity distributions, Chem. Eng. Sci. 35 (1980)
1637-1643.

[26] I. Thiagalingam, I. Bennaceur, M. Dallet, S. Cadalen, P. Sagaut, Exact
non local expression for the wall heat transfer coefficient for in tubular
catalytic reactors, Int. J. Heat Fluid Flow 54 97-106.

[27] X. Jia, M. Gan, R. Williams, D. Rhodes, Validation of a digital packing
algorithm in predicting powder packing densities, Powder Technology
174 (2007) 10-13.

[28] R. Caulkin, A.Ahmad, M. Fairweather, X. Jia, R. Williams, Digital
prediction of complex cylinder packed columns, Comp. and Chem. Eng.
33 (2009) 10-21.

[29] R. Caulkin, M. Fairweather, X. Jia, R. Williams, A numerical case study
of packed columns, in: European Symposium on Computer Aided pro-
cess Engineering, Elsevier Science B.V., 2005.

[30] X. Jia, R. Williams, A packing algorithm for particles of arbitrary
shapes, Powder Technology 120 (2001) 175-186.



380

385

390

395

400

405

410

[31]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

A. Guardo, M. Coussirat, F. Recasens, M. Larrayoz, X. Escaler, Cfd
study on particle-to-fluid heat transfer in fixed bed reactors: convective
heat transfer at low and high pressure, Chem. Eng. Sci. 61 (2006) 4341
4353.

F. Augier, F. Idoux, J. Delenne, Numerical simulations of transfer and

transport properties inside packed beds of spherical particles, Chem.
Eng. Sci. 65 (2010) 1055-1064.

M. Nijemeisland, A. Dixon, Comparison of cfd simulations to experiment
for convective heat transfer in a gas-solid fixed bed, Chem. Eng. J. 82
(2001) 231-246.

T. Atmakidis, E. Y. Kenig, Cfd-based analysis of the wall effect on
the pressure drop in packed beds with moderate tube/particle ratios in
laminar flow regime, Chem. Eng. J. 155 (2009) 404—410.

A. Dixon, G. Walls, H. Stanness, M. Nijemeisland, E. H. Stitt, Ex-
perimental validation of high reynolds number cfd simulations of heat
transfer in a pilot-scale fixed bed tube, Chem. Eng. J. 200 (2012) 344—
356.

S. Ookawara, M. Kuroki, D. Street, K. Ogawa, High-fidelity dem-cfd
modeling of packed bed reactors for process intensification, in: Proceed-
ings of European Congress of Chemical Engineering, Copenhagen, 2007.

A. Dixon, M. Nijemeisland, E. H. Stitt, Systematic mesh development
for 3d cfd simulation of fixed beds: Contact points study, Computers
Chem. Eng. 48 (2013) 135-153.

M. J. S. de Lemos, Turbulence in porous media, Elsevier, 2006.

M. Quintard, S. Whitaker, Transport in ordered and disordered media
i: the cellular average and the use of weighting functions, Transport in
porous media 14 (1994) 163-177.

M. Quintard, S. Whitaker, Transport in ordered and disordered media
i: generalized volume averaging, Transport in porous media 14 (1994)
179-206.

W. Gray, P. Lee, On the theorems for local volume averaging of multi-
phase systems, Int. J. Multiphase Flow 3 (1977) 333-340.

A. Nakayama, F. Kuwahara, A macroscopic turbulence model for flow
in a porous medium, J. Fluids Eng. 121 (1999) 427-433.



415

420

425

430

435

440

445

[43]

[44]

[45]

[49]

[50]

[51]

[52]

M. Chandesris, G. Serre, P. Sagaut, A macroscopic turbulence model
for flow in porous media suited for channel, pipe and rod bundle flows,
Int. J. Heat Mass Transfer 49 (2006) 2739-2750.

H. Mickeley, K. Smith, E. Korchak, Fluid flow in packed beds, Chem.
Eng. Sci. 23 (1965) 237-246.

I. Macdonald, M. El-Sayed, K. Mow, F. Dullien, Flow through porous
media- ergun equation revisited, Ind. Eng. Chem. Fund. 18 (1979) 199
208.

D. van der Merwe, W. Gauvin, Velocity and turbulence measurements
of air flow through packed bed, A.I.Ch.E. J. 17 (1971) 519-528.

A. Dybbs, R. Edwards, A new look at porous media fluid mechanics-
darcy to turbulent, Fund. Trans. Phenom. Porous Media 82 (1984) 199
256.

T. Masuoka, Y. Takatsu, Turbulence model for flow through porous
media, Int. J. Heat Mass Trans. 39 (1996) 2803—2809.

M. de Lemos, M. Pedras, Recent mathematical models for turbulent flow
in saturated rigid porous media, J. Fluids Eng. 123 (2002) 935-940.

M. Pedras, M. de Lemos, Macroscopic turbulence modeling for incom-
pressible flow through undeformable porous media, Int. J. Heat Mass
Transfer 44 (2001) 1081-1093.

F. Teruel, Rizwan-uddin, A new turbulence model for porous media
flows. part i: Constitutive equations and model closure, Int. J. Heat
Mass Trans. 52 (2009) 4264-4272.

F. Teruel, Rizwan-uddin, A new turbulence model for porous media
flows. part ii: Analysis and validation using microscopic simulations,
Int. J. Heat Mass Trans. 52 (2009) 5193-5203.

F. Teruel, Rizwan-uddin, Numerical computation of macroscopic tur-
bulence quantities in representative elementary volume of the porous
medium, Int. J. Heat Mass Trans. 53 (2010) 5190-5198.

F. Pinson, O. Gregoire, O. Simonin, k-e macro-scale modeling of turbu-
lence based on a two scale analysis in porous media, Int. J. Heat Fluid
Flow 27 (2006) 955-966.



450

455

460

465

[55] S.Ergun, Fluid flow through packed columns, Chem. Eng. Prog. 48
(1952) 89-94.

[56] F. Mathey, Macroscopic turbulent models for heat and mass transfer in
catalyst reactors, in: AIP Conf. Proc. 1453, 2012.

[57] P. Cheng, D. Vortmeyer, Transverse thermal dispersion and wall chan-
neling in a packed bed with forced convective flow, Chem. Eng. Sci. 43
(1988) 2523-2532.

[58] Y. Demirel, R. Sharma, H. Al-Ali, On the effective heat transfer param-
eters in a packed bed, Int. J. Heat Mass Trans. 43 (2000) 327-332.

[59] A. Dixon, M. DiCostanzo, B. Soucy, Fluid-phase radial transport in
packed beds of low tube-to-particle diameter ratio, Int. J. Heat and
Mass Transfer 27 (1984) 1701-1713.

[60] A. Dixon, Heat transfer in fixed beds at very low(< 4)tube-to-particle
diameter ratio, Ind. Eng. Res. 36 (1997) 3053-3064.

[61] P. Peters, R. Schiffino, P. Harriott, Heat transfer in packed tube reactors,
Int. Eng. Chem. Res. 27 (1988) 226-233.

[62] A. Dixon, L. Labua, Wall-to-fluid coefficients for fixed bed heat and
mass transfer, Int. J. Heat Mass Transfer 28 (1985) 879-881.

[63] M. Drouin, O. Grégoire, O. Simonin, A. Chanoine, Macroscopic mod-
eling of thermal dispersion for turblent flows in channels, Int. J. Heat
Mass Transfer 53 (2010) 2206-2217.



	Introduction
	3D high-fidelity numerical simulations of turbulent flow and heat transfers at the pore scale in packed beds and data upscaling
	Packing/meshing step
	Computational Fluid Dynamics (CFD) model setup
	upscaling

	 Macroscopic model for turbulent flow dynamic in packed beds
	Turbulence in porous medium
	Macroscopic "426830A K "526930B i - "426830A "526930B i model
	Closure relations
	model validation

	Pseudo-homogeneous 1D macroscopic radial model for heat transfer
	Model of Mathey
	The bulk zone: r<R-dp/2
	The near wall zone: R-dp/2r < R-dp/10
	Heat transfer in the boundary layer: R-dp/10r < R
	Model validation

	Conclusion
	up-scaling the turbulent kinetic energy
	dispersive kinetic energy
	Strongly disrupted boundary layer

