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ABSTRACT

Cells are interactive living systems where proteins movements, interactions and regulation are substantially free from cen-

tralized management. How protein physico-chemical and geometrical properties determine who interact with whom remains

far from fully understood. We show that characterizing how a protein behaves with many potential interactors in a complete

cross-docking study leads to a sharp identification of its cellular/true/native partner(s). We define a sociability index, or S-

index, reflecting whether a protein likes or not to pair with other proteins. Formally, we propose a suitable normalization

function that accounts for protein sociability and we combine it with a simple interface-based (ranking) score to discrimi-

nate partners from non-interactors. We show that sociability is an important factor and that the normalization permits to

reach a much higher discriminative power than shape complementarity docking scores. The social effect is also observed

with more sophisticated docking algorithms. Docking conformations are evaluated using experimental binding sites. These

latter approximate in the best possible way binding sites predictions, which have reached high accuracy in recent years. This

makes our analysis helpful for a global understanding of partner identification and for suggesting discriminating strategies.

These results contradict previous findings claiming the partner identification problem being solvable solely with geometrical

docking.

Proteins 2016; 00:000–000.
VC 2016 The Authors Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
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interface prediction.

INTRODUCTION

The development of experimental and computational

techniques for protein structure characterization has led

to the emergence of integrative approaches for probing

the “molecular sociology of the cell,”1 that is, how pro-

teins interact within cellular functional modules. These

approaches have proven successful in determining the

structures of some macromolecular assemblies and hold

great promises for the future.1–3 However, a number of

challenges remain to be overcome before the building of

3D interactome networks becomes feasible. One of the

most pressing challenge is that of specificity. In the con-

text of a very crowded cellular environment, how can a

protein distinguish its dedicated partners from non-inter-

actors? While in vitro/in vivo experiments can suggest

and test putative partners, computations provide a

unique way to characterize interactions at very large scale

and to explore the space of negatives, that is, of what

does not occur in the cell. Hence, the development,

adaptation and optimization of in silico methods is of

paramount importance.

Molecular docking has been addressed, for many years,

toward the understanding of molecular behavior and its

potential to infer protein–protein interactions (PPIs) has

often been discussed.4–6 Although the development of

docking algorithms, stimulated by the CAPRI competi-

tion,7 has shown great improvements over the years,
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scoring functions still struggle with a number of difficul-

ties in correctly ranking near-native complex conforma-

tions.4 That is why the identification of interaction

partners has generally been regarded as beyond their

scope.8–10 It is only very recently that molecular

docking-based strategies have been devised to this prob-

lem. The first proof-of-principle for such an approach

applied to the reconstruction of biological networks was

reported in Ref. 11. In 2007, the first large-scale cross-

docking study12 for the prediction of interaction part-

ners was launched on 168 proteins13 whose interactions

are known. This study highlighted the importance to

develop appropriate concepts and tools for improving

the discriminative power of molecular docking.

Large-scale modeling experiments dealing with hun-

dreds of proteins can be computationally highly demand-

ing and scaling up to thousands or tens of thousands of

proteins asks for drastically reducing the computing time

associated to molecular docking. In this respect, rigid-

body geometrical docking algorithms have been used to

efficiently generate and rank candidate complex confor-

mations.14,15 It has been suggested that docking scores

based only on the geometric complementarity of the two

molecular surfaces can be used to identify binding part-

ners.14 This finding goes against observations by other

groups that docking scores, even from the most sophisti-

cated current scoring functions, are poorly or mildly cor-

related with binding affinities16 (see Ref. 17 for recent

improvements based on contacts). Here, we rigorously

demonstrate that geometrical complementarity is not

sufficient to distinguish between cognate partners and

non-binders. By doing so, we set questions that could be

considered as benchmarks to test new approaches.

What type of information can be exploited to identify

interacting partners? To what extent can geometrical

docking localize protein binding sites? What is the link

between partner identification and binding site localiza-

tion? To contribute to answer to these questions, we

revisit the concepts used in previous studies12,14 and we

propose to evaluate docking configurations by using two

kinds of information that are different from shape com-

plementarity docking scores: (1) the knowledge of the

binding sites and (2) the knowledge of the global behav-

ior of each protein relative to its potential partners

(native and non-native) inferred from docking

calculations.

The first criterion relies on the assumption that each

interacting surface encodes information about the specif-

icity of the interaction between the two partners. The

majority of protein interface prediction methods exploit

sequence-based, and optionally structure-based, residue

properties of a single protein.18–27. Some of these meth-

ods already provide very accurate predictions, without

any knowledge of a protein’s partner(s). Likewise, several

docking studies showed that some regions at the surface

of a protein are preferentially targeted by any protein

(partner or not).11,12,15 Nevertheless, a few recent

works demonstrated that protein binding site predictions

can be improved by including information about the

native partner, provided that reliable structural data are

available, and highlighted the specificity of interfaces

involved in transient interactions.28–31 Here, we show

that the problem of localizing and delineating interaction

surfaces is more tightly linked to that of discriminating

protein partners than what is generally admitted. We

reveal a correlation between the correct detection of the

binding site and the identification of the correct partner.

This correlation is observed using geometrical docking,

and also using a more sophisticated docking/scoring

methodology.

The second criterion postulates that the overall pro-

pensity of a protein to interact with many potential part-

ners, in other words its global social behavior, should be

accounted for to identify its cognate partners. Previous

studies have characterized the tendency of proteins to

form promiscuous interactions in terms of stickiness,

defined based on the hydrophobicity of the protein sur-

face.32–35 Here, we propose to define a sociability index,

called S-index, that reflects the tendency of a protein to

glue to other proteins, inferred from docking calcula-

tions. The notion of sociability goes beyond that of stick-

iness: while a sticky protein has no preferential partner,

we show that a protein might be sociable with all other

proteins but display different degrees of sociability, with

proteins playing different functional roles in the cell. The

information of protein sociability can help reveal evolu-

tionary signals toward avoiding non-functional interac-

tions. We show that the S-index scales obtained from

different docking algorithms largely overlap. We use S-

indexes to normalize interaction scores computed

between pairs of proteins with respect to all other pro-

teins in the ensemble considered. In Ref. 14, this idea

was not present and the complexes were evaluated inde-

pendently. We propose a modified version of the normal-

ization formula, compared to that reported in our

previous works.11,12 Our results clearly show that

accounting for protein sociability greatly contributes to

increasing the discriminative power of the approach. We

highlight a higher chance of detecting the correct partner

for pairs that are not both highly sociable nor both

poorly sociable.

These two criteria have implications for our global

understanding of how proteins interact with each other.

MATERIALS AND METHODS

Unbiased high-throughput docking

Two types of docking experiments were realized. (i) The

352 proteins from the Protein-Protein Docking Benchmark

(PPDB) version 4 (http://zlab.bu.edu/benchmark4/)36 were

docked against their known partner (from PPDBv4) and
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against a background set of 918 potential interactors belong-

ing to different superfamilies.37 The original set was taken

from Ref. 14 and comprised 922 structures. We removed

four structures as they were not suitable for docking (the

contained only C-a atoms). (ii) A complete cross-docking

of PPDBv4 was also realized in which all 352 benchmark

proteins were docked against each other and themselves

[Fig. 1(c)]. Given a protein pair from the dataset, two dock-

ing calculations were performed where the two proteins

alternatively played the role of the receptor and that of the

ligand [Fig. 1(b)]. In total, 447 040 docking calculations

were realized. Docking was performed with HEX v6.338

using the shape complementarity scoring function. HEX

parameters are reported in Supporting Information Table

S1. The precision of the molecular representation was

defined from 18 and 25 expansion orders for the initial and

final search steps. To avoid bias coming from the input

PDB structures, the receptor and ligand models were posi-

tioned at a distance of 100 Å from one another prior to

docking. Moreover, five starting positions were defined

Figure 1
Schematic representation of the docking protocols. (a) Biased docking starts from the original PDB file recording the coordinates of the known

complex. The relative orientation of the ligand (in brown) compared to the receptor (in orange) is randomized prior to docking, but not its posi-
tion. (b) Unbiased docking starts from five randomly chosen orientations and positions (blue arrows) of the ligand with respect to the receptor.

For any pair of proteins, two docking calculations are performed (on top and at the bottom), so that each protein alternatively plays the role of

the ligand and that of the receptor. The insert on the right gives a simplified representation of the two docking calculations for a pair of proteins.
(c) In a complete cross-docking experiment applied on an ensemble of four proteins, each protein (for example here, the orange one) is docked to

all the other proteins, including itself. (d) Representation of molecular surfaces by HEX, with the order of the 3D expansion N 5 25. The complex
is that of trypsin (in purple) and its inhibitor (in yellow). (e) To identify partners using geometrical ranking, each line of the matrix is considered

separately. (f) To identify partners using interface-based ranking, the interaction index of a protein pair is determined over the two docking calcula-
tions involving the two proteins. The II matrix is symmetrical.
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using HEX Macro-Sampling module and were used to gen-

erate initial docking orientations for the ligand over the

receptor and to derive appropriate local coordinate frames.

Let us stress that in all docking calculations, we used the

unbound conformations of the proteins from PPDBv4.

Post-processing of docking poses to
discriminate native partners from non-
interactors

Different protocols for evaluating the docking poses

were tested: (1) the protocol reported in Ref. 14 where

the docking score distribution of each known complex is

simply compared to those of the non-interacting protein

pairs, (2) a similar protocol where the comparisons are

based on an interaction index that uses experimentally

determined interfaces [see Eq. (1) below], (3) a more

sophisticated protocol where the interaction index value

of each protein pair is normalized with respect to all the

other pairs.

Statistical testing of docking score distributions

Docking score distributions for the known complexes

and the non-interacting protein pairs were compared fol-

lowing the same protocol as that reported in Ref. 14.

Given a protein P and its N potential partners (including

its native partner and other proteins that are considered

as non-interactors), N docking runs were conducted and

M best-scored models were selected from each docking

run. Therefore, N – 1 individual Wilcoxon rank-sum

tests were performed to compare the docking score dis-

tribution from P with its native partner with each one of

the N – 1 distributions from P with the other proteins.

For each test, the H0 hypothesis is that the two distribu-

tions are the same and the differences are simply due to

random error. It is rejected when the P values is lower

than 0.01 (changing this value for 0.05 or 0.10 did not

impact the results, see Supporting Information Fig. S1).

This way, one can rank the native partner of P and deter-

mine the percentage x of non-interactors from which it

is indistinguishable. We refer to x as the significance level

of the test. For instance, when x 5 1 the native partner

of P has a better score distribution than 99% of the oth-

er proteins.

The number N of potential partners is 919 in experi-

ment i and 352 in experiment ii. The number M of

retained scores is 7 348 (maximum number of solutions

given by HEX). Note that in Ref. 14, the authors consid-

ered the top 20,000 best-scored models for their analyses

but they showed that they could obtain essentially the

same results using the 1,00,000, 10,000, 5000 and 1000

top scores.

The protein interaction index—II

With the aim of discriminating cognate partners from

non-interactors, we propose to evaluate docking models

based on the agreement between the docked interfaces

and the experimentally known interfaces. For every pro-

tein pair P1P2, we determined an interaction index (II):

IIP1;P2
5maxðFIRP1;P2

; FIRP2;P1
Þ (1)

where FIRP1;P2
(Fraction of Interface Residues) is the

overall fraction of the docked interfaces, obtained when

P1 is the receptor, composed of residues belonging to the

experimentally identified interfaces for the two proteins:

FIRP1;P2
5FIRP1

� FIRP2
. FIRP2;P1

, where P2 is the receptor,

is defined similarly. The docked interfaces are defined by

the sets of residues that display a change of at least 10%

decrease in accessible surface area compared to the

unbound proteins (receptor and ligand). For each dock-

ing calculation, the maximum is determined >2 000

docking conformations, obtained by clustering the solu-

tions generated by HEX with a 3 Å cutoff distance and

retaining those with the best HEX scores. The receptor

and the ligand do not play symmetrical roles in the

docking calculations, so that the conformational ensem-

ble obtained when docking P1 to P2 may be different

from that generated when docking P2 to P1. To avoid

any bias in the results, we estimated the interaction

strength between each pair P1P2 regardless of the role

(receptor or ligand) each protein plays in the calcula-

tions. Hence, the maximum was defined over the 2 dock-

ing calculations involving P1 and P2. It follows that:

IIP1;P2
5IIP2;P1

.

The protein normalized interaction index—NII

We further propose to normalize the interaction indices,

in order to account for the global social behavior of the

proteins involved in each pair. Our assumption is that the

ability of P1 and P2 to interact with all other proteins in

the dataset should be accounted for to decide whether P1

and P2 interact together. The normalized interaction index

NII between P1 and P2 was determined as:

NIIP1;P2
5

ðII 0P1;P2
Þ2

maxPðII 0P1;PÞ �maxPðII 0P2;PÞ
(2)

where II 0P1;P2
is a weighted version of the interaction

index IIP1;P2
and it is defined as:

II 0P1;P2
: 5

IIP1;P2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SP1
� SP2

p ; SPi
: 5

1

P
X
Pj2P

IIPi ;Pj
(3)

where P is the ensemble of proteins considered. The nor-

malization can be applied to the whole PPDBv4 dataset

or to subsets. In either case, NII values vary between 0

and 1. For each protein Pi, we defined its predicted part-

ner as the protein Pj that lead to NIIPi ;Pj
51. Note that

this formula is simpler than the one we proposed in Ref.
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12. This is because the II matrix computed here is sym-

metrical, which was not the case in Ref. 12.

Comparing with other docking programs

We repeated CC-D of a subset of 33 enzyme-inhibitor

complexes from PPDBv4 (Supporting Information Table S2)

with the docking program ZDOCK 3.0.2.39 Like HEX,

ZDOCK performs rigid-body docking using a grid-based rep-

resentation of proteins and a fast Fourier transform. The 2

000 best-scored docking models were retained for docking

score distribution statistical comparison, and the 500 best

ones only for interface-based ranking.

We also analyzed data issued from a complete cross-

docking study of the PPDBv2 benchmark13 (84 com-

plexes, included in PPDBv4) realized using the MAXDo

(Molecular Association via Cross Docking) algorithm.12

MAXDo uses a multiple energy minimization scheme

based on the ATTRACT protocol.40 For each pair of

proteins, one molecule (called the receptor) is fixed in

space, while the other (called the ligand) is placed at dif-

ferent starting positions to cover the surface of the recep-

tor. For each position of the ligand, 210 orientations

were generated and only the one yielding the best inter-

action energy was retained. To analyze these data, we

used an alternative version of the interaction index:

II ene
P1;P2

5minðFIRP1;P2
3EneP1;P2

; FIRP2;P1
3EneP2;P1

Þ (4)

where EneP1;P2
and EneP2;P1

are the interaction energies

computed by MAXDo (negative values) when docking P1

against P2 and reciprocally. For each docking calculation,

the minimum was determined over all retained docking

models (this number may vary depending on the size of

the receptor) for the 2 docking calculations involving P1

and P2 so that II ene
P1;P2

5II ene
P2;P1

. The normalization formula

is the same as in Eq. (2).

Residue scoring based on docking

The interaction propensity index—IP

In order to characterize the docking conformational

ensemble, we defined an interaction propensity (IP)

index that estimates the frequency at which each residue

i of a given protein P1 appears in a docked interface:

IPP1
ðiÞ5 Nint ;P1

ðiÞ
Npos;P1

(5)

where Npos;P1
is the number of retained docking confor-

mations of P1 and Nint ;P1
ðiÞ is the number of these con-

formations where residue i belongs to the binding

interface. Given a docking experiment, we retained the 2

000 best scoring clustered poses to compute IP. The IP

index can be calculated from all the docking experiments

involving P1 or only from the two docking experiments

with its native partner (IPnative) or only from the two dock-

ing experiments with any non-interactor. The IP values

computed for all proteins from PPDBv4 using HEX are

available at http://www.lcqb.upmc.fr/CCDGeomDock/.

The normalized interaction propensity index—NIP

To allow comparison between residues belonging to

the same protein P1, the index IP was normalized as:

NIPP1
ðiÞ5 IPP1

ðiÞ2 < IPP1
ðjÞ>j2P1

maxðIPP1
ðjÞÞj2P1

2 < IPP1
ðjÞ>j2P1

(6)

where <IPP1
ðjÞ>j2P1

is the average computed over all

residues j at the surface of P1, and maxðIPP1
ðjÞÞj2P1

is the

maximum IP value obtained at the surface of P1. NIP

can be positive, indicating that the residue i is favored to

occur at potential binding sites, or negative, indicating

that it is disfavored. We considered residues with positive

NIP values as predicted to be in interaction.

Comparison of NIP profiles

Given a protein P1, we define its NIP profile as the

vector NIPP1
of NIPP1

ðiÞ values, where i varies between 1

and the size of P1, computed from docking P1 to all the

proteins in the dataset. Upon docking P1 to its known

partner P2, one can define in a similar manner the vector

NIPP1P2
of length equal to the size of P1 containing the

NIP values calculated from the two docking calculations

involving both P1 and P2. The distance between NIPP1P2

and NIPP1
was calculated as the normalized angle

between the two vectors:

dðNIPP1P2
;NIPP1

Þ5 1

p
arccos

NIPP1=P2
� NIPP1

jjNIPP1=P2
jjjjNIPP1

jj

� �
(7)

The distance is comprised between 0 and 1. A small val-

ue indicates that P2 binds to the same region(s) at the

surface of P1 as any other protein in the dataset, while a

high value indicates that P2 binds in a peculiar way to P1

compared to the other proteins in the dataset.

Evaluation of IP and NIP performance

To evaluate the predictive power of IP and NIP index-

es, we relied on the following quantities: the number of

residues correctly predicted as interacting (true positives,

TP), the number of residues correctly predicted as non-

interacting (true negatives, TN), the number of non-

interacting residues incorrectly predicted as interacting

(false positives, FP) and the number of interacting residues

incorrectly predicted as non-interacting (false negatives, FN).

We used the four standard measures of performance: sensitiv-

ity Sens5TP=ðTP1FNÞ, specificity Spe5TN=ðTN1FPÞ,
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accuracy Acc5ðTP1TNÞ=ðTP1FN1TN1FPÞ and positive

predictive value PPV5TP=ðTP1FPÞ. The R software41 was

used to compute all performance values and produce the cor-

responding graphs.

Species representation in PPDBv4

We analyzed the distribution of species within

PPDBv4. For each protein P of the ensemble, we

retrieved with Blast (e-value threshold at 10e24, align-

ment coverage 70%) three lists of species where a homo-

log of that protein, at 100%, 80% or 60% sequence

identity, is present. For each species identified, we then

counted the number of known complexes whose two

partners have homologs in that species. At 100%

sequence identity, Homo sapiens is the most populated

species, with 24 complexes. At 80% and 60% sequence

identity, the species being the most populated are essen-

tially mammals. Homo sapiens has 75 complexes at 80%

and 85 complexes at 60%. The bacterium Escherichia coli

has 11 complexes at 80% and 60% sequence identity.

RESULTS

In the following, we aim at singling out cognate part-

ners based on docking calculations, and discriminating

them from non-interactors. We use a geometrical dock-

ing algorithm based on a rather crude representation of

protein surfaces, which has the great advantage of being

fast compared to other approaches. We are interested in

understanding what the ingredients of the discrimination

are: geometrical score, fit with the real interface, sociabil-

ity of the protein. We refer to the protein pairs compris-

ing the 176 binary complexes from PPDBv4 as known/

native/cognate partners. Any other protein pair is consid-

ered as non-interacting, even though interactions might

be possible but unknown.

Geometrical ranking does not identify
protein partners

We performed rigid-body docking with the program

HEX,38 using only the shape complementarity of the

two molecular surfaces to score the docking poses [Fig.

1(a)]. HEX models proteins using 3D expansions of real

orthogonal spherical polar basis functions [Fig. 1(c)],

which allows for a very efficient sampling of the docking

space. The order of the expansion determines the level of

refinement of the description. Typically, >3 billions can-

didate ligand-receptor orientations are generated for each

docking calculation. Given two proteins, five randomly

chosen initial positions and orientations of the ligand

with respect to the receptor were considered (see Materi-

als and Methods). Moreover, two docking calculations

were performed, so that each protein alternatively played

the role of the receptor and that of the ligand [Fig. 1(a)].

As benchmark set, we used the Protein-Protein Docking

Benchmark version 4 (PPDBv4) comprising 352 proteins,

among which 52 enzymes, 52 inhibitors, 25 antibodies

(12 bound), 25 antigens (12 bound), and 198 proteins

with other function.36

We performed two high-throughput unbiased docking

experiments, totaling about 4,50,000 docking calcula-

tions. In the first one, all the proteins from PPDBv4 (in

unbound conformations) were docked against a back-

ground set of about 1000 structures belonging to differ-

ent superfamilies37 (see Materials and Methods). The

statistical distributions of the docking scores were then

compared using the Wilcoxon rank-sum test.42 For each

protein P, we determined the percentage x of background

proteins from which the native partner of P was indistin-

guishable. We then counted the number of native part-

ners corresponding to different values of x [Fig. 2(a)].

Only 14 native partners (4% of the benchmark set) had

significantly better scores than 95% of the background

proteins (All, x 5 5%, two darkest orange rectangles).

About 50% of the partners were not even ranked in the

first half, that is, they were no better than 459 back-

ground proteins (All, lightest orange rectangle). This

indicates that docking scores obtained by unbiased geo-

metrical docking do not carry sufficient information to

distinguish cognate partners from a background set of

potential interactors.

The second experiment consisted in a complete cross-

docking (CC-D) of all structures in PPDBv4, including

themselves [Fig. 1(d)]. The score distributions obtained

by docking each protein to all the proteins in the dataset

were compared [Fig. 1(e)]. Only seven native partners

(2%) were found in the top 5 potential partners [Fig.

2(b), All, x 5 1%, darkest green rectangle]. And again,

about 50% of the partners were not even ranked in the

best half (All, lightest green rectangle). This protocol

consistently displayed poor performance for the four

functional classes represented in PPDBv4: enzymes-

inhibitors (E), antibodies-antigens (A), bound

antibodies-antigens (AB) and others (O). These results

are in agreement with those we previously obtained on

the enzyme-inhibitor dataset of PPDBv243 and clearly

show that geometrical docking alone does not carry suf-

ficient information to distinguish cognate partners from

non-interactors in an unbiased CC-D experiment.

Partner identification using knowledge of
binding sites

How can geometrical docking be useful in singling out

cognate partners? Instead of relying on docking score

distributions, we propose to rank potential partners

based on the agreement between the docking interfaces

and the experimental interfaces, without explicitly

including the shape complementarity score. To this end,
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we defined an interaction index for any protein pair P1

P2 as:

IIP1;P2
5maxðFIRP1;P2

; FIRP2;P1
Þ (8)

where FIRP1;P2
and FIRP2;P1

(Fraction of Interface Resi-

dues) are the fractions of the docked interfaces, obtained

when docking P1 against P2 and reciprocally, composed

of residues belonging to the experimental interfaces for

the two proteins (see Materials and Methods). The maxi-

mum is determined over the 2 3 2000 best-scored poses

from the two docking calculations involving P1 and P2

[as illustrated in Fig. 1(f)]. Consequently, geometrical

docking scores are used only to select an ensemble of

poses that are then evaluated based on an independent

criterion. Experimental interfaces can be viewed as per-

fect predictions. Using them enables to estimate the max-

imum discriminative power one can expect from the

interaction index II.

We ranked all protein pairs by their interaction index

II and observed that we could retrieve the known partner

of 47 proteins (13%) from PPDBv4 at the 5% signifi-

cance level [Fig. 3(a), All, two darkest green rectangles].

This is almost three times as much as the value comput-

ed from geometrical ranking [16 proteins, see Fig. 2(b),

All]. The results are consistently improved for all

functional classes [Fig. 3(a)]. Consequently, using knowl-

edge of the binding sites clearly helps identify cognate

partners. The definition of FIR, dependent on the experi-

mental binding sites, allows to evaluate the best result

one can hope for when replacing it with predicted

interfaces.

Partner identification using binding sites
and social behavior

We then considered a more sophisticated protocol in

which we normalized the II values before comparing

them. To do so, we defined a sociability index, or S-

index, computed for each protein Pi as:

SPi
5

1

P
X
Pj2P

IIPi ;Pj
(9)

that represents the degree of “sociability” of a protein:

the higher the value of S, the more sociable the protein

in the CC-D. The distribution of sociability indexes is

reported on Figure 4(a). They are used in the normaliza-

tion formula to weight interaction indexes II (see Materi-

als and Methods). This allows to estimate the ability of

two proteins to interact together, knowing how they

interact with all other proteins in the dataset. This

Figure 2
Discrimination of cognate partners and non-interactors based on geometrical ranking. (a) High-throughput docking of PPDBv4 (352 proteins)

against a background of 918 proteins. (b) Complete cross-docking of PPDBv4. In y axis is reported the percentage of known interactors whose
docking score distribution falls in the top x% of background distributions. The x% is indicated by the intensity of the color. For instance, the dark-

est orange rectangle in All, indicates that the known partners of 12 proteins from the benchmark set (12/372 5 3%, in y axis) are found in the top
(x5) 1% of the background distributions (see color legend). In other words, 3% of the known interactors have a score distribution significantly

better than 99% of the background distributions. The functional categories are the following: 26 antibodies-antigens (A), 24 bound antibodies-
antigens (AB), 104 enzymes-inhibitors (E), and 198 proteins with other functions (O).
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strategy yielded strikingly improved results [Fig. 3(b)].

The known partners of 80 proteins (23% of the bench-

mark set) were identified in the top 5% (All, two darkest

red rectangles). In all classes, the number of proteins

whose known partner was ranked first largely increased:

four (15%) antibodies-antigens, seven (32%) bound

antibodies-antigens, 14 (13%) enzymes-inhibitors, and

12 (6%) proteins with other function.

Figure 3
Discrimination of cognate partners and non-interactors by using knowledge of the interfaces and of the global behavior of protein. In y axis are
reported the percentages of cognate partners identified within the top x% of non-interactors, where x varies between 1 and 100 (color scale). Each

protein from PPDBv4 was docked against its native partner and 371 non-interactors (including itself) from PPDBv4. The proteins were ranked
using: (a) interaction indexes II, (b–d) normalized interaction indexes NII. Different subsets are considered based on: (a,b) functional categories,

(c) II values, (d) the presence of homologs of the studied proteins in the same organism (Human or E. coli) at different degrees of sequence identi-
ty (100%, 80% or 60%).
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Given a protein pair P1P2, the normalization accounts

for the sociability of P1 and P2 in the following way: if

the proteins are highly (resp. poorly) sociable, that is,

their S values are high (resp. low), the interaction index

IIP1;P2
will be lowered (resp. raised). This procedure has a

direct impact on the ranks of the potential partners [Fig.

4(c,d)]. Poorly sociable proteins (S � 0:19) generally

gain ranks upon normalization [Fig. 4(c,d), in blue]. By

contrast, highly sociable proteins (S � 0:75) are system-

atically penalized by the normalization [Fig. 4(c,d), in

red]. Given a protein P with medium sociability, the

down-shifting of highly sociable proteins [Fig. 4(d), in

red] may greatly help singling out its cognate partner.

The case of T-cell CD8 coreceptor and its partner MHC

class 1 HLA-A2, both mildly sociable (SI of 0.49 and

0.40), illustrates this effect. The interaction index for this

native pair is high (>0.6) and is further increased by the

normalization formula [Fig. 4(b), circled green point].

Meanwhile, highly sociable competitors, such as CMTI-1

squash inhibitor (S 5 0.85), are disqualified by the

normalization [Fig. 4(b), circled red points]. This results

in the cognate partner of T-cell CD8 coreceptor being

ranked first after the normalization (32nd before). The

rank differences for all pairs of mildly sociable proteins

are normally distributed around zero (data not shown).

This analysis revealed that to decide whether P1 and P2

interact together, the way P1 and P2 behave with all the

other proteins in the dataset should be accounted for. The

tendency to get together at a given protein interface and

the sociability effect perform better than geometry.

Avoiding interactions within the same
functional class

Are there general trends in the way proteins dock to

each other, depending on their functional classes? To

answer to that question, we represented the matrix of

NII values with the rows and columns ordered so that

proteins from the same functional class are grouped

together [Fig. 5(a)]. One can clearly observe that the

Figure 4
Global social behavior of the proteins. (a) Distribution of the sociability index S values for all proteins from PPDBv4. The colored rectangles corre-
spond to different levels of sociability: S � l22r in blue, l2r � S � l1r in green and S � l12r in red, where l50:47 and r50:14 are the

mean and standard deviation computed over all proteins. (b) Effect of the normalization for T-cell CD8 co-receptor. Interaction index values are
reported for T-cell CD8 co-receptor (1AKJ:L) before (II, black dots) and after (NII, red and green dots) normalization. Values of NII lower (resp.

higher) than those of II are colored in red (resp. green). The values are sorted in ascending order of II. The protein displaying the highest increase
upon normalization (1AKJ:R) is labelled and circled in black. The nine proteins displaying high sociability (S � 0:75) are also indicated by black

circles. (c, d) Effect of the normalization on proteins depending on their sociability. Given a protein X, the NII values enable to rank all the pro-

teins from the dataset, from 1st to 352nd. We report the distributions of the number of ranks lost (negative values) or gained (positive values) by
any protein Y. (c) Both X and Y and either highly (in red) or poorly (in blue) sociable. (d) X has medium sociability while Y is highly (in red) or

poorly (in blue) sociable.
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distribution of NII values is not uniform. Specifically, the

squares on the diagonal corresponding to antibodies-

antibodies (Ar and ABr), bound antigens-antigens (ABl)

and enzymes-enzymes (Er) display mostly low values:

98%, 97%, 97% and 94% of them are below 0.55 [Fig.

5(c)]. This indicates that the proteins within these func-

tional groups have evolved to avoid interactions between

them. This is also true for the proteins with other func-

tion (O) and the inhibitors (El), but to a smaller extent

(88% and 86% values <0.55, respectively). By contrast,

the squares corresponding to enzymes-inhibitors display

the highest values (only 71% of the values in the square

are <0.55). Overall, the antigens (Al), the inhibitors (El)

and the proteins with other function (O) are the most

interacting: the corresponding columns contain 22%,

21% and 17% of values above 0.55 (versus 8–15% for

the other classes).

This analysis of the NII matrix revealed the evolution-

ary constraints that apply to proteins within and between

functional classes. Interestingly, when comparing the NII

matrix with the II matrix [Fig. 5(b)], one can observe

that accounting for the sociability of the proteins con-

tributed to unveiling evolutionary signals. In the II

matrix, the inhibitors (El) appear as highly sociable,

displaying high interaction indexes between them and

with the proteins from almost all the other classes [Fig.

5(b)]. By treating each protein according to its S-index,

the normalization formula enables to refine the structure

of the benchmark set. In the NII matrix, the inhibitors

(El) are specifically attracted to the enzymes (Er) while

they tend to avoid each other and the bound antigens

(ABl) [Fig. 5(c)].

Partner identification within species

The PPDBv4 dataset comprises complexes coming

from a wide range of species and for some complexes,

the two partners are from different organisms (for exam-

ple one from Human and the other one from a virus).

In order to test whether this variability could introduce

some noise in the analysis, we defined subsets of com-

plexes for which the two partners have homologs in the

same species. We considered homologs at 100%, 80%

and 60% sequence identity. Such homologs are expected

to display the same structural and functional characteris-

tics of the original structure, and homologs up to 30–

40% of sequence identity have been shown to interact

the same way.44,45

Figure 5
II and NII matrices ordered by functional classes. (a) The colors indicate the values of NII. The rows and columns are ordered so that proteins
belonging to the same functional class are grouped together: antibodies (Ar), bound antibodies (ABr), antigens (Al), bound antigens (ABl),

enzymes (Er), inhibitors (El), proteins with other function (O). (b, c) Proportion (in percentages) of low (<0.55) II values (b) and NII values (c)
within and between classes. A high proportion means that the proteins within the class (diagonal) or between the two classes (off-diagonal) avoid

each other.
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The organism that is the most represented in PPDBv4

is Human, with 24 complexes at 100% sequence identity,

75 at 80% and 85 at 60%. The performance of NII in

discriminating known partners from non-interactors

within the subset of 24 complexes is significantly better

than that obtained on the whole dataset [Fig. 3(d),

Hum100]. About one quarter of the proteins have their

known partner ranked first, versus 4% for the whole

dataset. However, such improvement is not observed for

lower sequence identity levels [Fig. 3(d), Hum80 and

Hum60]. We also considered the bacterium Escherichia

coli, in which 22 proteins (11 complexes) have a homo-

log at 80% sequence identity [Fig. 3(d), Ecoli80]. 4 and 3

proteins had their known partners ranked first and sec-

ond respectively, representing about one third of the sub-

set. This is relatively slightly better than the performance

on the whole dataset. These results suggest that the iden-

tification of known partners can be slightly improved by

considering proteins coming from the same organism.

The presence of compartments in the cell does not seem

to influence the results.

Partner identification connects to binding
site localization

For each benchmark complex, the II value, defined

from the FIR, directly reflects the best agreement with

the experimental interface one can found in the docking

conformational ensemble. There are 56 complexes (112

proteins, almost one third of the set) for which geomet-

rical docking did not produce any docked interface

resembling the experimental one (II< 0.3). Among them,

36 complexes are classified as rigid (no significant con-

formational change upon association), eight as medium

and 12 as difficult (root mean square deviation over the

interface >2.2 Å). Hence, the quality of the selected

docking ensembles is not directly correlated to the extent

to which the unbound structures deviate from the bound

ones. To investigate the link between partner identification

and binding site localization, we removed those proteins

from the dataset, and we evaluated the discriminative

power of NII on three inclusive subsets comprising com-

plexes with II values >0.3, 0.5 and 0.8 [Fig. 3(c)]. The

known partner of 68 (out of 240, 28%), 65 (out of 176,

37%) and 26 (out of 34, 76%) proteins could be retrieved

in the top 2 within the three subsets. The discrimination

increases as the threshold increases and is almost perfect

for proteins with very high II values (�0.8). This indicates

that cognate protein pairs for which there exists one

docked interface that resembles very well the experimental

one can be singled out with very high accuracy.

Binding site detection by partners and non-
interactors

We then investigated whether geometrical docking

could be used to predict binding sites. For this, we

extended the analysis of the best fitted docked interfaces

to the analysis of the whole docking conformational

ensembles. We computed interaction propensity (IPnative)

indexes for the benchmark complexes, by counting the

number of docking models where each protein residue

lies at the interface (see Materials and Methods). The

complex between the enzyme Streptogrisin B and its

inhibitor Ovomucoid gives an example of good overall

agreement between docked and experimental interfaces

(Fig. 6, on top). 70% and 64% of the binding sites of the

two partners are frequently hit in the docking poses (see

residues colored in red, purple and dark red on the front

view). Such good overlap between docked and experi-

mental binding sites is observed for about one quarter of

the benchmark set. More examples are displayed on Sup-

porting Information Figure S3, the case of bovine tryp-

sin and its inhibitor CMTI-1 (1PPE) being particularly

impressive. By contrast, the binding sites of about 15%

of the proteins are rarely visited by their partner in the

docking calculations (>80% of the interacting residues

detected in <10% of the docking models).

To quantitatively evaluate the predictive power of geo-

metrical docking, we normalized the interaction propen-

sity indexes (NIPnative, see Materials and Methods) and

considered residues with NIPnative > 0 as predicted to

interact. On average, the predictions cover about 51% of

the experimental interfaces with an accuracy of 60%

(Table I, NIPnative). The precision (PPV) achieved is rath-

er low (20%), indicating a substantial variability in the

positions and orientations sampled by the docking algo-

rithm. The interfaces of enzymes are the best predicted

(Sens5 65%, Acc5 66%) while the antigen-binding sites

of antibodies are particularly difficult to detect (Table I).

Previous studies11,15,46 have suggested that proteins

tend to dock to their cognate partners and also to non-

interactors via the same region at their surface. This obser-

vation has led to the development of arbitrary or cross

docking-based strategies for the prediction of protein bind-

ing sites.12,15,47 To test this in our experiment, we com-

puted a normalized interaction propensity (NIP) index for

each residue of each protein P from PPDBv4 by consider-

ing all docking experiments involving P (see Materials and

Methods). Visual inspection of NIP-colored molecular sur-

faces reveals that highly scored residues often form local-

ized patches (Fig. 6, at the bottom, and Supporting

Information Fig. S6). The average performance values for

NIP (all proteins) are very similar to those for NIPnative

(native partner only) (Table I), and this observation holds

true when considering a smaller number of docking mod-

els (50, 200 and 500, data not shown). Nevertheless, in

some cases, the native partner samples residues known to

be part of the interface more often than non-binders. The

example of Streptogrisin B is particularly striking (Fig. 6):

the cognate inhibitor preferentially targets the experimental

binding site (on top) whereas non-interactors prefer anoth-

er location (at the bottom).
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To rigorously and systematically evaluate such differ-

ences, we compared, for each protein P, the NIP profile

(vector of NIP values along the protein sequence)

obtained from docking P to all other proteins in the

dataset, with the NIPnative profile obtained from docking

P to its known partner P0. The distance between the two

Figure 6
Interaction propensity indexes computed from geometrical docking. The values of IPnative (on top) and NIP (at the bottom) computed for the

enzyme Streptogrisin B and its inhibitor Ovomucoid (3SGQ) are mapped onto the molecular surfaces of the two proteins. IPnative measures how
often each residue is found at the interface between the two partners upon docking them together. NIP measures the tendency of each residue to

be found at the docked interfaces between each partner and all the proteins from PPDBv4.

Laine and Carbone
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vectors was calculated as their normalized angle (see

Materials and Methods). The distribution of distances is

centered around 0.16 6 0.07 and is homogeneous among

the different functional classes of PPDBv4 [Fig. 7(a)].

Examples of low (0.06) and relatively high (0.37) distan-

ces are given by Rac GTPase and Ran GTPase [Fig.

7(b)]. In the first case, the partner binds to the correct

(experimental) site, as do the other proteins from the

dataset, on average (Supporting Information Fig. S2, on

top). In the second case, neither the partner nor the oth-

er proteins target the experimental site (Supporting

Information Fig. S2, at the bottom). The large majority

of proteins (78%) display small (� 0.2) distances [Fig.

7(a)], indicative of a similar behavior between the known

partner and non-binders.

This analysis showed that: (1) the docking models pro-

duced for the known complexes are of variable quality,

(2) the surface of a protein is globally sampled in the

same manner by its cognate partner and by non-binders.

This confirms previous findings11,12,15,46,47 obtained

using different docking algorithms. Some of the targeted

patches match well experimental binding sites. Others

Table I
Normalized Interaction Propensity Index Performance

NIP NIPnative

Category Sen PPV Spe Acc Sen PPV Spe Acc

All (352) 52.12 19.51 59.43 59.3 51.36 19.70 60.21 59.98

antibodies (13) 12.08 2.83 62.17 58.44 13.93 3.26 62.25 58.55
antigens (13) 46.49 15.21 54.84 54.15 48.92 14.58 53.34 53.45
bound antibodies (12) 21.46 4.87 65.29 62.60 26.76 5.63 64.06 61.93
bound antigens (12) 46.78 14.37 54.32 54.89 40.96 11.57 50.97 50.94
enzymes (52) 65.20 20.02 62.19 63.00 64.80 22.10 66.07 66.49
inhibitors (52) 59.37 32.24 56.87 57.53 56.66 31.79 57.01 57.19
others (198) 51.96 18.6 59.45 59.26 51.17 18.65 60.15 59.95

II>0.3 (240) 59.43 23.65 59.00 59.36 57.86 23.74 60.17 60.24
II>0.5 (176) 61.84 25.72 59.13 59.80 60.70 26.12 60.64 61.04
II>0.8 (34) 60.38 29.95 59.46 59.79 64.97 32.61 62.16 63.28

Statistical performance values, given in percentages, were computed by considering residues displaying positive NIP values as predicted to be in interaction. NIP values

were computed from docking all proteins (on the left) or only known partners (on the right). Within each classification, the maximum values for sensitivity (Sen), pos-

itive predictive value (PPV), specificity (Spe) and accuracy (Acc) are highlighted in bold.

Figure 7
Properties of the docking conformations. (a) Distribution of distances computed between the NIP profiles obtained from docking known partners

and those obtained from docking all proteins. (b) NIP profiles computed from docking Rac GTPase (2NZ8:R) and Ran GTPase (1K5D:R) to all

the proteins from PPDBv4 (black curves) or only their known partners (red curves). The distance between the two profiles is 0.06 for Rac GTPase
and 0.37 for Ran GTPase.
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might correspond to alternative interfaces. However, a

previous study15 put in evidence a bias of HEX shape

complementarity scoring function toward regions with

geometrical and physico-chemical properties that are not

characteristic of protein binding sites. Here, we observed

that in the case of the antibodies, a flat and slightly con-

cave surface region is preferred over the antigen-binding

site (see 1DQJ in Supporting Information Fig. S6).

Comparison with a previous study based on
geometrical docking

Wass and co-authors previously reported results sug-

gesting that geometrical docking could distinguish the

cognate partners of 56 benchmark proteins (>6 times

smaller than PPDBv4) from a background of about 1

000 structures belonging to different superfamilies.14

They performed docking with HEX,38 using the shape

complementarity score. Contrary to us, they used the

original PDB files as starting conformations [Fig. 1(b)].

By comparing docking score distributions using Wilcoxon

rank-sum tests (geometrical ranking), they found that 14

benchmark complexes (25% of the set) displayed signifi-

cantly better scores than 99% of the background proteins

(see Table I in Ref. 14). In our calculations, we found that

only 4% of the benchmark complexes were better than

95% of the background proteins [Fig. 2(a)]. Consequently,

the results reported in Ref. 14 are not generalizable to

unbiased docking realized on a bigger benchmark set.

We compared our heat map style figures with those

displayed in Ref. 14 and observed substantial differences.

For instance, the most frequently hit patches at the sur-

face of fasciculin 2 (1MAH:L) and transthyretin

(1RLB:R) do not match the experimental interfaces in

our experiment (Supporting Information Fig. S4), while

it was the case in Ref. 14. Overall, we observe much

more variation in the quality of the docking models

from one protein to another than what was reported in

Ref. 14, even when considering only the subset of bench-

mark proteins studied in Ref. 14. The signal from our

docking calculations also seems sharper (compare Sup-

porting Information Figs. S4 and S5 with Fig. 2 and

Supporting Information S13 in Ref. 14).

Transferability to other docking tools

To assess the transferability of our results, we repeated

CC-D of a subset of 33 enzyme-inhibitor complexes

from PPDBv4 (Supporting Information Table S2) with

the docking program ZDOCK 3.0.2.39 Like HEX,

ZDOCK is very efficient to sample the docking space as

it uses a grid-based representation of proteins and a 3D

fast Fourier transform. The scoring function includes

shape complementarity, electrostatics, and a pairwise

atomic statistical potential.48 We analyzed the data gen-

erated by ZDOCK using the three strategies described

above and compared with the HEX results (Supporting

Information Fig. S7). Geometrical ranking (docking

score distributions comparison) with ZDOCK does not

enable to discriminate potential partners (Supporting

Information Fig. S7b, grey tones), as observed with HEX

(Supporting Information Fig. S7a, grey tones). Interface-

based ranking (Supporting Information Fig. S7b) slightly

improves partner identification (8 partners identified in

the top 10% in green, instead of 5 in grey) but to a

much smaller extent than when using HEX (Supporting

Information Fig. S7a). This is due to a stronger competi-

tion from the non-interacting pairs, as the quality of the

docking models produced by ZDOCK for the 33 bench-

mark complexes is similar to that of HEX docking mod-

els (Supporting Information Fig. S8b). Accounting for

the sociability of the proteins significantly improves the

discrimination (Supporting Information Fig. S7b, orange

tones). The relative improvement is the same for

ZDOCK and HEX (150% partners in the top 10%),

although the discriminative power achieved with

ZDOCK (Supporting Information Fig. S7b) is much

lower than that achieved with HEX (Supporting Infor-

mation Fig. S7a). The Pearson correlation between the

S-index scales computed from HEX and ZDOCK is 0.70.

The sets of the 20 most sociable proteins (among the 66

in the subset) identified by the two docking algorithms

share 15 proteins in common.

We also analyzed docking data generated using a more

sophisticated docking and scoring methodology. The

data consist in a CC-D of the PPDBv2 benchmark (84

complexes, included in PPDBv4) by using the MAXDo

(Molecular Association via Cross Docking) algorithm.12

MAXDo uses a reduced protein model and an energy

function comprising a Lennard-Jones type potential and

a term to account for electrostatic interactions.40 The

quality of the conformational ensembles generated by

MAXDo is much better than those generated by HEX

and ZDOCK (Supporting Information Fig. S8c). To ana-

lyze these data, we used an alternative version of the

interaction index II ene
P1;P2

5minðFIRP1;P2
3EneÞ for any pro-

tein pair P1P2 (see Materials and Methods). Without nor-

malization, we could retrieve the known partner of 35%

of PPDBv2 (58 proteins) at the 5% significance level

(Supporting Information Fig. S9a, All). This is more

than twice as much as with HEX (24 proteins in the top

5%). Applying the normalization formula (Supporting

Information Fig. S9b) enabled to significantly increase

this percentage, up to 45% (75 proteins, versus 43 with

HEX). As observed with HEX, the closer the known

complexes docked interfaces to the experimental interfa-

ces, the better the identification of cognate partners

(Supporting Information Fig. S9c). The Pearson correla-

tion coefficient between the S-index scales computed

with MAXDo and with HEX is 0.62. The sets of the 20

most sociable proteins (among the 168 in PPDBv2) iden-

tified by HEX and MAXDo share 15 proteins in
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common. The predictive performances of NIP and NIPna-

tive computed from MAXDo are very similar (data not

shown). Contrary to HEX, MAXDo predicts very well

the antigen binding sites at the surface of antibodies.

This analysis showed that the tendencies highlighted

with HEX are also highlighted by ZDOCK, a similar (fast

Fourier transform-based) docking algorithm, and also by

MAXDo, a more sophisticated docking algorithm based

on a coarse-grained protein model and including an

empirical energy function. With all three docking pro-

grams, we could put in evidence the significant contribu-

tion of the normalization step in discriminating potential

partners. Moreover, we found very good overlap between

the sociability scales computed from the different pro-

grams. The intersection between the three sets to which

the three programs were applied comprises 34 proteins.

When considering only this subset, the three lists of the

15 most sociable proteins identified by HEX, ZDOCK

and MAXDo are almost identical, with 13 proteins in

common (Supporting Information Table S3). Noticeably,

MAXDo yielded strikingly better enrichments in native

partners, over the whole dataset and over functional clas-

ses, than HEX and ZDOCK.

DISCUSSION

In this study, we have addressed the question of the

identification of protein partners at large scale by using

geometrical docking. We performed two high-throughput

completely unbiased docking experiments, one involving

a benchmark set of 372 proteins and a background envi-

ronment of almost 1 000 proteins, and the other one

consisting in docking the 372 proteins to each other and

to themselves (CC-D). We investigated different strategies

to evaluate the docking results and predict who interacts

with whom. By contrast to a previous study,14 our

results clearly indicate that this difficult problem is yet

far from being resolved. We can also highlight some

important points that contribute to a better understand-

ing of the articulation between binding site prediction

and partner identification.

First, we found that geometrical ranking is largely

insufficient to discriminate cognate partners from non-

interactors. The success of the docking algorithm in

localizing the interaction surfaces varies greatly from one

protein to another and the docking ensembles often con-

tain no to few near-native conformations. One might

think that this poor quality is due to the particular dock-

ing code and to the use of unbound structures, and may

prevent the shape complementarity score to perform

well. However, HEX was designed to very efficiently sam-

ple the docking search space and we used 5 different ini-

tial positions, so that we are fairly confident that the

2000 models retained for our analysis represents only a

tiny fraction of the ensemble of docking models actually

generated. This set is already the result of a selection per-

formed by the surface complementarity score. Moreover,

we did not find a direct correlation between the quality

of the docking models and the extent of conformational

changes between unbound structures (used in the calcu-

lations) and bound ones. Consequently, the poor quality

of the docking models reflects the inability of the score

to correctly rank near-native conformations. These obser-

vations strikingly contrast with results reported in Ref.

14 showing that areas of shape complementarity are sys-

tematically identified for the benchmark complexes but

not for the non-interacting pairs. We clearly show here

that this previously reported observation cannot be gen-

eralized to a complete unbiased cross-docking experi-

ment involving different types of proteins.

Second, consistent with our previous studies,11,12,43

we showed here that the knowledge of the binding sites

is instrumental in retrieving known partners. This means

that even though the surface of a protein is globally tar-

geted in the same way by partners and non-interactors

in the docking calculations, two native partners often

achieve a better fit of their interfaces (higher FIR) than

two non-interacting pairs. In general, the binding sites

are not known a priori and one has to predict them.

Here, we used experimentally determined interfaces,

which represent “perfect predictions,” to precisely evalu-

ate the maximum performance one can expect from

interface-based rankings. Our results clearly show that

the limited and variable quality of the interfaces generat-

ed and selected by geometrical docking bridles the dis-

criminative power of the approach. Experimental

knowledge can be incorporated to drive the docking pro-

cess (like in HADDOCK49) rather than evaluate the

docking poses. We tested this approach on 13 antibody-

antigen complexes. The cognate partners were docked

with HEX, restricting the search space to the region

around the experimental interface. Unfortunately, the

docked interfaces poorly resembled the experimental

ones. Using the more sophisticated force-field based scor-

ing function implemented in MAXDo12 enabled to

enrich the docking ensemble with near-native conforma-

tions and to obtain better discrimination indices. Howev-

er, the drawback of these scoring schemes is that they are

significantly more time-consuming. Our goal here was to

test whether efficient docking algorithms based only on

shape complementarity could be used instead.

Nevertheless, geometrical docking proved sufficient to

reveal a fundamental characteristic of PPIs. Specifically,

to decide whether two proteins are likely to interact in

the cell, their global social behavior must be taken into

account. Normalizing the interaction indexes, so as to

lower down values obtained for proteins that are amena-

ble to dock well to many proteins and increase values

obtained for proteins that display antisocial behavior,

greatly helped partner identification (170% identified

partners at the 5% significance level). Repeating our
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calculations with other docking algorithms and scoring

functions confirmed the importance of protein sociability

for partner identification. Moreover, we found very good

overlap between the S-index scales computed from the

different tools. This suggests that we capture some real

properties of proteins and possibly some aspects of their

behavior in the cell.

Do the highly sociable proteins identified in the dock-

ing calculations correspond to sticky proteins in the cell?

The notion of stickiness is usually defined based on the

content of hydrophobic residues at the surface of the

protein.34 Our notion of sociability is not directly

defined based on the physico-chemical properties of the

surface residues and thus may deviate from the notion of

stickiness. The most sociable proteins in the dataset are

inhibitors and proteins with other function (Supporting

Information Fig. S10a, El and O). Their interacting sur-

faces are small, containing <40 residues (Supporting

Information Fig. S11a), although the S-index is not over-

all correlated to the interface size (Supporting Informa-

tion Fig. S11a). It is not correlated to the hydrophobic

content of the protein surface (data not shown), indicat-

ing that the notion of sociability is different from that of

stickiness. By contrast, the S-index is strongly correlated

to the IP averaged over the protein and anti-correlated

to the number of residues covered in the docked interfa-

ces (Supporting Information Fig. S11b). Highly sociable

proteins have a rather small number of surface residues

and most of them are frequently hit in the docking

models.

Important efforts have been dedicated to characteriz-

ing sticky proteins and their interactions.32–35 It was

shown that sticky proteins have stronger than average

non-functional interactions and that avoiding such non-

functional PPIs is an important constraint in protein

evolution.32,33 Here, we demonstrated that accounting

for the propensity of proteins to glue to anyone in the

docking calculations (whether this is due to stickiness or

not) could help identify specific cellular partners and

reveal evolutionary constraints toward avoiding non-

specific interactions within functional classes. This obser-

vation, together with experimental evidence that proteins

may have multiple partners possibly interacting through

the same interface to perform different functions (e.g.,

moonlighting proteins, see examples in Ref. 18), empha-

sizes the fact that how well proteins accomplish what

they are designed to accomplish depends on what other

proteins do. Whom they interact to depends on whom

they meet, and on which potential partner is already

engaged. Their way to interact and their binding affinity

depend on the way and on the binding affinity other

proteins display. Let us stress that to unveil this type of

properties, one has to consider a huge ensemble of nega-

tives (the non-interacting pairs) compared to the positive

(native partners). This cannot be done experimentally

and requires high-throughput computational approaches.

Finally, we highlighted a positive correlation between

partner identification and binding site localization. This

finding has major implications for the design of strate-

gies to predict and characterize PPIs, that is, the problem

of identifying interface residues and that of identifying

protein partners should not be considered as indepen-

dent as they are actually tightly linked and solving the

former can greatly contribute to solving the latter.

A recent study suggested that the structural space of

protein-protein interfaces is degenerate, close to com-

plete, and highly connected.50 This implies that forming

a native-like interface is likely and thus the probability of

finding a physically favorable association between non-

cognate partners is high, even though this association is

not biologically relevant. This reasoning may explain why

singling out cognate partners is such a challenging task

for docking algorithms and give a structural basis for the

many promiscuous interactions detected by yeast two-

hybrid experiments.51 To model specificity, specific

sequence information may be useful.

Deciphering the network of protein interactions for a

given proteome (that is, the set of proteins within a giv-

en organism) is the goal of many experimental and com-

putational efforts in systems biology. The information

identified by docking programs on PPIs is complementa-

ry to the one provided by other methods and encoded in

PPI networks. In fact, protein docking allows to reach at

least a residue level resolution of the interaction, in con-

trast to usual PPI networks that simply express the exis-

tence or absence of an interaction. This would extend

our knowledge on the interactome of an organism and

improve our capacity to perform systematic studies on

them, to determine new strategies to engineer pathways

to protein control and new targets for drug design.
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