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ON A PHASE FIELD APPROXIMATION OF THE PLANAR STEINER PROBLEM: EXISTENCE, REGULARITY, AND ASYMPTOTIC OF MINIMIZERS

 to approximate the (geometric) planar Steiner problem. This functional depends on a small parameter ε > 0 and resembles the (scalar) Ginzburg-Landau functional from phase transitions. In a first part, we prove existence and regularity of minimizers for this functional. Then we provide a detailed analysis of their behavior as ε → 0, showing in particular that sublevel sets Hausdorff converge to optimal Steiner sets. Applications to the average distance problem and optimal compliance are also discussed.

INTRODUCTION

In its simplest version, the original (planar) Steiner problem consists in finding, for a given collection of points a 0 , ..., a N ∈ R 2 , a compact connected set K ⊆ R 2 containing all the a i 's and having minimal length. From the geometric analysis point of view, the Steiner problem can be seen as the one dimensional version of the (unoriented) Plateau problem, which consists in finding a (unoriented) surface of least area spanning a given boundary. Solutions to the Steiner problem exist and are usually not unique. However, every solution consists of a finite tree made of straight segments joining by number of three with 120 • angles. This rigid structure allows one to reduce the Steiner problem to a discrete problem, but finding an exact solution is known to be computationally very hard: it belongs to the original list of NP-complete problems proposed by Karp [START_REF] Karp | Reducibility among combinatorial problems, Complexity of Computer Computations[END_REF]. And, obviously, the discrete approach is unadapted if one considers a perturbed version of the problem as it may arise in some models from continuum mechanics. These facts motivate the development of specific analytic/geometric tools, and more precisely of approximation procedures that can be numerically implemented.

Concerning minimal boundaries (boundaries of least area), the typical oriented Plateau problem, such approximations are well known by now, the most common ones being the so-called phase field approximations. They usually rely on the minimization of an energy functional based on the van der Waals-Cahn-Hilliard theory for phase transitions (see e.g. [START_REF] Gurtin | On a theory of phase transitions with interfacial energy[END_REF][START_REF] Modica | The gradient theory of phase transitions and the minimal interface criterion[END_REF][START_REF] Modica | MORTOLA : Un esempio di Γ-convergenza, Boll[END_REF]), explaining the terminology. Applications of phase field methods to unoriented problems are more recent. The first one might be the Ambrosio-Tortorelli method [START_REF] Ambrosio | On the approximation of free discontinuity problems[END_REF][START_REF] Ambrosio | Approximation of functionals depending on jumps by elliptic functionals by Γ-convergence[END_REF] used to approximate the Mumford-Shah functional from image segmentation [START_REF] Mumford | Optimal approximation by piecewise smooth functions and associated variational problems[END_REF]. Nowadays, the Mumford-Shah functional receives a lot of interest from the materials science community, and the Ambrosio-Tortorelli approximation is, for instance, heavily used to simulate crack propagation in elastic solids [START_REF] Bourdin | Numerical experiments in revisited brittle fracture[END_REF][START_REF] Bourdin | The variational approach to fracture[END_REF].

For a long time, no phase field methods (for unoriented Plateau type problems) were designed to include topological constraints such as connectedness. Only recently such a method has been suggested, first in [START_REF] Lemenant | SANTAMBROGIO : A Modica-Mortola approximation for the Steiner problem[END_REF], and then in [START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF], to approximate the planar Steiner problem and/or related minimization problems involving the length of connected sets. In [START_REF] Dondl | Phase field models for thin elastic structures with topological constraint[END_REF] the same approach has been successfully implemented (theoretically and numerically) to approximate the Willmore energy of connected curves or surfaces. At the present time, two alternative (but complementary) methods to solves the Steiner problem just appeared as preprints [START_REF] Bonafini | Variational approximation of functionals defined on 1-dimensional connected sets: the planar case[END_REF][START_REF] Chambolle | A simple phase-field approximation of the Steiner problem in dimension two[END_REF].

The main objective of this article is to complement the analysis initiated in [START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF][START_REF] Lemenant | SANTAMBROGIO : A Modica-Mortola approximation for the Steiner problem[END_REF] in the following way. Although the Γ-convergence result of [START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF][START_REF] Lemenant | SANTAMBROGIO : A Modica-Mortola approximation for the Steiner problem[END_REF] proves that "some approximate minimization problems" indeed approximate the Steiner problem (or variants), existence of minimizers for the underlying functionals cannot be proved (at least easily), nor qualitative properties of "almost" minimizers. This is essentially due to the analytical complexity in the construction of those functionals. Here we introduce a tiny variant of [START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF][START_REF] Lemenant | SANTAMBROGIO : A Modica-Mortola approximation for the Steiner problem[END_REF] with great benefits. In few words, we are able to prove for the new functional existence and regularity of minimizers, as well as a more precise description of their behavior in the singular limit. Before going further, let us describe our results in detail. where Γ : a b means that Γ is a rectifiable curve in Ω 0 of finite length connecting a and b (i.e., Γ a Lipschitz image of [0, 1] contained in Ω 0 running from a to b).

We fix a positive finite measure µ supported on Ω 0 , a base point a 0 ∈ Ω 0 , and a bounded smooth open set Ω ⊆ R 2 such that Ω 0 ⊆ Ω. For a given set of parameters ε, λ ε , δ ε ∈ (0, 1), we consider the functional F µ ε : H 1 (Ω) ∩ L ∞ (Ω) → [0, +∞) defined by

F µ ε (u) := ε ˆΩ |∇u| 2 dx + 1 4ε ˆΩ(u -1) 2 dx + 1 λ ε ˆΩ0 D δ ε + u 2 ; a 0 , x dµ ,
where, in the D-term, δ ε +u 2 denotes the precise representative of the Sobolev function δ ε +u 2 ∈ W 1,1 (Ω) ∩ L ∞ (Ω). In this way, the value of D δ ε + u 2 ; a 0 , x only depends on a 0 , x, and the equivalence class of δ ε + u 2 . Moreover, the function x → D δ ε + u 2 ; a 0 , x turns out to be (δ ε + u 2 L ∞ (Ω) )-Lipschitz continuous (see Remark 2.1), so that F µ ε is well defined (or more precisely, its last term).

We are interested in the minimization problem

min u∈1+H 1 0 (Ω)∩L ∞ (Ω) F µ ε (u) . (1.1) 
Our first main result deals with existence and regularity of solutions.

Theorem 1.1. Problem (1.1) admits at least one solution. In addition, any solution u ε belongs to W 1,p (Ω) for every p < ∞ (in particular, u ε ∈ C 0,α (Ω) for every α ∈ (0, 1)), and 0 u ε 1.

Let us mention that the regularity above is essentially sharp in the sense that u ε is in general not Lipschitz continuous globally in Ω (see Remarks 2.11 & 2.16). In the case where spt µ is finite, we shall see that u ε is in fact C ∞ away from finitely many C 1,α -curves connecting a 0 to spt µ (given by minimizing geodesics for the distance D δ ε + u 2 ε )). We now describe the asymptotic behavior of minimizers of F µ ε as ε → 0. For this issue, we shall assume (for simplicity) that the two parameters λ ε and δ ε satisfy the following relation:

λ ε -→ ε→0 0 and δ ε = λ β ε for some β ∈ (1, 2) . (1.2) 
Provided that H 1 (spt µ) < ∞, our second main result shows that sublevel sets of minimizers converge to a solution of the generalized Steiner probem min H 1 (K) : K ⊆ R 2 compact and connected, K ⊇ {a 0 } ∪ spt µ .

(1.3)

Note that for µ = N i=0 δ ai and some distinct points a i ∈ Ω 0 , problem (1.3) coincides with the classical Steiner problem described previously.

Theorem 1.2. Assume that spt µ is not reduced to {a 0 } and that H 1 (spt µ) < ∞. Assume also that (1.2) holds. Let

ε k ↓ 0 and {u k } k∈N ⊆ 1 + H 1 0 (Ω) be such that F µ ε k (u k ) = min 1+H 1 0 (Ω) F µ ε k for each k ∈ N .
There exist a (not relabeled) subsequence and a compact connected set K * ⊆ Ω 0 such that {u k t} → K * in the Hausdorff sense for every t ∈ (0, 1). In addition, K * solves the Steiner problem (1.3) relative to {a 0 } ∪ spt µ , and the following holds:

(i) F µ ε k (u k ) → H 1 (K * ); (ii) D δ ε k + u 2 k ; a 0 , x → dist(x, K * ) uniformly on Ω 0 ; (iii) u k → 1 in C 2 loc (Ω \ K * ).
In proving this theorem, we make use of the main result in [START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF][START_REF] Lemenant | SANTAMBROGIO : A Modica-Mortola approximation for the Steiner problem[END_REF] that we now briefly present. The original functional introduced in [START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF][START_REF] Lemenant | SANTAMBROGIO : A Modica-Mortola approximation for the Steiner problem[END_REF] 

is (essentially) F µ ε : 1 + H 1 0 (Ω) ∩ C 0 (Ω) → [0, ∞) given by F µ ε (u) :=      ε ˆΩ |∇u| 2 dx + 1 4ε ˆΩ(1 -u) 2 dx + 1 λ ε ˆΩ0 D(u; a 0 , x) dµ if 0 u 1 , +∞ otherwise .
(1.4) As explained [9, Section 5.4], the possible lack of lower semicontinuity of F µ ε prevents one to prove existence of minimizers (at least easily -and existence is still unknown 1 ). The main result of [START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF][START_REF] Lemenant | SANTAMBROGIO : A Modica-Mortola approximation for the Steiner problem[END_REF] is of Γ-convergence nature, and shows the two following facts:

(1) if a sequence {v ε } satisfies F µ ε (v ε ) = O(1), then x → D(v ε ; a 0 , x) (sub-)converges uniformly as ε → 0 to some function d * , {d * = 0} is a compact connected set containing {a 0 }∪spt µ, and H 1 ({d * = 0}) lim inf ε F µ ε (v ε ); (2) for every compact connected set K containing {a 0 } ∪ spt µ, there exists a sequence {w ε } of functions of finite F µ ε -energy satisfying lim sup ε F µ ε (w ε ) H 1 (K). In particular, if the sequence {v ε } is "almost" minimizing in the sense that F µ ε (v ε )-inf F µ ε = o(1)
, then the set {d * = 0} solves the Steiner problem (1.3), and

F µ ε (v ε ) → H 1 ({d * = 0}).
1 We learned from Dorin Bucur that the recent preprint [START_REF] Bogosel | Optimal shapes maximizing the Steklov eigenvalues[END_REF] contains results solving some lower semicontinuity issues in a similar direction.

In conclusion, the main contribution of Theorem 1.2 is the Hausdorff convergence of the sublevel sets {u ε t}, the convergence estimate away from the limiting Steiner set, and the identification of the limiting function d * . Compare to F µ ε , this is made possible by introducing the additional parameter δ ε and replacing u by u 2 in the D-term. The parameter δ ε , already suggested in [START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF], can be seen as an elliptic regularisation term. In turn, the term u 2 is the key new ingredient which allows to get a linear elliptic equation for u ε (at least if spt µ is finite). A large part of the arguments used to prove both Theorem 1.1 and Theorem 1.2 rests on this equation and rather classical linear estimates. The introduction of the "safety zone" Ω \ Ω 0 (not present in [START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF]) is just a convenient way to avoid boundary effects, and has no other importance. Finally, we impose relation (1.2) between λ ε and δ ε for the following reason: on one hand the condition δ ε = o(λ ε ) is necessary to derive the Steiner problem in the limit; on the other hand the condition λ 2 ε = o(δ ε ) allows us to use [START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF] in a straightforward way, even if it is probably unnecessary. We close this introduction mentioning our companion paper [START_REF] Bonnivard | On the numerical analysis of a phase field approximation for the planar Steiner problem[END_REF], second part of our work, where we consider the minimization of a discretized version F µ ε based on finite P 1 -elements. A special attention will be devoted on how to handle the D-term in this discrete framework. Using the material of this paper, we will be able to determine explicit estimates on the grid size in terms of ε to ensure the convergence of discrete minimizers to Steiner sets, in the spirit of Theorem 1.2. This paper is organized as follows. In Section 2, we consider the case where µ has a finite support. We start establishing a priori estimates leading to existence and (as a byproduct) regularity of minimizers (see Corollary 2.13). The case of a general measure µ is treated in Section 3 through an approximation argument using finitely supported measures. In Subsection 3.2, we apply our existence theory for F µ ε to prove existence of minimizers for functionals introduced in [9] (and accordingly modified here) to approximate the average distance and compliance problems. Theorem 1.2 is finally proved in Section 4.

EXISTENCE AND REGULARITY FOR MEASURES WITH FINITE SUPPORT

Throughout this section, we assume that the measure µ has finite support, i.e.,

µ = N i=1 β i δ ai (2.1)
for some distinct points a 1 , . . . , a N ∈ Ω 0 and coefficients β i > 0. We fix a base point a 0 ∈ Ω 0 (possibly equal to one of the a i 's), and to the resulting collection of points, we associate the following space of Lipschitz curves

P(a 0 , µ) := - → γ = (γ i ) N i=1 : γ i ∈ P(a 0 , a i ) ,
where we have set

P(a, b) := γ ∈ Lip([0, 1]; Ω 0 ) : γ(0) = a and γ(1) = b .
We endow P(a 0 , µ) with the topology of uniform convergence. In this way, P(a 0 , µ) appears to be a subset of the complete metric space [C 0 ([0, 1]; Ω 0 )] N . For -→ γ ∈ P(a 0 , µ), we write

Γ(γ i ) := γ i ([0, 1]) and Γ( - → γ ) := N i=1 γ i ([0, 1]) .
For a given -→ γ ∈ P(a 0 , µ), we consider the functional

E µ ε (•, - → γ ) : H 1 (Ω) → [0, +∞] defined by E µ ε (u, - → γ ) := ε ˆΩ |∇u| 2 dx + 1 4ε ˆΩ(u -1) 2 dx + 1 λ ε N i=1 β i ˆΓ(γi) (δ ε + u 2 ) dH 1 , (2.2)
where each term ´Γ(γi) (δ ε +u 2 ) dH 1 is understood as the integration of the precise representative of δ ε + u 2 with respect to the measure H 1 Γ(γ i ), see Subsection 2.1 below. By the very definition of F µ ε , the functional E µ ε relates to F µ ε through the formula

F µ ε (u) = inf - → γ ∈P(a0,µ) E µ ε (u, - → γ ) ∀u ∈ H 1 (Ω) ∩ L ∞ (Ω) . (2.3) 
As we shall see, this identity is the key ingredient to investigate existence and regularity of minimizers of F µ ε . In the same spirit, we also consider the functional G µ ε : P(a 0 , µ) → [0, +∞) defined by

G µ ε ( - → γ ) := inf u∈1+H 1 0 (Ω) E µ ε (u, - → γ ) , (2.4) 
and prove existence of minimizers.

2.1. The precise representative of a Lebesgue function. The object of this subsection is to summarize some basic facts concerning the precise representative of a function, and their implications for the generalized geodesic distance. In doing so, we consider an open set U ⊆ R n . For v ∈ L 1 loc (U ), the value of the precise representative of v at x ∈ U is defined by We shall make use of the following elementary properties:

v * (x) :=      lim r↓0 B(x,
(i) if v 1 v 2 a.e. in U , then v * 1 (x) v * 2 (x) for every x ∈ U \ (S v1 ∪ S v2 ); (ii) if f : R → R is a Lipschitz function and w := f • v, then S w ⊆ S v and w * (x) = f (v * (x)) for every x ∈ Ω \ S v .
Finally, by standard results on BV -functions (see [2, Section 3.7]), we have

H n-1 (S v ) = 0 whenever v ∈ W 1,1 loc (U ).
In what follows, we may write

v instead of v * if it is clear from the context. Remark 2.1. For a nonnegative v ∈ W 1,1 loc (U ) ∩ L ∞ (U ), one has 0 v * (x) v L ∞ (U ) at every point x ∈ U \ S v ,
as a consequence of (i) above. In particular,

0 ˆΓ v dH 1 v L ∞ (U ) H 1 (Γ)
for every rectifiable curve Γ ⊆ U . As a consequence, if U is assumed to be convex, one has

0 D(v; a, b) := inf Γ:a b ˆΓ v dH 1 v L ∞ (U ) |a -b| ∀a, b ∈ U ,
where the infimum is taken over all rectifiable curves Γ ⊆ U running from a to b. It is then customary to prove that the function

x → D(v; a, x) is v L ∞ (U ) -Lipschitz continuous.
2.2. The minimization problem with prescribed curves. In this subsection, we investigate the minimization problem

min u∈1+H 1 0 (Ω) E µ ε (u, - → γ ) (2.6)
for a prescribed set of curves -→ γ satisfying a mild regularity constraint: we shall assume that it belongs to

P Λ (a 0 , µ) := - → γ ∈ P(a 0 , µ) : Al Γ(γ i ) Λ for each i ,
for a given constant Λ 2, where we have set

Al(K) := sup H 1 (K ∩ B(x, r)) r : r > 0 , x ∈ K for a closed set K ⊆ R 2 .
In this context, we establish existence and uniqueness of the solution, as well as regularity estimates. The introduction of this regularity constraint is motivated by the following lemma, consequence of a classical result due to N.G. Meyers & W.P. Ziemer [START_REF] Meyers | Integral inequalities of Poincaré and Wirtinger type for BV -functions[END_REF].

Lemma 2.2. If -→ γ ∈ P Λ (a 0 , µ), then the functional

B µ [ - → γ ] : (u, v) ∈ H 1 (Ω) × H 1 (Ω) → N i=1 β i ˆΓ(γi) uv dH 1
defines a symmetric, nonnegative, and continuous bilinear form on H 1 (Ω) satisfying

B µ [ - → γ ] C Ω µ Λ ,
for some constant C Ω depending only on Ω.

Proof.

Step 1. For a given i ∈ {1, . . . , N }, we consider the finite measure on R 2 defined by µ i := H 1 Γ(γ i ). Let x ∈ R 2 and r > 0 such that Γ(γ i ) ∩ B(x, r) = ∅. Choose a point z ∈ Γ(γ i ) ∩ B(x, r), and notice that Γ(γ i ) ∩ B(x, r) ⊆ Γ(γ i ) ∩ B(z, 2r). Then,

µ i B(x, r) µ i B(z, 2r) 2rAl Γ(γ i ) , which shows that sup µ i B(x, r) r : r > 0 , x ∈ R 2 2Λ .
Since W 1,1 (R 2 )-functions are approximately continuous H 1 -a.e. in R 2 , we can apply [29, Theorem 5.12.4] (see also [START_REF] Meyers | Integral inequalities of Poincaré and Wirtinger type for BV -functions[END_REF]) to infer that w ∈ L 1 (µ i ) for every w ∈ W 1,1 (R 2 ) (or more precisely,

w * ∈ L 1 (µ i )), with the estimate ˆΓ(γi) |w| dH 1 = ˆR2 |w| dµ i CΛ ˆR2 |∇w| dx , (2.7) 
for some universal constant C > 0.

Step 2. Let u ∈ H 1 (Ω) → ū ∈ H 1 (R 2 ) be a continuous linear extension operator (whose existence is ensured by the smoothness of Ω). Note that for u, v ∈ H 1 (Ω), we have ūv ∈ W 1,1 (R 2 ). Since i β i = µ(Ω), it follows from Step 1 that ūv ∈ L 1 (µ i ) for each i ∈ {1, . . . , N } (or more precisely, (ūv) * ∈ L 1 (µ i )), and

B µ [ - → γ ](u, v) C µ Λ ˆR2 |∇(ūv)| dx C µ Λ ū H 1 (R 2 ) v H 1 (R 2 ) C Ω µ Λ u H 1 (Ω) v H 1 (Ω) ,
which completes the proof.

Given -→ γ ∈ P Λ (a 0 , µ), we now rewrite for u ∈ H 1 (Ω),

E µ ε (u, - → γ ) = ε ˆΩ |∇u| 2 dx + 1 4ε ˆΩ(u -1) 2 dx + 1 λ ε B µ [ - → γ ](u, u) + δ ε λ ε N i=1 β i H 1 (Γ(γ i )) .
By the previous lemma, E µ ε (u, -→ γ ) < ∞ for every u ∈ H 1 (Ω), and E µ ε (•, -→ γ ) is lower semicontinuous with respect to weak convergence in H 1 (Ω). Owing to the strict convexity of the functional E µ ε (•, -→ γ ), we conclude to the following Theorem 2.3. Given -→ γ ∈ P Λ (a 0 , µ), problem (2.6) admits a unique solution u-→ γ .

For -→ γ ∈ P Λ (a 0 , µ), we shall refer to u-→ γ as the potential of -→ γ . It satisfies the Euler-Lagrange equation

     -ε 2 ∆u-→ γ = 1 4 (1 -u-→ γ ) - ε λ ε B µ [ - → γ ](u-→ γ , •) in H -1 (Ω) , u-→ γ = 1 on ∂Ω .
(2.8)

Our next objective is to obtain some regularity estimates on u-→ γ with explicit dependence on the parameters. We start with an elementary lemma.

Lemma 2.4. Let -→ γ ∈ P Λ (a 0 , µ). The potential u-→ γ satisfies 0 u-→ γ 1 a.e. in Ω, and

u-→ γ ∈ C ∞ Ω \ Γ( - → γ ) .
Proof. Let us first prove that 0 u-→ γ 1 a.e. in Ω. To this purpose, we consider the Lipschitz function f (t) := max(min(t, 1), 0), and the competitor v

:= f • u-→ γ . It is a classical fact that v ∈ 1 + H 1 0 (Ω), and |∇v| |∇u-→ γ | a.e. in Ω. Since u 2 - → γ belongs to W 1,1 (Ω), we also have f • u 2 - → γ ∈ W 1,1 (Ω). Noticing that v 2 f • u 2 - → γ a.e.
in Ω, we derive that

(v 2 ) * (x) f • u 2 - → γ * (x) = f (u 2 - → γ ) * (x) (u 2 - → γ ) * (x) for every x ∈ Ω \ (S v 2 ∪ S u 2 - → γ
) .

Consequently,

(v 2 ) * (u 2 - → γ ) * H 1 -a.e. in Ω, so that B µ [ - → γ ](v, v) B µ [ - → γ ](u-→ γ , u-→ γ ).
From this discussion, we easily infer that

E µ ε (v, - → γ ) E µ ε (u-→ γ , - → γ ) with strict inequality
if {v = u-→ γ } has a non vanishing Lebesgue measure. Hence the conclusion follows from the minimality of u-→ γ . Now we observe that u-

→ γ ∈ H 1 (Ω) ∩ L ∞ (Ω) satisfies -ε 2 ∆u-→ γ = 1 4 (1 -u-→ γ ) in D Ω \ Γ( - → γ ) .
From this equation and (2.8), we conclude that u-→ γ ∈ C ∞ Ω \ Γ( -→ γ ) by means of the standard elliptic regularity theory for bounded weak solutions (see e.g. [START_REF] Gilbarg | Elliptic Partial Differential Equations Second Order[END_REF]).

Lemma 2.5. Let - → γ ∈ P Λ (a 0 , µ). At every x 0 ∈ Ω \ Γ( - → γ ) satisfying dist(x 0 , Γ( - → γ )) 12ε,
we have

0 1 -u-→ γ (x 0 ) exp - 3 dist(x 0 , Γ( - → γ )) 32ε . Proof. Set R := 3 4 dist x 0 , Γ( - → γ ) 9ε.
We consider the function v := 1 -u-→ γ which satisfies 0 v 1 and solves

-4ε 2 ∆v + v = 0 in B(x 0 , R) ∩ Ω , v = 0 on B(x 0 , R) ∩ ∂Ω .
Now we introduce the function

ω(x) := exp |x -x 0 | 2 -R 2 8εR . As in [6, Lemma 2], our choice of R implies that ω satisfies        -4ε 2 ∆ω + ω 0 in B(x 0 , R) ∩ Ω , ω = 1 on ∂B(x 0 , R) ∩ Ω , ω 0 on B(x 0 , R) ∩ ∂Ω .
Then we infer from the maximum principle that v ω in B(x 0 , R) ∩ Ω. Evaluating this inequality at x 0 leads to the announced inequality.

We now provide some pointwise estimates for the first and second derivatives of u-→ γ . Usefulness of these explicit estimates will be revealed in the second part of our work [START_REF] Bonnivard | On the numerical analysis of a phase field approximation for the planar Steiner problem[END_REF].

Lemma 2.6. Let - → γ ∈ P Λ (a 0 , µ). At every x 0 ∈ Ω \ Γ( - → γ ) satisfying dist(x 0 , Γ( - → γ )) 13ε, we have ∇u-→ γ (x 0 ) C η 0 ε exp - dist(x 0 , Γ( - → γ )) 32ε ,
and

∇ 2 u-→ γ (x 0 ) C η 0 ε 2 exp - dist(x 0 , Γ( - → γ )) 32ε ,
for some constant C η 0 depending only on Ω and η 0 := min dist(z, Ω 0 ) : z ∈ ∂Ω > 0.

Proof.

Step 1 (Interior estimates). We assume in this step that B(x 0 , ε) ⊆ Ω. Define for x ∈ B 1 , the function

w ε := 1 -u-→ γ (x 0 + εx). Then, w ε solves -∆w ε = 1 4 w ε in B 1 . (2.9) 
By Lemma 2.5, we have for every x ∈ B 1 ,

0 w ε (x) exp - 3 dist(x 0 + εx, Γ( - → γ )) 32ε C exp - 3 dist(x 0 , Γ( - → γ ))
32ε .

Then we infer from (2.9) and [19, Theorem 3.9] that

|∇w ε (x)| C w ε L ∞ (B1) C exp - 3 dist(x 0 , Γ( - → γ )) 32ε ∀x ∈ B 1/2 .
(2.10)

By linearity of the equation, the gradient vector

∇w ε satisfies -∆(∇w ε ) = 1/4∇w ε in B 1 .
Applying again [START_REF] Gilbarg | Elliptic Partial Differential Equations Second Order[END_REF]Theorem 3.9] to each component of ∇w ε in the smaller ball B 1/2 , we deduce from (2.10) that

|∇ 2 w ε (x)| C ∇w ε L ∞ (B 1/2 ) C exp - 3 dist(x 0 , Γ( - → γ )) 32ε ∀x ∈ B 1/4 . Noticing that |∇w ε (0)| = ε|∇u(x 0 )| and |∇ 2 w ε (0)| = ε 2 |∇ 2 u(x 0 )|, the conclusion follows.
Step 2 (Boundary estimates). Let Ω 1 ⊆ Ω be a smooth and convex open set such that

Ω 0 ⊆ Ω 1 and min{dist(z, ∂Ω ∪ ∂Ω 0 ) : z ∈ ∂Ω 1 } η 0 /4. Consider the smooth open set U := Ω \ Ω 1 , and the function v : U → R given by v := 1 -u-→ γ . Then v satisfies -∆v = (1/4ε 2 )v in U
, and v = 0 on ∂Ω. On the other hand, Lemma 2.5 and Step 1 imply that

1 ε 2 v L ∞ (U ) + v C 1,1 (∂Ω1) C η 0 exp - η 0 64ε .
From [START_REF] Gilbarg | Elliptic Partial Differential Equations Second Order[END_REF]Theorem 8.33] we deduce that

1 ε 2 v C 1 (U ) C η 0 exp - η 0 128ε . Setting V η 0 := {x ∈ Ω : dist(x, ∂Ω) < η 0 /5}, [19, Theorem 4.12] now implies v C 2 (Vη 0 ) C η 0 exp - η 0 128ε .
This last estimate leads to the conclusion since dist(x 0 , Γ( -→ γ )) η 0 /4 for every

x 0 ∈ V η 0 . Lemma 2.7. Let - → γ ∈ P Λ (a 0 , µ). At every x 0 ∈ Ω \ Γ( - → γ ) satisfying dist(x 0 , Γ( - → γ )) 13ε, we have ∇u-→ γ (x 0 ) C η 0 dist(x 0 , Γ( - → γ )) ,
and

∇ 2 u-→ γ (x 0 ) C η 0 dist 2 (x 0 , Γ( - → γ )) ,
for some constant C η 0 depending only on Ω and η 0 (given in Lemma 2.6).

Proof. By Lemma 2.6, we can assume that ε < η 0 /26. Then dist(x 0 , ∂Ω) > η 0 /2, and setting

R := dist(x 0 , Γ( - → γ )) 13ε, we have B(x 0 , R) ⊆ Ω. Since -∆u-→ γ = 1/(4ε 2 )(1 -u-→ γ ) in B(x 0 , R) and 0 u-→ γ 1, we deduce from [6, Lemma A.1] that for x ∈ B(x 0 , R/2), |∇u-→ γ (x)| 2 C 1 -u-→ γ L ∞ (B(x0,R)) ε 2 + u-→ γ L ∞ (B(x0,R)) (R -|x -x 0 |) 2 u-→ γ L ∞ (B(x0,R)) C R 2 ,
for some universal constant C. Now, the gradient vector field ∇u-→ γ satisfies the equation

-∆(∇u-→ γ ) = - 1 4ε 2 ∇u-→ γ in B(x 0 , R) , and ∇u-→ γ L ∞ (B(x0,R/2)) CR -1 . Applying again [6, Lemma A.1] in B(x 0 , R/2) to each component of ∇u-→ γ leads to |∇ 2 u-→ γ (x 0 )| 2 C 1 ε 2 + 1 R 2 ∇u-→ γ 2 L ∞ (B(x0,R/2)) C R 4 ,
and the proof is complete.

Lemma 2.8. Let -→ γ ∈ P(a 0 , µ). For every ρ > 0, there exists a finite covering of Γ( -→ γ ) by closed balls {B j (x j , ρ)} j∈J with x j ∈ Γ( -→ γ ) such that

Card(J) max min 5H 1 (Γ( - → γ ))ρ -1 , 25diam(Γ( - → γ )) 2 ρ -2 , 1 .
In particular,

L 2 x ∈ R 2 : dist(x, Γ( - → γ )) ρ max 20πH 1 (Γ( - → γ ))ρ, 4πρ 2 . Proof. If ρ diam(Γ( - → γ 
)), then we can cover Γ( -→ γ ) with the single ball B(a 0 , ρ), and the announced estimates become trivial. Hence we can assume that ρ < diam(Γ( -→ γ )). By compactness of Γ( -→ γ ), we can cover Γ( -→ γ ) with a finite collection of closed balls {B(x j , ρ/5)} j∈ J such that x j ∈ Γ( -→ γ ). By the 5r-covering theorem (see for instance [START_REF] Mattila | Geometry of Sets and Measures in Euclidean Spaces: Fractals and rectifiability[END_REF]), we can find a subset J ⊆ J

such that B(x i , ρ/5) ∩ B(x j , ρ/5) = ∅ if i = j with i, j ∈ J, and 
Γ( - → γ ) ⊆ j∈J B(x j , ρ) .
In particular,

j∈J B(x j , ρ/5) ⊆ x ∈ R 2 : dist(x, Γ( - → γ )) ρ ⊆ j∈J B(x j , 2ρ) , so that π 25 ρ 2 Card(J) L 2 x ∈ R 2 : dist(x, Γ( - → γ )) ρ 4πρ 2 Card(J) .
From the first inequality, we easily deduce that Card

(J) 25diam(Γ( - → γ )) 2 ρ -2 .
Next we claim that for each j ∈ J,

H 1 (Γ( - → γ ) ∩ B(x j , ρ/5)) ρ/5 . (2.11) 
Note that this estimate leads to the announced result since

H 1 (Γ( - → γ )) j∈J H 1 (Γ( - → γ ) ∩ B(x j , ρ/5)) Card(J)ρ/5 .
To prove (2.11), we argue as follows. Since ρ < diam(Γ( -→ γ )), there exists a point y j ∈ Γ( -→ γ ) \ B(x j , ρ/5). On the other hand, the set Γ( -→ γ ) is arcwise connected since γ i (0) = a 0 for each i ∈ {1, . . . , N }. Hence, we can find a continuous path

: [0, 1] → Γ( - → γ ) such that (0) = x j
and (1) = y j . Set

t * := sup t : t ∈ [0, 1] and (s) ∈ B(x j , ρ/5) for every s ∈ [0, t] .
By continuity of , we have (t * ) ∈ ∂B(x j , ρ/5). Consequently,

H 1 (Γ( - → γ ) ∩ B(x j , ρ/5)) H 1 ([0, t * )) | (t * ) -(0)| = ρ/5 ,
which completes the proof.

We are now ready to prove the following higher integrability estimate, with explicit control with respect to the parameters. Here, the main point is the uniformity of the estimate with respect to µ/ µ . The explicit dependence with respect to ε will be (strongly) used in the second part of our work [START_REF] Bonnivard | On the numerical analysis of a phase field approximation for the planar Steiner problem[END_REF].

Proposition 2.9. If - → γ ∈ P Λ (a 0 , µ), then u-→ γ ∈ W 1,p (Ω) for every p < ∞, and for p > 2, ∇u-→ γ L p (Ω) C p,η 0 max min H 1 (Γ( - → γ )), 1 ε| log ε| , ε| log ε| 1/p | log ε| 1+1/p ε 1-1/p + Λ µ | log ε| 1/p λ ε ε 1-1/p ,
for some constant C p,η 0 depending only on p, Ω, and η 0 (given in Lemma 2.6).

Proof.

Step 1. Replacing λ ε by λ ε / µ and µ by µ/ µ , we may assume that µ = 1. Without loss of generality, we can also assume that ε| log ε| < η 0 /256. Let us fix some point x 0 ∈ Ω 0 and 0 < ρ < η 0 /4. Let T ρ ∈ D (R 2 ) be the distribution defined by

T ρ , ϕ := N i=1 β i ˆΓ(γi) u-→ γ ϕ ρ dH 1 = B µ [ - → γ ](u-→ γ , ϕ ρ ) , where ϕ ρ (x) := ϕ((x -x 0 )/ρ) and ϕ ∈ C ∞ c (R 2 ). By Lemma 2.4 and (2.7), for every ϕ ∈ C ∞ c (B 2 ) we have T ρ , ϕ N i=1 β i ˆΓ(γi) |ϕ ρ | dH 1 CΛ ˆB(x0,2ρ) |∇ϕ ρ | dx = CΛρ ˆB(0,2) |∇ϕ| dx .
Then we infer from Hölder's inequality that

T ρ , ϕ CΛρ ∇ϕ L q (B2) ∀ϕ ∈ C ∞ c (B 2 ) , ∀ 1 q 2 . Therefore T ρ ∈ W -1,p (B 2 ) with T ρ W -1,p (B2) CΛρ
for every 2 p < ∞.

Step 2. Let us now fix the exponent 2 < p < ∞. By our choice of ρ, we have B(x 0 , 2ρ) ⊆ Ω.

As a consequence of Step 1, there exists a vector field f ∈ L p (B 2 ; R 2 ) such that div f = T ρ in D (B 2 ) and satisfying

C -1 p T ρ W -1,p (B2) f L p (B2) C p T ρ W -1,p (B2)
(see e.g. [1, Sections 3.7 to 3.14]). By classical elliptic theory (see e.g. [19, Theorem 9.15 and Lemma 9.17], there exists a (unique

) solution ξ ∈ W 2,p (B 2 ) ∩ W 1,p 0 (B 2 ) of -∆ξ = f in B 2 , ξ = 0 on ∂B 2 , satisfying the estimate ξ W 2,p (B2) C p f L p (B2) C p Λρ , thanks to Step 1. Now we define v ρ := div ξ ∈ W 1,p (B 2 ) which satisfies -∆v ρ = T ρ in D (B 2 ) ,
together with the estimate

v ρ W 1,p (B2) C p Λρ .
Notice that, by the Sobolev embedding Theorem,

v ρ ∈ L ∞ (B 2 ) and v ρ L ∞ (B2) C p v ρ W 1,p (B2) C p Λρ . (2.12) 
Step 3. Next we define for

x ∈ B 2 , u ρ (x) := u-→ γ (x 0 + ρx). Notice that -∆u ρ = ρ 2 4ε 2 (1 -u ρ ) - 1 λ ε ε T ρ in D (B 2 ) . Indeed, for ϕ ∈ C ∞ c (B 2 ) we have ˆB2 ∇u ρ ∇ϕ dx = ˆB(x0,2ρ) ∇u-→ γ ∇ϕ ρ dx = 1 4ε 2 ˆB(x0,2ρ) (1 -u-→ γ )ϕ ρ dx - 1 λ ε ε B[ - → γ ](u-→ γ , ϕ ρ ) = ρ 2 4ε 2 ˆB2 (1 -u ρ )ϕ dx - 1 λ ε ε T ρ , ϕ .

Consider the function w

ρ := u ρ + 1 λεε v ρ ∈ H 1 (B 2 ) ∩ L ∞ (B 2 ) which (therefore) satisfies -∆w ρ = ρ 2 4ε 2 (1 -u ρ ) in B 2 .
By [START_REF] Gilbarg | Elliptic Partial Differential Equations Second Order[END_REF]Corollary 8.36], w ρ ∈ C 1,α loc (B 2 ) for some α > 0, and

∇w ρ L ∞ (B1) C ρ 2 ε 2 1 -u ρ L ∞ (B2) + w ρ L ∞ (B2) C p ρ 2 ε 2 + 1 + Λρ λ ε ε ,
in view of (2.12) and the fact that 0 u ρ 1. Going back to u ρ = w ρ -1 λεε v ρ , we deduce that u ρ ∈ W 1,p (B 1 ) with the estimate

∇u ρ L p (B1) ∇w ρ L ∞ (B1) + ∇v ρ L p (B1) λ ε ε C p ρ 2 ε 2 + 1 + Λρ λ ε ε . (2.13)
Scaling back we finally obtain

∇u-→ γ p L p (B(x0,ρ)) C p ρ p+2 ε 2p + 1 ρ p-2 + Λ p ρ 2 λ p ε ε p .
(2.14)

Step 4. Applying Lemma 2.8, we can cover Γ( -→ γ ) by finitely many balls {B(x j , ρ/2)} j∈J with

x j ∈ Γ( - → γ ) and ρ Card(J) C max min{H 1 (Γ( - → γ )), ρ -1 }, ρ .
Then,

V ρ/2 := {x ∈ Ω : dist(x, Γ( - → γ )) < ρ/2} ⊆ j∈J B(x j , ρ) ,
and we deduce from (2.14

) that ˆVρ/2 |∇u-→ γ | p dx j∈J ˆB(xj,ρ) |∇u| p dx C p max min H 1 (Γ( - → γ )), ρ -1 , ρ ρ p+1 ε 2p + 1 ρ p-3 + Λ p ρ λ p ε ε p .
In particular,

∇u-→ γ L p (V ρ/2 ) C p max min{H 1 (Γ( - → γ )), ρ -1 }, ρ 1/p ρ 1+1/p ε 2 + 1 ρ 1-3/p + Λρ 1/p λ ε ε . (2.15)
Observe that, using the gradient estimate in Lemma 2.6, the choice ρ = 64ε| log ε| yields ∇u-

→ γ C η 0 in Ω \ V 32ε| log ε| . Plugging this value of ρ in (2.15), we deduce that ∇u-→ γ L p (V 32ε| log ε| ) C p max min H 1 (Γ( - → γ )), 1 ε| log ε| , ε| log ε| 1/p | log ε| 1+1/p ε 1-1/p + Λ| log ε| 1/p λ ε ε 1-1/p ,
and the conclusion follows.

Proposition 2.10. If -→ γ ∈ P Λ (a 0 , µ), then u-→ γ ∈ C 0,α (Ω) for every 0 < α < 1, and

u-→ γ C 0,α (Ω) C α,η 0 (1 + Λ µ λ -1 ε ) ε α ,
for some constant C α,η 0 depending only on α, Ω, and η 0 (given in Lemma 2.6).

Proof. Note that it is enough to prove the announced estimate when ε is small; thus we can assume that 13ε < η 0 /4. Recall that, upon replacing λ ε by λ ε / µ and µ by µ/ µ , we can also assume that µ = 1. Then we fix some distinct points x, y ∈ Ω, and we set

x 0 := (x+y)/2. If |x -y| ε, then we have |u-→ γ (x) -u-→ γ (y)| |x -y| α 2 ε α , since 0 u-→ γ 1. Now we assume that |x -y| < ε. If dist(x 0 , ∂Ω) η 0 /2, then dist(z, Γ( - → γ )) > η 0 /4 for every z ∈ B(x 0 , ε)
, and the conclusion follows from Lemma 2.6. If dist(x 0 , ∂Ω) > η 0 /2, then B(x 0 , ε) ⊆ Ω. Going back to estimate (2.13) in the previous proof, we deduce that for ρ = ε and p = 2/(1 -α),

∇u ε L p (B1) C α 1 + Λ λ ε .
By the Sobolev embedding Theorem, the former estimate yields u ε C 0,α (B(0,1))

C α (1 + Λ/λ ε ). Scaling back, we conclude that |u-→ γ (x) -u-→ γ (y)| |x -y| α C α (1 + Λλ -1 ε ) ε α ,
and the proof is complete.

Remark 2.11. The regularity estimates in Proposition 2.9 and Proposition 2.10 are optimal in the sense that ∇u-→ γ ∈ L ∞ (Ω) in general. To illustrate this fact, let us consider the simple case where N = 1, a 0 = 0, a 1 = τ for some τ ∈ S 1 , and Γ( -→ γ ) = S := [0, τ ] (the straight line segment). From the Euler-Lagrange equation (2.8) and the continuity of u-→ γ , we have

-∆u-→ γ = 1 4ε 2 (1 -u-→ γ ) - β 1 λ ε ε u-→ γ H 1 S in D (Ω) .
By elliptic regularity, u-→ γ has essentially the regularity of the solution of the Poisson equation

-∆v * = -u-→ γ H 1 S in D (R 2 ) ,
given by the convolution of the measure -u-→ γ H 1 S with the fundamental solution of the Laplacian, i.e.,

v * (x) := 1 2π ˆS log(|x -y|)u-→ γ (y) dH 1 y = 1 2π ˆ1 0 log(|x -tτ |)u-→ γ (tτ ) dt .
Differentiating this formula, we obtain

∇v * (x) = 1 2π ˆ1 0 (x -tτ ) |x -tτ | 2 u-→ γ (tτ ) dt for every x ∈ R 2 \ S .
In particular,

τ • ∇v * (sτ ) = 1 2π log s/(1 -s) u-→ γ (sτ ) - 1 2π ˆ1 0 u-→ γ (sτ ) -u-→ γ (tτ ) s -t dt for s > 1 .
In view of Proposition 2.10, we have for every α ∈ (0, 1),

|∇v * (sτ )| 1 2π | log(s -1)|u-→ γ (sτ ) -C α for s > 1 ,
where C α is a constant independent of s. Therefore |∇v * | cannot be essentially bounded near the point τ whenever u-→ γ (τ ) = 0. Similarly, |∇v * | is not bounded near 0 whenever u-→ γ (0) = 0. These last conditions are ensured for β 1 << 1. Indeed, using Proposition 2.10, one may easily check that u-→ γ → 1 uniformly in Ω as β 1 → 0 (with ε fixed).

2.3.

Existence and regularity of minimizing pairs. In this subsection, we move on the existence problem for minimizing pairs of the functional E µ ε . Regularity of minimizers will essentially follow from our considerations about the problem with prescribed curves. In all our statements, we shall use the upper Alhfors threshold

Λ ε := 2 + 3 δ ε . (2.16)
Our main results are the following.

Theorem 2.12. Assume that µ is of the form (2.1). The functional E µ ε admits at least one minimizing pair (u ε , -→ γ ε ) in (1 + H 1 0 (Ω)) × P(a 0 , µ). In addition, for any such minimizer, -→ γ ε belongs to P Λε (a 0 , µ), and u ε is the potential of -→ γ ε .

A byproduct of this theorem is the following existence and regularity result for our original functional F µ ε in case of a measure µ with finite support.

Corollary 2.13. Assume that µ is of the form (2.1). The functional F µ ε admits at least one minimizer u ε in 1 + H 1 0 (Ω) ∩ L ∞ (Ω). In addition, any such minimizer belongs to W 1,p (Ω) for every p < ∞ (in particular, u ε ∈ C 0,α (Ω) for every α ∈ (0, 1)). Moreover, there exists -→ γ ε ∈ P(a 0 , µ) such that (u ε , -→ γ ε ) is a minimizing pair of E µ ε in (1 + H 1 0 (Ω)) × P(a 0 , µ). In the same way, we have an analogous result concerning the auxiliary functional G µ ε defined in (2.4).

Corollary 2.14. Assume that µ is of the form (2.1). The functional G µ ε admits at least one minimizer -→ γ ε = (γ ε 1 , . . . , γ ε N ) ∈ P(a 0 , µ). In addition, any such minimizer belongs to P Λε (a 0 , µ), and

(u-→ γ ε , - → γ ε ) is a minimizing pair of E µ ε in (1 + H 1 0 (Ω)) × P(a 0 , µ). Remark 2.15.
Concerning the regularity of Γ( -→ γ ε ), we can invoke the results of [START_REF] Pauw | On sets minimizing their weighted length in uniformly convex separable Banach spaces[END_REF] and the Hölder continuity of u ε to show that each Γ(γ ε i ) is in fact a C 1,α curve for every α ∈ (0, 1/2) in a neighborhood of every point in Ω \ {a 0 , . . . , a N } (assuming eventually that ∂Ω 0 is smooth). One could use this further information to get improved (partial) regularity on u ε , but we do not pursue this issue here. We also believe that the curves admit a tangent line at the a i 's, and that the C 1,α regularity holds true up to each a i . This latter fact does not derive directly from the statements of [START_REF] Pauw | On sets minimizing their weighted length in uniformly convex separable Banach spaces[END_REF], but can certainly be proved using the material developed there.

Remark 2. [START_REF] Pauw | On sets minimizing their weighted length in uniformly convex separable Banach spaces[END_REF]. In all the statements above, we believe the regularity of u ε to be optimal in the sense that u ε is not Lipschitz continuous. More precisely, Lipschitz continuity should fail near the a i 's. In view of Remarks 2.11 & 2.15, the question boils down to determine whether or not u ε (a i ) vanishes or not. Up to some trivial situations, we believe that u ε (a i ) = 0, and that |∇u ε | actually behaves like | log(|x -a i |)| in the neighborhood of a i (as in Remark 2.15). Theorem 2.12, Corollary 2.13, and Corollary 2.14 follow from the regularity estimates obtained in the previous subsection together with a set of lemmas of independent interest. Our first fundamental step is a replacement procedure allowing to show the upper Alhfors regularity of the curves.

Lemma 2.17.

Let u ∈ 1 + H 1 0 (Ω) ∩ L ∞ (Ω) be such that u L ∞ (Ω)
1, and let -→ γ = (γ 1 , . . . , γ N ) ∈ P(a 0 , µ). If for some i 0 ∈ {1, . . . , N }, x ∈ Γ(γ i0 ), and r > 0,

H 1 Γ(γ i0 ) ∩ B(x, r) Λ ε r , (2.17) 
where Λ ε is defined in (2.16), then there exists -→ γ = (γ 1 , . . . , γ i0-1 , γ i0 , γ i0+1 , . . . , γ N ) ∈ P(a 0 , µ) such that

E µ ε (u, - → γ ) E µ ε (u, - → γ ) - β i0 r λ ε .
Proof. Assume that (2.17) holds. We shall suitably modify Γ(γ i0 ) in B(x, r) to produce the competitor -→ γ . We proceed as follows. We first define

t in := sup t ∈ [0, 1] : γ i0 (s) ∈ B(x, r) for all s ∈ [0, t) if a 0 ∈ B(x, r) , 0 otherwise , and 
t out := inf t ∈ [0, 1] : γ i0 (s) ∈ B(x, r) for all s ∈ (t, 1] if a i0 ∈ B(x, r) , 1 otherwise .
Then we set a := γ i0 (t in ) and b := γ i0 (t out ). We finally define

γ i0 (t) :=      γ i0 (t) if t ∈ [0, t in ] ∪ [t out , 1] , t -t in t out -t in b + t out -t t out -t in a if t ∈ [t in , t out ] .
Since Ω 0 is convex, we have

Γ(γ i0 ) ⊆ Γ(γ i0 ) \ B(x, r) ∪ [a, b] ⊆ Ω 0 . Now we estimate β i0 λ ε ˆΓ(γ i 0 )∩B(x,r) δ ε + u 2 dH 1 2β i0 λ ε (1 + δ ε )r , and 
β i0 λ ε ˆΓ(γi 0 )∩B(x,r) δ ε + u 2 dH 1 β i0 δ ε λ ε H 1 Γ(γ i0 ) ∩ B(x, r) β i0 λ ε (3 + 2δ ε )r . Since Γ(γ i0 ) \ B(x, r) ⊆ Γ(γ i0 ) \ B(x, r) , we conclude that E µ ε (u, - → γ ) -E µ ε (u, - → γ ) β i0 λ ε (3 + 2δ ε )r - 2β i0 λ ε (1 + δ ε )r = β i0 r λ ε ,
and the proof is complete.

The following lemma provides the existence of a minimizer -→ γ in P Λε (a 0 , µ) associated to some fixed smooth function u.

Lemma 2.18.

Let u ∈ 1 + H 1 0 (Ω) ∩ C 1 (Ω) be such that 0 u 1. There exists - → γ = (γ 1 , . . . , γ N ) ∈ P Λε (a 0 , µ) satisfying E µ ε (u, - → γ ) E µ ε (u, - → γ ) ∀ - → γ ∈ P(a 0 , µ) , (2.18) 
and such that each

γ i : [0, 1] → Ω 0 is injective if a i = a 0 , and constant if a i = a 0 .
Proof. If a i = a 0 , we choose γ i to be the constant map equal to a i . Then, for each a i = a 0 , we consider the minimization problem

min P(a0,ai) ˆ1 0 δ ε + u 2 (γ(t)) |γ (t)| dt .
By [START_REF] Buttazzo | One-dimensional variational problems[END_REF]Theorem 5.22] this problem admits a solution γ i satisfying

δ ε + u 2 (γ i (t)) |(γ i ) (t)| = h i a.e. in (0, 1) ,
for some constant h i > 0. We claim that γ i is injective. Indeed, if γ i (t 1 ) = γ i (t 2 ) for some t 1 < t 2 , then we can consider the competitor γ i ∈ P(a 0 , a i ) defined by

γ i (t)        γ i (t) for t ∈ [0, t 1 ] , γ i (t 1 ) for t ∈ [t 1 , t 2 ] , γ i (t 1 ) for t ∈ [t 2 , 1] .
Comparing energies, we have

ˆ1 0 δ ε + u 2 ( γ i (t)) |( γ i ) (t)| dt - ˆ1 0 δ ε + u 2 (γ i (t)) |(γ i ) (t)| dt = -h i (t 2 -t 2 ) < 0 ,
which contradicts the minimality of γ i . Now we set -→ γ = (γ 1 , . . . , γ N ), and we claim that (2.18) holds. Clearly, it is enough to show that for each i ∈ {1, . . . , N },

ˆΓ(γ i ) (δ ε + u 2 ) dH 1 ˆΓ(γ) (δ ε + u 2 ) dH 1 ∀γ ∈ P(a 0 , a i ) . (2.19)
Obviously, this inequality holds if a i = a 0 since the left hand side vanishes. Hence we may assume that a i = a 0 . Let us then consider an arbitrary γ ∈ P(a 0 , a i ). Since H 1 (Γ(γ)) < ∞, [5, Theorem 4.4.7] tells us that there exists an injective curve γ ∈ P(a 0 , a i ) such that Γ( γ) ⊆ Γ(γ). Now we infer from the area formula (see e.g. [2, Theorem 2.71]) and the minimality of

γ i that ˆΓ(γ i ) (δ ε + u 2 ) dH 1 = ˆ1 0 δ ε + u 2 (γ i (t)) |(γ i ) (t)| dt ˆ1 0 δ ε + u 2 ( γ(t)) | γ (t)| dt = ˆΓ( γ) (δ ε + u 2 ) dH 1 ˆΓ(γ) (δ ε + u 2 ) dH 1 ,
and (2.19) is proved. Finally, we notice that -→ γ ∈ P Λε (a 0 , µ) as a direct consequence of (2.18) and Lemma 2.17, and the proof is complete.

The next lemma will allow us to replace an arbitrary pair (u, -→ γ ) by a regular one, with controlled energy.

Lemma 2.19. For every σ > 0, u ∈ 1 + H 1 0 (Ω), and -→ γ ∈ P(a 0 , µ), there exist u σ ∈ 1 +

H 1 0 (Ω) ∩ C 1 (Ω)
and -→ γ σ ∈ P Λε (a 0 , µ) such that 0 u σ 1 and

E µ ε (u σ , - → γ σ ) E µ ε (u, - → γ ) + σ .
Proof. We first claim that there exists u ∈ 1 + H 1 0 (Ω) ∩ C 0 (Ω) such that 0 u 1 and

E µ ε ( u, - → γ ) E µ ε (u, - → γ ) + σ .
Without loss of generality, we may assume that E µ ε (u, -→ γ ) < ∞. Moreover, by the truncation argument in the proof of Lemma 2.4, we can reduce the question to the case 0 u 1.

Then write u = 1 -v with v ∈ H 1 0 (Ω). Since C ∞ c (Ω) is dense in H 1 0 (Ω), we can find a sequence (v n ) n∈N ⊆ C ∞ c (Ω) such that v n → v strongly in H 1 0 (Ω)
as n → ∞. Since 0 v 1, we may even assume that 0 v n 1. By [13, Theorem 4.1.2] we can find a (not relabeled) subsequence such that v n → v quasi-everywhere in Ω (i.e., v n → v in the pointwise sense away from a set of vanishing H 1 -capacity). Since a set of vanishing H 1 -capacity is H 1 -null, we deduce that v n → v H 1 -a.e. on Γ( -→ γ ). Then, by the dominated convergence, we have for each i ∈ {1, . . . , N }, ˆΓ(γi)

δ ε + (1 -v n ) 2 dH 1 → ˆΓ(γi) δ ε + (1 -v) 2 dH 1 .
Setting u n := 1 -v n , we conclude that for n large enough,

E µ ε (u n , - → γ ) E µ ε (u, - → γ ) + σ,
and
the claim is proved. Finally, we apply Lemma 2.18 to find -→ γ ∈ P Λε (a 0 , µ) such that

E µ ε (u n , - → γ ) E µ ε (u n , - → γ ) E µ ε (u, - → γ ) + σ ,
and the announced result is proved for u σ := u n and -→ γ σ := -→ γ .

Proof of Theorem 2.12.

Step 1 (existence). Let {(u n , -→ γ n )} n∈N be a minimizing sequence for

E ε over (1 + H 1 0 (Ω)) × P(a 0 , µ), i.e., lim n→∞ E µ ε (u n , - → γ n ) = inf (1+H 1 0 (Ω))×P(a0,µ) E µ ε .
By Lemma 2.19, there is no loss of generality assuming that (u n , -→ γ n ) ∈ C 1 (Ω) × P Λε (a 0 , µ) and 0 u n 1. In addition, by Lemma 2.18 we can even assume that, setting -→ γ n = (γ n 1 , . . . , γ n N ), all γ n i 's are injective curves for a i = a 0 , and constant for a i = a 0 . Then we consider the sequence {(u-→ γ n , -→ γ n )} n∈N , where u-→ γ n is the potential of -→ γ n , i.e., the minimizer

of E µ ε (•, - → γ n ) over 1 + H 1 0 (Ω). Obviously, {(u-→ γ n , - → γ n )} n∈N is still a minimizing sequence by minimality of u-→ γ n .
By Proposition 2.10,

u-→ γ n C 0,α (Ω) C α,η 0 (ε) ∀α ∈ (0, 1) ,
for some constant C α,η 0 (ε) independent of n. By the Arzelà-Ascoli Theorem, we can extract a (not relabeled) subsequence such that u-→ γ n → u ε uniformly in Ω and weakly in H 1 (Ω) for some function u ε ∈ 1 + H 1 0 (Ω) ∩ C 0,α (Ω) for every α ∈ (0, 1). On the other hand, the energy being invariant under reparametrization, we can assume that each γ n i is a constant speed parametrization of its image Γ(γ n i ). In particular, each

γ n i is a H 1 (Γ(γ n i ))-Lipschitz curve. Since H 1 (Γ(γ n i )) λ ε δ ε E µ ε (u-→ γ n , - → γ n ) C(ε) ,
we infer that each sequence {γ n i } n∈N is equi-Lipschitz. Therefore, we can extract a further subsequence such that, for each i ∈ {1, . . . , N }, γ n i → γ ε i uniformly on [0, 1] and weakly* in W 1,∞ (0, 1) for some γ ε i ∈ P(a 0 , a i ). Then we set -→ γ ε := (γ ε 1 , . . . , γ ε N ) ∈ P(a 0 , µ). Let us now fix an arbitrary κ ∈ (0, δ ε /2). By the uniform convergence of u-→ γ n towards u ε , we have u 2 ε u 2 - → γ n + κ in Ω for n large enough. From the injectivity of each γ n i (for a i = a 0 ) and the area formula, we derive that for a i = a 0 and n large,

ˆΓ(γ n i ) (δ ε + u 2 - → γ n ) dH 1 ˆΓ(γ n i ) (δ ε -κ + u 2 ε ) dH 1 = ˆ1 0 δ ε -κ + u 2 ε (γ n i (t)) |(γ n i ) (t)| dt . (2.20) Since γ n i * γ ε i weakly* in W 1,∞ ((0, 1)
), the lower semicontinuity result in [23, Theorem 3.8] tells us that

lim inf n→∞ ˆ1 0 δ ε -κ + u 2 ε (γ n i (t)) |(γ n i ) (t)| dt ˆ1 0 δ ε -κ + u 2 ε (γ ε i (t)) |(γ ε i ) (t)| dt . (2.21)
By the area formula again,

ˆ1 0 δ ε -κ + u 2 ε (γ ε i (t)) |(γ ε i ) (t)| dt ˆΓ(γ ε i ) (δ ε -κ + u 2 ε ) dH 1 . (2.22)
Gathering (2.20), (2.21), (2.22), and letting κ → 0, we deduce that

lim inf n→∞ ˆΓ(γ n i ) (δ ε + u 2 - → γ n ) dH 1 ˆΓ(γ ε i ) (δ ε + u 2 ε ) dH 1 ∀i ∈ {1, . . . , N } .
(Note that for a i = a 0 , this inequality is trivial since γ n i is the constant map equal to a 0 .) Since the diffuse part of the energy is clearly lower semicontinuous with respect to weak H 1convergence, we conclude that

E µ ε (u ε , - → γ ε ) lim n→∞ E µ ε (u n , - → γ n ) ,
and thus

(u ε , - → γ ε ) is a minimizer of E µ ε .
Step 2 (regularity). Now we consider an arbitrary minimizer (u ε , -→ γ ε ) of E µ ε in (1 + H 1 0 (Ω)) × P(a 0 , µ). Arguing as in the proof of Lemma 2.4, we obtain 0 u ε 1 by minimality of u ε for E µ ε (•, -→ γ ε ). In turn, the minimality of -→ γ ε for E µ ε (u ε , •) implies that -→ γ ε ∈ P Λε (a 0 , µ) by Lemma 2.17. Now Theorem 2.3 shows that u ε is the potential of -→ γ ε .

Proof of Corollary 2.13. Existence of a minimizer of

F µ ε in 1 + H 1 0 (Ω) ∩ L ∞ (Ω) is ensured by Theorem 2.12 since inf F µ ε = min E µ ε by (2.

3). Let us now consider an arbitrary minimizer

u ε of F µ ε in 1 + H 1 0 (Ω) ∩ L ∞ (Ω).
We first claim that 0 u ε 1 a.e. in Ω. Indeed, setting v := max(min(u ε , 1), 0) ∈ 1 + H 1 0 (Ω), we can argue as in the proof of Lemma 2.4 to show

E µ ε (v, - → γ ) E µ ε (u ε , - → γ ) for every - → γ ∈ P(a 0 , µ). Hence F µ ε (v) F µ ε (u ε ) by (2.
3), the inequality being strict whenever {v = u ε } has a non vanishing Lebesgue measure. The minimality of u ε then implies that v = u ε a.e. in Ω.

Next, by definition of F µ ε , there exists a sequence { -→ γ n } n∈N ⊆ P(a 0 , µ) such that

E µ ε (u ε , - → γ n ) F µ ε (u ε ) + 2 -n-1 ∀n ∈ N .
On the other hand, we can argue as in the proof of Lemma 2.19 to find, for each n ∈ N, a function

u n ∈ (1 + H 1 0 (Ω)) ∩ C 1 (Ω) such that 0 u n 1 in Ω, u n -u ε H 1 (Ω) 2 -n
, and

E µ ε (u n , - → γ n ) E µ ε (u ε , - → γ n ) + 2 -n-1 F µ ε (u ε ) + 2 -n .
Applying Lemma 2.18 to each u n , we find (injective or constant) curves -→ γ ,n ∈ P Λε (a 0 , µ) of constant speed such that

E µ ε (u n , - → γ ,n ) E µ ε (u n , - → γ n ) F µ ε (u ε ) + 2 -n .
Now we consider the potential u-→ γ ,n of -→ γ ,n . Then,

E µ ε (u-→ γ ,n , - → γ ,n ) E µ ε (u n , - → γ ,n ) F µ ε (u ε ) + 2 -n . (2.23) Setting w n := u n -u-→ γ ,n ∈ H 1 0 (Ω), we infer from the equation (2.8) satisfied by u-→ γ ,n that 2 -n E µ ε (u n , - → γ ,n ) -E µ ε (u-→ γ ,n , - → γ ,n ) = ε ˆΩ |∇w n | 2 dx + 1 4ε ˆΩ |w n | 2 dx + 1 λ ε B µ [ - → γ ,n ](w n , w n ) . Consequently, w n H 1 (Ω) C ε 2 -n/2 , so that u ε -u-→ γ ,n H 1 (Ω) C ε 2 -n/2
. On the other hand, the sequence {u-→ γ ,n } remains bounded in W 1,p (Ω) for each p < ∞ by Proposition 2.9. Since u-→ γ ,n → u ε in H 1 (Ω), we conclude that u ε ∈ W 1,p (Ω) for each p < ∞. In particular, u ε ∈ C 0,α (Ω) for every α ∈ (0, 1), and u-→ γ ,n → u ε uniformly in Ω.

To conclude, we proceed as in the proof of Theorem 2.12, Step 1: for a (not relabeled) subsequence, -→ γ ,n * -→ γ ε weakly* in W 1,∞ (0, 1) for some -→ γ ε ∈ P(a 0 , µ), and

lim inf n→∞ E µ ε (u-→ γ ,n , - → γ ,n ) E µ ε (u ε , - → γ ε ) F µ ε (u ε ) .
In view of (2.23), we have

F µ ε (u ε ) = E µ ε (u ε , - → γ ε ), which shows that (u ε , - → γ ε ) is a minimizer of E µ ε in (1 + H 1 0 (Ω)) × P(a 0 , µ).
Proof of Corollary 2.14. Existence of a minimizer of G µ ε is ensured by Theorem 2.12 since inf G µ ε = min E µ ε . Let us now consider an arbitrary minimizer -→ γ ε in P(a 0 , µ). We first claim that -→ γ ε = (γ ε 1 , . . . , γ ε N ) ∈ P 2Λε (a 0 , µ). Assume by contradiction that it does not belongs to P 2Λε (a 0 , µ). Then we can find i 0 ∈ {1, . . . , N }, x 0 ∈ Γ(γ ε i0 ), and r > 0 such that

H 1 (Γ(γ ε i0 ) ∩ B(x 0 , r)) Λ ε r .
By the very definition of G µ ε , we can find u ∈ 1 + H 1 0 (Ω) such that

E µ ε ( u, - → γ ε ) G µ ε ( - → γ ε ) + β i0 r 2λ ε .
Arguing as in the proof of Lemma 2.4, we may assume that 0 u 1. Then, by Lemma 2.17 there exists -→ γ ∈ P(a 0 , µ) such that

G µ ε ( - → γ ) E µ ε ( u, - → γ ) E µ ε ( u, - → γ ε ) - β i0 r λ ε G µ ε ( - → γ ε ) - β i0 r 2λ ε < G µ ε ( - → γ ε ) , which contradicts the minimality of - → γ ε . Since - → γ ε ∈ P 2Λε (a 0 , µ), we conclude that G µ ( - → γ ε ) = E µ ε (u-→ γ ε , - → γ ε ), so that (u-→ γ ε , - → γ ε ) is minimizing E µ ε in (1 + H 1 0 (Ω)) × P(a 0 , µ).
In particular, -→ γ ε ∈ P Λε (a 0 , µ) by Theorem 2.12, and the proof is complete.

THE CASE OF A GENERAL FINITE MEASURE

3.1. Existence and regularity for a general finite measure. We consider in this subsection an arbitrary (non negative) finite measure µ supported in Ω 0 , and we fix a base point a 0 ∈ Ω 0 . We are interested in existence and regularity of solutions of the minimization problem

min u∈1+H 1 0 (Ω)∩L ∞ (Ω) F µ ε (u) . (3.1)
To pursue these issues, we rely on the results of the previous section. For this, we will need the following elementary lemma.

Lemma 3.1. Let µ be a finite non negative measure supported on Ω 0 . Then there exists a sequence of measures {µ k } k∈N with finite support in Ω 0 such that µ k * µ and spt µ k → spt µ in the Hausdorff sense.

Proof. For k ∈ N, we denote by C k be the standard family of dyadic semi-cubes in R 2 of size 2 -k , i.e.,

C k := Q = 2 -k z + 2 -k [0, 1) × [0, 1) : z ∈ Z 2 .
Then we define

C k := Q ∈ C k : Q ∩ Ω 0 = ∅ , and for each Q ∈ C k , we choose a point a Q ∈ Q ∩ Ω 0 . We set µ k := Q∈C k µ(Q ∩ Ω 0 )δ a Q .
By construction, µ k has finite support, µ k = µ , and spt µ k ⊆ Ω 0 ∩ T 2 -k+2 (spt µ) where T 2 -k+2 (spt µ) denotes the tubular neighborhood of radius 2 -k+1 of spt µ. Similarly, spt µ ⊆ T 2 -k+2 (spt µ k ), and we infer that spt µ k → spt µ in the Hausdorff sense. We now claim that µ k * µ as measures on Ω 0 . To prove this claim, let us fix an arbitrary function ϕ ∈ C 0 (Ω 0 ). Then we can find a (non decreasing) modulus of continuity ω

: [0, ∞) → [0, ∞) satisfying ω(t) → 0 as t ↓ 0 such that sup |x-y| t |ϕ(x) -ϕ(y)| ω(t) .

Now we estimate ˆϕdµ

k -ˆϕdµ Q∈C k ˆQ∩Ω0 ϕ(a Q ) -ϕ(x) dµ µ ω(2 -k+1 ) -→ k→∞ 0 ,
which completes the proof.

Theorem 3.2. The minimization problem (3.1) admits at least one solution.

Proof. We consider the sequence of discrete measures {µ k } k∈N provided by Lemma 3.1. For each k ∈ N, we consider a solution u k of the minimization problem

min u∈1+H 1 0 (Ω) F µ k ε (u) ,
for some base point a k 0 ∈ Ω 0 satisfying a k 0 → a 0 . Since µ k is bounded, by Proposition 2.10, the sequence {u k } k∈N is bounded in C 0,α (Ω) for every α ∈ (0, 1), and 0 u k 1. Moreover, choosing a (k-independent) C 1 -function to test the minimality of u k , we infer that

F µ k ε (u k ) C for some constant C independent of k. As a consequence, {u k } k∈N is bounded in H 1 (Ω).
Therefore, we can find a (not relabeled) subsequence such that u k → u * in C 0,α (Ω) for every α ∈ (0, 1) and u k u * weakly in H 1 (Ω). Then, u * ∈ 1 + H 1 0 (Ω) and

lim inf k→∞ ε ˆΩ |∇u k | 2 dx + 1 4ε ˆΩ(1 -u k ) 2 dx ε ˆΩ |∇u * | 2 dx + 1 4ε ˆΩ(1 -u * ) 2 dx . (3.2)
We now claim that the sequence of continuous functions

d k : x → D(δ ε + u 2 k ; a k 0 , x) converges uniformly on Ω to d * : x → D(δ ε + u 2 * ; a 0 , x). Since u k L ∞ (Ω) 1, each function d k is (1 + δ ε )-Lipschitz continuous.
Hence the sequence {d k } k∈N is uniformly equicontinuous, and it is enough to prove that d k converges pointwise to d * . Let us then fix an arbitrary point x ∈ Ω. For γ ∈ P(a 0 , x), we have

d k (x) D(δ ε + u 2 k ; a 0 , x) + (1 + δ ε )|a k 0 -a 0 | ˆΓ(γ) (δ ε + u 2 k ) dH 1 + (1 + δ ε )|a k 0 -a 0 | ,
and we obtain by dominated convergence,

lim sup k→∞ d k (x) ˆΓ(γ) (δ ε + u 2 * ) dH 1 .
Taking the infimum over γ shows that lim sup k d k (x) d * (x). On the other hand, if σ ∈ (0, 1), we can find

γ k ∈ P(a k 0 , x) such that ˆΓ(γ k ) (δ ε + u 2 k ) dH 1 d k (x) + σ .
In particular,

H 1 (Γ(γ k )) δ -1 ε (d k (x) + σ) C. Since u k → u * uniformly, we have u 2 k u 2 * -σ whenever k is large enough. For such k's, we estimate d k (x) ˆΓ(γ k ) (δ ε + u 2 * ) dH 1 -1 + H 1 (Γ(γ k )) σ D(δ ε + u 2 * ; a k 0 , x) -Cσ d * (x) -(1 + δ ε )|a k 0 -a 0 | -Cσ . Letting k ↑ ∞ and then σ ↓ 0, we deduce that lim inf k d k (x) d * (x), whence d k (x) → d * (x).
Now, as a consequence of this uniform convergence, we have

ˆΩ0 D(δ ε + u 2 k ; a k 0 , x) dµ k -→ ˆΩ0 D(δ ε + u 2 * ; a 0 , x) dµ . (3.3) 
Gathering (3.2) and (3.3) leads to

lim inf k→∞ F µ k ε (u k ) F µ ε (u * ) .
To conclude, we consider an arbitrary ϕ

∈ 1 + H 1 0 (Ω) ∩ L ∞ (Ω). Since D(δ ε + ϕ 2 ; a 0 , x) -D(δ ε + ϕ 2 ; a k 0 , x) (δ ε + ϕ 2 L ∞ (Ω) )|a k 0 -a 0 | → 0 ,
we have ´D(δ ε + ϕ 2 ; a k 0 , x) dµ k → ´D(δ ε + ϕ 2 ; a 0 , x) dµ, and thus

F µ k ε (ϕ) → F µ ε (ϕ)
. By minimality of u k , we conclude that

F µ ε (u * ) lim inf k→∞ F µ k ε (u k ) lim sup k→∞ F µ k ε (u k ) lim k→∞ F µ k ε (ϕ) = F µ ε (ϕ) .
Consequently, u * is minimizing F µ ε , and

(choosing ϕ = u * ) F µ k ε (u k ) → F µ ε (u * ).
For later use, we also observe that the lim inf in (3.2) now becomes a limit (in view of (3.3)), and the inequality turns into an equality, i.e.,

lim k→∞ ε ˆΩ |∇u k | 2 dx + 1 4ε ˆΩ(1 -u k ) 2 dx = ε ˆΩ |∇u * | 2 dx + 1 4ε ˆΩ(1 -u * ) 2 dx .
From this identity, it classicaly follows that u k → u * strongly in H 1 (Ω).

Note that the previous proof not only produces a minimizer of F µ ε , but it produces a W 1,pminimizer. Our next theorem shows that, in fact, any minimizer shares the same regularity. Theorem 3.3. Any solution of the minimization problem (3.1) belongs to W 1,p (Ω) for every p < ∞ (and in particular to C 0,α (Ω) for every α ∈ (0, 1)).

Proof. Consider u * a solution of (3.1). First we claim that 0 u * 1 a.e. in Ω. Indeed, if this is not the case, then we consider the competitor ū := max(min(u * , 1), 0). Arguing as in the proof of Lemma 2.4, we have D(δ ε + (ū) 2 ; a 0 , x) D(δ ε + u 2 * ; a 0 , x) for every x ∈ Ω. Then, as in the proof of Corollary 2.13, it leads to F µ ε (ū) < F µ ε (u * ), in contradiction with the minimality of u * . Now the strategy consists in introducing the modified functionals

F µ ε : H 1 (Ω) ∩ L ∞ (Ω) → [0, ∞) defined by F µ ε (u) := F µ ε (u) + 1 4 ˆΩ |u -u * | 2 dx . Since u * is minimizing F µ ε , it is also the unique minimizer of F µ ε over 1 + H 1 0 (Ω) ∩ L ∞ (Ω).
Then we consider the sequence of discrete measures {µ k } k∈N provided by Lemma 3.1, and the corresponding functionals

F µ k ε : H 1 (Ω) ∩ L ∞ (Ω) → [0, ∞) given by F µ k ε (u) := F µ k ε (u) + 1 4 ˆΩ |u -u * | 2 dx ,
with base point a k 0 ∈ spt µ k . We aim to address the minimization problems min

u∈1+H 1 0 (Ω)∩L ∞ (Ω) F µ k ε (u) . (3.4) 
We shall prove existence and regularity of minimizers for (3.4) following the main lines of Section 2. More precisely, we will prove that the W 1,p -norm of a constructed minimizer u k of F µ k ε remains bounded for every p < ∞ independently of k (and thus also the C 0,α -norm for every α ∈ (0, 1)). Assuming that this is indeed the case, we can run the proof of Theorem 3.2 noticing the additional term u -u * 2 L 2 (Ω) is continuous with respect to weak H 1 -convergence. In other words, we can extract from the resulting sequence {u k } k∈N , a subsequence converging strongly in H 1 (Ω) (and in C 0,α ) to a limiting function

u 0 ∈ 1 + H 1 0 (Ω) ∩ L ∞ (Ω) minimizing F µ ε . Since u * is the unique minimizer of F µ ε over 1 + H 1 0 (Ω) ∩ L ∞ (Ω), we have u 0 = u * and u k → u * . Finally, since {u k } k∈N remains bounded in W 1,p (Ω), it shows that u * ∈ W 1,p (Ω) for every p < ∞.

Now comes the analysis of problem (3.4):

Step 1: Minimization with prescribed curves. We write

µ k = N k i=0 β k i δ a k i , with β k i > 0. For - → γ ∈ P(a k 0 , µ k ), we consider the functional E µ k ε (•, - → γ ) : H 1 (Ω) → [0, +∞]
defined by

E µ k ε (u, - → γ ) := E µ k ε (u, - → γ ) + 1 4 ˆΩ |u -u * | 2 dx ,
where E µ k ε (u, -→ γ ) is given by (2.2). Then,

F µ k ε (u) = inf - → γ ∈P(a k 0 ,µ k ) E µ k ε (u, - → γ ) ∀u ∈ H 1 (Ω) ∩ L ∞ (Ω) . (3.5) 
Let us now fix -→ γ ∈ P Λ (a 0 , µ k ) for some Λ ≥ 2. By Lemma 2.2, the minimization problem

min u∈1+H 1 0 (Ω) E µ k ε (u, - → γ ) admits a unique solution u-→ γ solving      -ε 2 ∆ u-→ γ = 1 4 (1 -u-→ γ ) + ε 4 (u * -u-→ γ ) - ε λ ε B µ [ - → γ ]( u-→ γ , •) in H -1 (Ω) , u-→ γ = 1 on ∂Ω .
In addition, since 0 u * 1, the truncation argument in the proof of Lemma 2.4 shows that 0 u-→ γ 1 a.e. in Ω. As a consequence, |u * -u-→ γ | 1 a.e. in Ω. By elliptic regularity, we then infer that u-→ γ ∈ C 1,α loc Ω \ Γ( -→ γ ) for every α ∈ (0, 1).

Considering the function v := 1 -u-→ γ , we notice that

-4ε 2 ∆ v + v ε in Ω \ Γ( - → γ ) , 0 v 1 in Ω .
Then a straightforward modification of Lemma 2.5 shows that

0 1 -u-→ γ (x 0 ) ε + exp - 3 dist(x 0 , Γ( - → γ )) 32ε at every x 0 ∈ Ω \ Γ( - → γ ) satisfying dist(x 0 , Γ( - → γ )) 12ε.
As in Lemma 2.6, this leads to the gradient estimate

∇ u-→ γ (x 0 ) C η 0 1 + 1 ε exp - dist(x 0 , Γ( - → γ )) 32ε (3.6) 
at every

x 0 ∈ Ω \ Γ( - → γ ) satisfying dist(x 0 , Γ( - → γ )) 13ε (with η 0 given by Lemma 2.6). Since u * -u-→ γ L ∞ (Ω)
1, we can reproduce the proof of Proposition 2.9 with minor modifications to prove that u-→ γ ∈ W 1,p (Ω) for every 2 < p < ∞ together with the estimate

∇ u-→ γ L p (V 32ε| log ε| ) C p,η 0 | log ε| ε + Λ µ k λ ε ε ,
where V 32ε| log ε| := {x ∈ Ω : dist(x, Γ( -→ γ )) < 32ε| log ε|}. On the other hand, (3.6) yields the

estimate |∇ u-→ γ | C η 0 on Ω \ V 32ε| log ε| . Therefore, ∇ u-→ γ L p (Ω) C p,η 0 | log ε| ε + Λ µ k λ ε ε for 2 < p < ∞ .
Since µ k is bounded, we have thus proved that u-→ γ W 1,p (Ω) is bounded independently of k for each p < ∞.

Step 2: Existence of minimizing pairs. Define Λ ε as in (2.16). Then we notice that Lemma 2.17, Lemma 2.18, and Lemma 2.19 hold with E µ k ε in place of E µ k ε . Hence we can follow the proof of Theorem 2.12 to find -

→ γ k ∈ P Λε (a k 0 , µ k ) such that the pair ( u-→ γ k , - → γ k ) is minimizing E µ k ε over (1 + H 1 0 (Ω)) × P(a k 0 , µ k ). Step 3: Conclusion. Set u k := u-→ γ k . Since u k ∈ L ∞ (Ω), we infer from (3.5) that F µ k ε (u k ) = E µ k ε (u k , - → γ k ), and thus u k is minimizing F µ k ε over 1 + H 1 0 (Ω) ∩ L ∞ (Ω).
Finally, it follows from Step 1 that u k W 1,p (Ω) is bounded independently of k for every p < ∞.

Remark 3.4. The proof of Theorem 3.3 (together with the results in Subsection 2.2) shows that any minimizer u ε of F µ ε over 1 + H 1 0 (Ω) ∩ L ∞ (Ω) satisfies the following estimates

∇u ε L p (Ω) C p,η 0 | log ε| ε + µ δ ε λ ε ε ∀p ∈ (2, ∞) , and 
u ε C 0,α (Ω) C α,η 0 1 + µ δ -1 ε λ -1 ε ε α ∀α ∈ (0, 1) ,
for some constants C p,η 0 and C α,η 0 depending only on p, α, and η 0 (given in Lemma 2.6). Even if those estimates are not optimal with respect to ε (but nearly), they only depends on the total mass of µ, and not on the internal structure of µ.

In view of the uniform estimates above, one can reproduce (verbatim) the proof of Theorem 3.2 to show the following stability result. Proposition 3.5. Let {µ k } k∈N be a sequence of finite measures supported on Ω 0 , and {a k 0 } k∈N ⊆ Ω 0 . Assume that µ k * µ as measures and a k 0 → a 0 . If u k is a minimizer of F µ k ε with base point a k 0 over 1 + H 1 0 (Ω) ∩ L ∞ (Ω), then the sequence {u k } k∈N admits a (not relabeled) subsequence converging strongly in H 1 (Ω) and in C 0,α (Ω) for every α ∈ (0, 1) to a minimizer u * of F µ ε with base point a 0 over 1 + H 1 0 (Ω) ∩ L ∞ (Ω). In addition,

F µ k ε (u k ) → F µ ε (u * ).
3.2. Application to the average distance and optimal compliance problems. In this subsection, we briefly review and complement two applications suggested in [START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF]: the average distance problem and the optimal compliance problem.

(1) The average distance problem. Given a nonnegative density f ∈ L 1 (Ω 0 ), it consists in finding a connected compact set K ⊆ Ω 0 minimizing the functional

AVD(K) := ˆΩ0 dist(x, K)f (x) dx + H 1 (K)
among all connected and compact subsets K of Ω 0 .

(2) The optimal compliance problem. Given a nonnegative f ∈ L 2 (Ω 0 ), it consists in finding a connected compact set K ⊆ Ω 0 minimizing the functional

OPC(K) := 1 2 ˆΩ0 f u K dx + H 1 (K)
among all connected and compact subsets K of Ω 0 of positive H 1 -measure, where u K ∈ H 1 (Ω 0 ) denotes the unique solution of the minimization problem

min 1 2 ˆΩ0 |∇u| 2 dx - ˆΩ0 f u dx : u ∈ H 1 (Ω 0 ) , u = 0 on K .
Reformulating problems (1) and ( 2). The starting point in [START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF] is a suitable reformulation of the average distance and optimal compliance problems by a duality argument. To describe in detail these reformulations, we need first to introduced the functional spaces involved. We fix a base point a 0 ∈ Ω 0 . Setting M (Ω 0 ), respectively M (Ω 0 ; R 2 ), the space of (finite) R-valued, respectively R 2 -valued, measures on R 2 supported on Ω 0 , we consider the following families of (generalized) vector fields

V avd (Ω 0 ) := v ∈ M (Ω 0 ; R 2 ) : div v ∈ M (Ω 0 ) and div v(Ω 0 ) = 0 , and 
V opc (Ω 0 ) := v ∈ L 2 (Ω 0 ; R 2 ) : div(χ Ω0 v) ∈ M (Ω 0 ) and div(χ Ω0 v)(Ω 0 ) = 0 .
For such a vector field v, we associate the (finite) nonnegative measure

µ(v) := |div v + χ Ω0 f | if v ∈ V avd (Ω 0 ) , |div(χ Ω0 v) + χ Ω0 f | if v ∈ V opc (Ω 0 ) .
We define the pointed functionals

F avd : Ω 0 × M (Ω 0 ; R 2 ) → [0, ∞] and F opc : Ω 0 × L 2 (Ω 0 ; R 2 ) → [0, ∞] by F avd (a 0 , v) := v + div v + S {a 0 } ∪ spt µ(v) if v ∈ V avd (Ω 0 ) , +∞ otherwise ,
and

F opc (a 0 , v) :=      1 2 ˆΩ0 |v| 2 dx + div v + S {a 0 } ∪ spt µ(v) if v ∈ V opc (Ω 0 ) , +∞ otherwise ,
where v and div v denote the total variations of v and div v, and 

S {a 0 } ∪ spt µ(v) := inf H 1 (K) : K ⊆ Ω 0 compact connected, K ⊇ {a 0 } ∪ spt µ(v) (the
F opc (v, a 0 )
admit at least one solution (a 0 , v avd ) and (a 0 , v opc ), respectively. According to [9, Section 5.1], their resolution is equivalent to problems (1) and ( 2), respectively 2 . As our purpose is not focused on this equivalent formulation, we only indicate the following implication: if K avd and K opc are compact connected subsets of Ω 0 satisfying

H 1 (K avd ) = S {a 0 } ∪ spt µ(v avd ) and H 1 (K opc ) = S {a 0 } ∪ spt µ(v opc ) , (3.7) 
then, AVD(K avd ) = min AVD and OPC(K opc ) = min OPC .

In other words, K avd and K opc solve problem (1) and problem (2) respectively.

The phase field approximation. The phase field approximation introduced in [START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF] to solve problem (1) or (2) consists in replacing the term S {a 0 } ∪ spt µ(•) in F avd (•, a 0 ) or F opc (•, a 0 ) by the functional F µ(•) ε defined in (1.4). As explained in the introduction (see also [START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF]Section 5.4]), the possible lack of lower semicontinuity of F µ(•) ε prevents one to obtain existence of minimizers for the resulting phase field functionals.

Here we follow the approach of [START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF] using the functional

F µ(•) ε instead of F µ(•) ε
. More precisely, we consider the functionals

F ε avd : Ω 0 × M (Ω 0 ; R 2 ) × 1 + H 1 0 (Ω) ∩ L ∞ (Ω) → [0, ∞] and F ε opc : Ω 0 × L 2 (Ω 0 ; R 2 ) × 1 + H 1 0 (Ω) ∩ L ∞ (Ω) → [0, ∞] given by F ε avd (a 0 , v, u) := v + div v + F µ(v) ε (u) if v ∈ V avd (Ω 0 ) , +∞ otherwise , (3.9) 
and

F ε opc (a 0 , v, u) :=      1 2 ˆΩ0 |v| 2 dx + div v + F µ(v) ε (u) if v ∈ V opc (Ω 0 ) , +∞ otherwise , (3.10) 
where a 0 is the base point in F µ(v) ε

. As a consequence of Theorem 3.2 and Proposition 3.5, we have the following existence result of minimizers. Their convergence as ε → 0 towards minimizers of F avd or F opc (essentially proved in [START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF]) shall be discussed for completeness in Subsection 4.2.

Theorem 3.6. The functionals F ε avd and F ε opc admit at least one minimizer.

Proof. First notice that, for a ∈ Ω 0 , the competitor (a, 0, 1) has a finite energy, so that the infimum of F ε avd and F ε opc are finite. Let us now consider an arbitrary minimizing sequence {(a k 0 , v k , u k )} k∈N for F ε avd or F ε opc . By Theorem 3.2, we can find for each k ∈ N a minimizer

u k of F µ(v k ) ε with base point a k 0 over 1 + H 1 0 (Ω) ∩ L ∞ (Ω). Then, F µ(v k ) ε (u k ) F µ(v k ) ε ( u k ), so that {(a k 0 , v k , u k )} k∈N is also a minimizing sequence. Case 1: minimizing F ε avd . Since sup k F ε avd (a k 0 , v k , u k ) < ∞,
we can find a (not relabeled) subsequence such that v k * v ε and div v k * div v ε as measures for some v ε ∈ V avd (note that the divergence free condition is closed under those weak* convergences), and a k 0 → a ε 0 for some a ε 0 ∈ Ω 0 . Since µ(v k ) * µ(v ε ), we infer from Proposition 3.5 that (up to a further subsequence)

u k → u ε strongly in H 1 (Ω) to some minimizer u ε of F µ(vε) ε with base point a ε 0 over 1+H 1 0 (Ω)∩ L ∞ (Ω), and F µ(v k ) ε (u k ) → F µ(vε) ε (u ε ).
Since the total variation is lower semicontinuous with respect to the weak* convergence of measures, we can now deduce that

F ε avd (a ε 0 , v ε , u ε ) lim k→∞ F ε avd (a k 0 , v k , u k ) = inf F ε avd ,
and

(a ε 0 , v ε , u ε ) is a minimizer of F ε avd . Case 2: minimizing F ε opc .
We argue as in Case 1, replacing the weak* convergence of the v k 's by the weak convergence in L 2 (Ω 0 ).

Remark 3.7. If (a ε 0 , v ε , u ε ) is a minimizer of F ε avd or F ε opc , then u ε is a minimizer of F µ(vε) ε with base point a ε 0 over 1 + H 1 0 (Ω) ∩ L ∞ (Ω). Therefore, u ε ∈ W 1,p ( 
Ω) for every p < ∞ (in particular, u ε ∈ C 0,α (Ω) for every α ∈ (0, 1)). We did not investigate the regularity of the vector field v ε , and this question remains essentially open.

ASYMPTOTIC OF MINIMIZERS

4.1. Towards the Steiner problem. The objective of this subsection is to prove Theorem 1.2. We start with elementary comments about the Steiner problem (1.3). Setting

S ({a 0 } ∪ spt µ) := inf H 1 (K) : K ⊆ R 2 compact connected, K ⊇ {a 0 } ∪ spt µ , one has S ({a 0 } ∪ spt µ) < ∞ if and only if H 1 (spt µ) < ∞.
In addition, if we denote by π 0 the orthogonal projection on the convex set Ω 0 , then H 1 (π 0 (K)) H 1 (K) for any admissible competitor K ⊆ R 2 , with equality if and only if K in contained in Ω 0 . Obviously π 0 (K) is still an admissible competitor, and we infer that any solution of the Steiner problem (1.3) is contained Ω 0 . Hence,

S ({a 0 } ∪ spt µ) = min H 1 (K) : K ⊆ Ω 0 compact connected, K ⊇ {a 0 } ∪ spt µ < ∞ , (4.1)
and existence easily follows from Blaschke and Golab theorems (see e.g. [START_REF] Ambrosio | TILLI : Topics on analysis in metric spaces[END_REF]).

The proof of Theorem 1.2 departs from the results in [START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF]. The first ingredient is the following lower estimate taken from [9, Lemma 3

.1]. Lemma 4.1 ([9]). Let {v k } k∈N ⊆ 1 + H 1 0 (Ω) ∩ C 0 (Ω) satisfying 0 v k 1, and 
sup k∈N ε k ˆΩ |∇v k | 2 dx + 1 4ε k ˆΩ(1 -v k ) 2 dx + 1 α k ˆΩ0 D(v k ; a 0 , x) dµ < ∞ , (4.2) 
for some sequence α k → 0 of positive numbers. Assume that the sequence x → D(v k ; a 0 , x) converges uniformly on Ω 0 to some function d * : Ω 0 → [0, ∞). Then, K * := {d * = 0} is a compact connected subset of Ω 0 containing {a 0 } ∪ spt µ, and

H 1 (K * ) lim inf k→∞ ε k ˆΩ |∇v k | 2 dx + 1 4ε k ˆΩ(1 -v k ) 2 dx . (4.3)
The second ingredient is an explicit construction of a "recovery sequence" showing the sharpness of the previous lemma. The construction is provided by [9, Lemma 2.8] (see also [START_REF] Ambrosio | On the approximation of free discontinuity problems[END_REF]) that we (slightly) reformulate as Lemma 4.2 ([9]). Let K ⊆ Ω 0 be a compact connected set containing {a 0 } ∪ spt µ and such that H 1 (K) < ∞. There exists a sequence Proof of Theorem 1.2. Step 1. As discussed above, our assumption H 1 (spt µ) < ∞ implies S ({a 0 } ∪ spt µ) < ∞. Now, given an arbitrary compact connected K ⊆ Ω 0 containing {a 0 } ∪ spt µ and such that H 1 (K) < ∞, we consider the sequence {ϕ k } k∈N provided by Lemma 4.2, and we set v

{ϕ k } k∈N ⊆ H 1 (Ω) ∩ C 0 c (Ω) satisfying ϕ k = 1 on K, and lim sup k→∞ ε k ˆΩ |∇ϕ k | 2 dx + 1 4ε k ˆΩ |ϕ k | 2 dx H 1 (K) . ( 4 
k := 1 -ϕ k ∈ 1 + H 1 0 (Ω) ∩ C 0 (Ω). We claim that ˆΩ0 D(δ ε k + v 2 k ; a 0 , x) dµ δ ε k H 1 (K) µ . (4.5) 
Indeed, since K is connected and H 1 (K) < ∞, [5, Theorem 4.4.7] yields the existence for every x ∈ spt µ of a curve γ x ∈ P(a 0 , x) such that Γ(γ x ) ⊆ K. Since v k = 0 on K, we deduce that

D(δ ε k + v 2 k ; a 0 , x) ˆΓ(γx) (δ ε k + v 2 k ) dH 1 = δ ε k H 1 (Γ(γ x )) δ ε k H 1 (K) ∀x ∈ spt µ .
Integrating this inequality with respect to µ leads to (4.5). Since δ ε k /λ ε k → 0, we infer from (4.4) and (4.5) that lim sup

k F µ ε k (v k ) H 1 (K). On the other hand, F µ ε k (u k ) F µ ε k (v k
) by minimality of u k , and we deduce that lim sup k F µ ε k (u k ) H 1 (K). From the arbitrariness of K and (4.1), we conclude that

lim sup k→∞ F µ ε k (u k ) S ({a 0 } ∪ spt µ) < ∞ . (4.6) 
Step 2. Since 0 u k 1, the sequence x → D(δ ε k + u 2 k ; a 0 , x) is a sequence of (1 + δ ε k )-Lipschitz functions on Ω 0 , all vanishing at the point a 0 . By the Arzelà-Ascoli Theorem, we can find a (not relabeled) subsequence such that x → D(δ ε + u 2 k ; a 0 , x) converges uniformly on Ω 0 to some function d * : Ω 0 → [0, ∞).

Let us now set α k := λ ε k /(2 δ ε k ). Since δ ε k = λ β ε k with β ∈ (1, 2), we have α k → 0. Noticing that 2 δ ε k u k δ ε k +u 2 k , we have 2 δ ε k D(u k ; a 0 , x) D(δ ε k +u 2 k ; a 0 , x) for every x ∈ Ω 0 . In view of (4.6), we conclude that Therefore, H 1 (K * ) = S ({a 0 } ∪ spt µ) (i.e., K * solves the Steiner problem relative to {a 0 } ∪ spt µ), and F µ ε k (u k ) → H 1 (K * ).

ε k ˆΩ |∇u k | 2 dx + 1 4ε k ˆΩ(1 -u k ) 2 dx + 1 α k ˆΩ0 D(u k ; a 0 , x) dµ F µ ε k (u k ) C ,
Step 3. For a radius r ∈ (0, η 0 /2) (where η 0 is given in Lemma 2.6), we denote by V r the open tubular neighborhood of K * of radius r. Since K * ⊆ Ω 0 , we have V r/2 ⊆ V r ⊆ Ω. We claim that for every r ∈ (0, η 0 /2) there exists k 0 (r) ∈ N such that for every k k 0 (r),

-ε 2 k ∆u k = 1 4 (1 -u k ) in D (Ω \ V r/2 ) . (4.8) 
To establish (4.8), we first invoke the continuity of d * to find τ r > 0 such that {d * < 3τ r } ⊆ V r/2 . Since x → D(δ ε k + u 2 k ; a 0 , x) converges uniformly to d * , we can find k 1 (r) ∈ N such that

x ∈ Ω 0 : D(δ ε k + u 2 k ; a 0 , x) 2τ r ⊆ {d * < 3τ r } ⊆ V r/2 ∀k k 1 (r) . (4.9)

On the other hand, since x → D(δ ε k + u 2 k ; a 0 , x) converges uniformly to 0 on K * ⊇ spt µ, we can find k 2 (r) ∈ N such that spt µ ⊆ x ∈ Ω 0 : D(δ ε k + u 2 k ; a 0 , x) τ r ∀k k 2 (r) . Obviously, for x ∈ spt µ and κ ∈ (0, τ r ) given, we can find γ κ x ∈ P(a 0 , x) satisfying the second condition, and it suffices to check that Γ(γ κ x ) ⊆ V r/2 . Fix y ∈ Γ(γ κ x ), and consider θ y ∈ [0, 1] such that γ κ x (θ y ) = y. Setting γ y (t) := γ κ x (tθ y ), we have γ y ∈ P(a 0 , y) and Γ( γ y ) ⊆ Γ(γ κ x ). Consequently,

D(δ ε k + u 2 k ; a 0 , y) ˆΓ( γy) (δ ε k + u 2 k ) dH 1 ˆΓ(γ κ x ) (δ ε k + u 2 k ) dH 1 D(δ ε k + u 2 k ; a 0 , x) + τ r 2τ r ,
by (4.10). In view of (4.9), we have y ∈ V r/2 . Hence Γ(γ κ x ) ⊆ V r/2 , and (4.11) is proved. From now on, we assume that k k 0 (r). Fix an arbitrary ϕ ∈ D(Ω \ V r/2 ), t ∈ R \ {0}, and set w k := u k + tϕ. Since w k = u k in V r/2 , we infer from (4.11) that for every x ∈ spt µ,

D(δ ε k + w 2 k ; a 0 , x) ˆΓ(γ κ x ) (δ ε k + w 2 k ) dH 1 = ˆΓ(γ κ x ) (δ ε k + u 2 k ) dH 1 D(δ ε k + u 2 k ; a 0 , x) + κ ∀κ ∈ (0, τ r ) .
Letting κ ↓ 0 leads to D(δ ε k + w 2 k ; a 0 , x) D(δ ε k + u 2 k ; a 0 , x) for every x ∈ spt µ. Step 4. Let us fix r ∈ (0, η 0 /2). From (4.8) and standard elliptic regularity, we infer that u k ∈ C ∞ (Ω \ V r/2 ) whenever k k 0 (r). Then, arguing as in Lemma 2.5, we derive from (4.8) that for k k 0 (r),

0 1 -u k (x) exp -C r /ε k ∀x ∈ Ω \ V 3r/4 , (4.13) 
for some constant C r > 0 independent of ε k . Inserting estimate (4.13) in (4.8), we deduce as in Lemma 2.6 that for k k 0 (r),

ε k |∇u k | + ε 2 k |∇ 2 u k | C r,η0 exp -C r /ε k in Ω \ V r ,
for some constants C r,η0 and C r > 0 independent of ε k . Hence u k → 1 in C 2 (Ω \ V r ).

Step 5. Let us fix t ∈ (0, 1), and show that {u k t} → K * in the Hausdorff sense. To this purpose, we fix a radius r > 0. From Step 4 above, we first deduce that {u k t} ⊆ V r whenever k is large enough. Before going further, notice that {u k t} = ∅ for k large. Indeed, if {u k t} = ∅ for infinitely many k's, then ˆΩ0 D(δ ε + u 2 k ; a 0 , x) dµ t 2 ˆΩ0 |x -a 0 | dµ for infinitely many k's .

Since spt µ is not reduced to {a 0 }, the right hand side does not vanish, while the left goes to 0 as k → ∞ by (4.6), a contradiction. We now denote by W k r the open tubular neighborhood of {u k t} of radius r. We aim to show that K * ⊆ W k r for k sufficiently large. Assume by contradiction that for some subsequence {k j }, we have K * ⊆ W kj r . Then we can find a sequence {x j } ⊆ K * such that x j ∈ W kj r for every j ∈ N. Extracting a subsequence if necessary, we can assume that x j → x * for some point x * ∈ K * . Since {u kj t} ⊆ Ω, by Blaschke's theorem we can also assume that {u kj t} → S t in the Hausdorff sense for some compact set S t . Then dist(x * , S t ) r, and we cand find j 0 (r) ∈ N such that B(x * , r/2) ∩ {u kj t} = ∅ for j j 0 (r). We now distinguish two cases. Case 1. If x * = a 0 , set τ := 1/2 min(r, |x * -a 0 |). Then for every γ ∈ P(a 0 , x * ) we can find t γ ∈ (0, 1) such that γ(t γ ) ∈ ∂B(x * , τ ) and γ([t γ , 1]) ⊆ B(x * , τ ). Consequently, for j j 0 (r) we have ˆΓ(γ) (δ ε k j + u 2 kj ) dH 1 t 2 H 1 γ([t γ , 1]) t 2 τ ∀γ ∈ P(a 0 , x * ) .

In particular D(δ ε k j + u 2 kj ; a 0 , x * ) t 2 τ for j j 0 (r). Letting j → ∞ yields d * (x * ) t 2 τ which contradicts the fact x * ∈ K * := {d * = 0}. Case 2. Assume that x * = a 0 . Then the same argument as in Case 1 (applied to x ∈ spt µ instead of x * ) shows that if j j 0 (r), then D(δ ε k j + u 2 kj ; a 0 , x) t 2 2 min(r, |x -a 0 |) ∀x ∈ spt µ .

Since spt µ is not reduced to {a 0 } by assumption, we have for j j 0 (r), ˆΩ0 D(δ ε k j + u 2 kj ; a 0 , x) dµ t 2 2 ˆΩ0 min(r, |x -a 0 |) dµ > 0 .

Once again, the left hand side of this inequality goes to 0 as j → ∞ by (4.6), which provides the desired contradiction.

  Consider a bounded and convex open set Ω 0 ⊆ R 2 . Given a nonnegative Borel measurable function w : Ω 0 → [0, ∞), we define the (generalized) geodesic distance between two points a, b ∈ Ω 0 relative to the conformal metric w to be D(w; a, b) := inf Γ:a b ˆΓ w dH 1 ∈ [0, +∞] ,

(4. 7 )

 7 for some constant C independent of k. By Lemma 4.1, the compact set K * := {d * = 0} is connected and contains {a 0 } ∪ spt µ. Gathering (4.3), (4.6), and (4.7) yieldsH 1 (K * ) lim inf k→∞ F µ ε k (u k ) lim sup k→∞ F µ ε k (u k ) S ({a 0 } ∪ spt µ) .

(4. 10 )

 10 Set k 0 (r) := max(k 1 (r), k 2 (r)), and let us prove that for k k 0 (r), for all x ∈ spt µ and all κ ∈ (0, τ r ) , there exists γ κx ∈ P(a 0 , x) satisfyingΓ(γ κ x ) ⊆ V r/2 and ˆΓ(γ κ x ) (δ ε k + u 2 k ) dH 1 D(δ ε k + u 2 k ; a 0 , x) + κ . (4.11)

  The pointwise defined function v * only depends on the equivalence class of v, and v * = v a.e. in U . In turn, we say that v has an approximate limit at x if there exists t ∈ R such that

		v(y) dy if the limit exists ,	
	r)	
	0	otherwise .	
	lim r↓0 B(x,r)	|v(y) -t| dy = 0 .	(2.5)
	The set S v of points where this property fails is called the approximate discontinuity set. It is
	a L n -negligible Borel set, and for x ∈ U the value t determined by (2.5) is equal to v * (x).
	In addition, the Borel function v * : Ω \ S v → R is approximately continuous at every point
	x ∈ U \ S v (see e.g. [2, Section 3.6] and [18, Section 1.7.2]).	

  infimum being infinite if the class of competitors is empty).

	Following [9, proof of Proposition 5.6], the variational problems
	min a0∈Ω0	min V avd (Ω0)	F avd (v, a 0 )	and min a0∈Ω0	min Vopc(Ω0)

  .4) Remark 4.3. As we shall see below, Lemmas 4.1 & 4.2 imply that assumption H 1 (spt µ) < ∞ is necessary and sufficient to ensure that the minimum value of F µ ε over 1 + H 1 0 (Ω) remains bounded as ε ↓ 0.

  By minimality of u k we haveF µ ε k (w k ) -F µ ε k (u k )0, and inserting (4.12) in this inequality leads to2tε k ˆΩ ∇u k ∇ϕ dx + t 2ε k ˆΩ(1 -u k )ϕ dx + t 2 ε k ˆΩ |∇ϕ| 2 dx + t 2 ε 2 ˆΩ |ϕ| 2 dx 0 .Dividing this inequality by t, and letting t ↓ 0 and t ↑ 0 yields2ε k ˆΩ ∇u k ∇ϕ dx + 1 2ε k ˆΩ(1 -u k )ϕ dx = 0 ,and (4.8) is proved.

			Therefore,
	ˆΩ0	ˆΩ0	
	D(δ ε k + w 2 k ; a 0 , x) dµ	D(δ ε k + u 2 k ; a 0 , x) dµ .	(4.12)

In the original formulation of[START_REF] Bonnivard | Approximation of length minimization problems among compact connected sets[END_REF], one requires a 0 ∈ spt µ(v) in the definition F avd (a 0 , v) or Fopc(a 0 , v). A quick inspection of [9, Section 5.1] reveals that this condition can be dropped when considering S {a 0 } ∪ spt µ(v) instead of S spt µ(v) .
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Step 6. To complete the proof of Theorem 1.2, it only remains to show that d * (x) = dist(x, K * ). Since K * := {d * = 0}, we only have to show this identity for x ∈ K * . First, since d * is a 1-Lipschitz function (as pointwise limite of (1 + δ ε k )-Lipschitz functions), we obviously have d * (x) dist(x, K * ). Now fix a point x ∈ Ω 0 \ K * , an arbitrary τ ∈ 0, dist(x, K * ) , and an arbitrary t ∈ (0, 1). We infer from Step 5 that u 2 k t 2 in B(x, τ ) for k large enough. Then, arguing as in Step 5, Case 1, we obtain D(δ

t 2 τ . From the arbitrariness of τ and t, we conclude that d * (x) dist(x, K * ).

Remark 4.4. In the spirit of Proposition 3.5, one can study the asymptotic behavior of minimizers of F µε ε over 1 + H 1 0 (Ω), for some sequence of measures µ ε * µ as ε → 0, and eventually varying base points a ε 0 → a 0 . In this general setting, it is necessary to assume that sup ε∈(0,1) F µε ε (u ε ) < ∞, where u ε denotes a minimizer of F µε ε over 1 + H 1 0 (Ω). Since [9, Lemma 3.1] actually allows for such ε-dependence in the a priori estimate (4.2), Steps 1 & 2 in the previous proof carry over. Hence, up to a subsequence, x → D(δ ε + u 2 ε ; a ε 0 , x) converges uniformly on Ω 0 as ε → 0 to some 1-Lipschitz function d * , the compact set K * := {d * = 0} is connected and {a 0 } ∪ spt µ ⊆ K * . Then, K * solves the Steiner problem relative to {a 0 } ∪ spt µ, and

then (all) the other conclusions of Theorem 1.2 remain. The argument follows essentially the same lines as above. Note that (4.14) includes the case where µ ε is a discrete approximation of µ as in Lemma 3.1.

On the other hand, if one drops condition (4.14), then Hausdorff convergence of sublevel sets of minimizers can fail (their Hausdorff limit can be different from any Steiner set relative to {a 0 } ∪ spt µ). To illustrate this fact, let us consider the following example. Let a 0 , a 1 , a 2 ∈ Ω 0 be three distinct points such that a 1 ∈ (a 0 , a 2 ), and set µ κ := δ a0 + δ a1 + κδ a2 with κ ∈ [0, 1]. For each κ > 0, the segment [a 0 , a 2 ] is the unique solution of the Steiner problem (1.3) relative to µ κ , while [a 0 , a 1 ] is the unique solution relative to µ 0 . Obviously, µ κ * µ 0 as κ ↓ 0, but spt µ κ = {a 0 , a 1 , a 2 } → spt µ 0 = {a 0 , a 1 }. Now, consider two sequences κ j ↓ 0 and ε n ↓ 0, and for each (j, n) ∈ N 2 , a minimizer u j,n ∈ 1 + H 1 0 (Ω) of F µκ j εn (with base point a 0 ). By Theorem 1.2, {u n,j 1/2} → [a 0 , a 2 ] in the Hausdorff sense as n → ∞ for every j ∈ N. Consequently, we can find a subsequence {n j } such that {u nj ,j 1/2} → [a 0 , a 2 ] in the Hausdorff sense as j → ∞.

4.2.

Towards the average distance and optimal compliance problems. In this last subsection, we discuss the asymptotic behavior as ε → 0 of the functionals F ε avd and F ε opc defined in (3.9) and (3.10), and of their minimizers. For this purpose, it is more convenient to consider the reduced functionals

By Theorem 3.3, for every (a 0 , v)

Assuming that (1.2) holds, Theorem 1.2 and Remark 4.3 then imply that F ε avd and F ε opc converge pointwise as ε → 0 to F avd and F opc , respectively.

Beyond this pointwise convergence, one can reproduce the proof of [9, Theorem 5.7] (using assumption (1.2) as in Step 2 of the proof of Theorem 1.2) to show that F ε avd actually Γ-converges to F avd (for the (Ω 0 ×weak*)-topology), and F ε opc Γ-converges to F opc (for the (Ω 0 ×weak)-topology). In addition, if {(a ε 0 , v ε )} ε>0 is a recovery sequence of a configuration (a 0 , v) of finite energy, and

The same consideration applies in case (a ε 0 , v ε , u ε ) is a minimizer of either F ε avd or F ε opc . By Γ-convergence, (a ε 0 , v ε ) (sub)-converges as ε → 0 to a minimizer (a 0 , v ) of F avd or F opc , respectively. Consequently, K * = K avd or K * = K opc as in (3.7)-(3.8), i.e., K * solves the average distance problem or the optimal compliance problem, respectively. To conclude, one may wonder wether or not the sublevel sets {u ε t} Hausdorff converge to K * , as in Theorem 1.2. In view of Remark 4.4, this question remains quite unclear, and it certainly requires a specific analysis taking full advantage of the minimality of the pair (v ε , u ε ).