J. J. Gray, The Interaction of Proteins with Solid Surfaces, Curr. Opin

B. Kasemo, Biological surface science, Surf. Sci, issue.1-3, pp.500-656, 2002.

I. Nealson, K. H. Sverjensky, D. A. Toney, M. F. Zachara, and J. M. , Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms, Chem. Rev, issue.1, pp.99-77, 1999.

A. Baiker, Reflections on chiral metal surfaces and their potential for catalysis, Catal. Today, vol.100, pp.1-2, 2005.
DOI : 10.1016/j.cattod.2004.12.001

S. Turchini, T. Prosperi, N. Zema, A. Palma, P. Gori et al., Organizational chirality expression as a function of the chirality measure of simple amino alcohols on Cu(100), Surf. Sci, vol.629, pp.41-47, 2014.

S. M. Barlow and R. Raval, Complex organic molecules at metal surfaces: bonding, organisation and chirality, Surface Science Reports, vol.50, issue.6-8, pp.506-514, 2003.
DOI : 10.1016/S0167-5729(03)00015-3

M. Nyberg, L. G. Pettersson, M. G. Samant, and J. Stöhr, The adsorption structure of glycine adsorbed on Cu(110); comparison with formate and acetate, Surf. Sci, issue.110, pp.4071-4074, 1998.

T. E. Jones, C. J. Baddeley, A. Gerbi, L. Savio, M. Rocca et al., Molecular Ordering and Adsorbate Induced Faceting in the Ag{110}???(S)-Glutamic Acid System, Molecular ordering and adsorbate induced faceting in the Ag{110}-(S)-glutamic acid system, pp.9468-9475, 2005.
DOI : 10.1021/la050414b

A. Kühnle, T. R. Linderoth, B. Hammer, and F. Besenbacher, Chiral recognition in dimerization of adsorbed cysteine observed by scanning tunnelling microscopy, Nature, vol.415, issue.6874, pp.415-891, 2002.
DOI : 10.1038/415891a

M. Lingenfelder, G. Tomba, G. Costantini, L. C. Ciacchi, A. De-vita et al., Tracking the Chiral Recognition of Adsorbed Dipeptides at the Single-Molecule Level, Angewandte Chemie International Edition, vol.62, issue.24, pp.4492-4495, 2004.
DOI : 10.1002/anie.200700194

N. Liu, S. Haq, G. Darling, and R. Raval, Direct Visualization of Enantiospecific Substitution of Chiral Guest Molecules into Heterochiral Molecular Assemblies at Surfaces, Angew. Chem., Int. Ed, issue.40, pp.46-7613, 2007.

S. Haq, N. Liu, V. Humblot, A. P. Jansen, and R. Raval, Drastic symmetry breaking in supramolecular organization of enantiomerically unbalanced monolayers at surfaces, Nature Chemistry, vol.34, issue.5, pp.409-414, 2009.
DOI : 10.1038/nchem.295

R. Fasel, M. Parschau, and K. H. Ernst, Amplification of chirality in two-dimensional enantiomorphous lattices, Nature, vol.38, issue.7075, pp.449-452, 2006.
DOI : 10.1038/nature04419

S. Haq and R. Raval, Polymorphism in supramolecular chiral structures of Rand S-alanine on Cu(110), Surf. Sci, vol.590, pp.2-3, 2005.

A. Palma, S. Turchini, D. Catone, A. Cricenti, and T. Prosperi, Chirality Transfer from a Single Chiral Molecule to 2D Superstructures in Alaninol on the Cu(100) Surface, Langmuir, issue.12, pp.27-7410, 2011.

T. E. Jones, M. E. Urquhart, and C. J. Baddeley, An investigation of the influence of temperature on the adsorption of the chiral modifier, (S)-glutamic acid, on Ni{111}, Surface Science, vol.587, issue.1-2, pp.5871-5873, 2005.
DOI : 10.1016/j.susc.2005.04.057

M. O. Lorenzo, S. Haq, T. Bertrams, P. Murray, R. Raval et al., -Tartaric Acid on Cu(110), The Journal of Physical Chemistry B, vol.103, issue.48, pp.10661-10669, 1999.
DOI : 10.1021/jp992188i

URL : https://hal.archives-ouvertes.fr/hal-00758506

R. Raval, Chemical Transformations, Molecular Transport, and Kinetic Barriers in Creating the Chiral Phase of, Tartaric Acid on Cu

T. E. Jones, C. J. Baddeley, and . Rairs, STM and TPD study of the Ni{111}/R,R-tartaric acid system: Modelling the chiral modification of Ni nanoparticles, Surf. Sci, issue.3, pp.513-453, 2002.

K. H. Ernst, Molecular chirality at surfaces, physica status solidi (b), vol.269, issue.11, pp.2057-2088, 2012.
DOI : 10.1002/pssb.201248188

M. O. Lorenzo, C. J. Baddeley, C. Muryn, R. Raval, A. Naitabdi et al., Extended surface chirality from supramolecular assemblies of adsorbed chiral molecules, Zwitterionic self-assembly of L-methionine nanogratings on the Ag(111) surface. Proc. Natl. Acad. Sci. USA 2007Methionine adsorption on Cu, pp.376-379, 2000.
DOI : 10.1038/35006031

A. Cossaro, A. Morgante, J. V. Barth, Z. Self-assembly-of-l-methionine-on-cu-deng, N. Thontasen et al., A Close Look at Proteins: Submolecular Resolution of Two-and Three-Dimensionally Folded Cytochrome c at Surfaces Crystalline Inverted Membranes Grown on Surfaces by Electrospray Ion Beam Deposition in Vacuum Evolution of the Solvent Polarity in an Electrospray Plume Bonding, organization, and dynamical growth behavior of tripeptides on a defined metal surface: Tri-Lalanine and tri-L-leucine on Cu{100}, Steering Chiral Organization by Substrate Reactivity and Thermal Activation31) Cruguel, H.; Méthivier, C.; Pradier, C.-M.; Humblot, V. Surface Chirality of Gly-Pro Dipeptide Adsorbed on a Cu(110) Surface Raval, R. From local adsorption stresses to chiral surfaces: (R,R)-tartaric acid on Ni, pp.12101-12108, 2001.