
HAL Id: hal-01401822
https://hal.sorbonne-universite.fr/hal-01401822

Submitted on 23 Nov 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ON A PHASE FIELD APPROXIMATION OF THE
PLANAR STEINER PROBLEM: EXISTENCE,

REGULARITY, AND ASYMPTOTIC OF
MINIMIZERS

Matthieu Bonnivard, Antoine Lemenant, Vincent Millot

To cite this version:
Matthieu Bonnivard, Antoine Lemenant, Vincent Millot. ON A PHASE FIELD APPROXIMATION
OF THE PLANAR STEINER PROBLEM: EXISTENCE, REGULARITY, AND ASYMPTOTIC OF
MINIMIZERS. Interfaces and Free Boundaries : Mathematical Analysis, Computation and Applica-
tions, 2018, 20. �hal-01401822�

https://hal.sorbonne-universite.fr/hal-01401822
https://hal.archives-ouvertes.fr


ON A PHASE FIELD APPROXIMATION OF THE PLANAR STEINER PROBLEM:
EXISTENCE, REGULARITY, AND ASYMPTOTIC OF MINIMIZERS

MATTHIEU BONNIVARD, ANTOINE LEMENANT, AND VINCENT MILLOT

ABSTRACT. In this article, we consider and analyse a small variant of a functional originally
introduced in [9, 22] to approximate the (geometric) planar Steiner problem. This functional
depends on a small parameter ε > 0 and resembles the (scalar) Ginzburg-Landau functional from
phase transitions. In a first part, we prove existence and regularity of minimizers for this functional.
Then we provide a detailed analysis of their behavior as ε→ 0, showing in particular that sublevel
sets Hausdorff converge to optimal Steiner sets. Applications to the average distance problem and
optimal compliance are also discussed.
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1. INTRODUCTION

In its simplest version, the original (planar) Steiner problem consists in finding, for a given
collection of points a0, ..., aN ∈ R2, a compact connected set K ⊆ R2 containing all the ai’s
and having minimal length. From the geometric analysis point of view, the Steiner problem can
be seen as the one dimensional version of the (unoriented) Plateau problem, which consists in
finding a (unoriented) surface of least area spanning a given boundary. Solutions to the Steiner
problem exist and are usually not unique. However, every solution consists of a finite tree made
of straight segments joining by number of three with 120◦angles. This rigid structure allows one
to reduce the Steiner problem to a discrete problem, but finding an exact solution is known to
be computationally very hard: it belongs to the original list of NP-complete problems proposed
by Karp [21]. And, obviously, the discrete approach is unadapted if one considers a perturbed
version of the problem as it may arise in some models from continuum mechanics. These facts
motivate the development of specific analytic/geometric tools, and more precisely of approxima-
tion procedures that can be numerically implemented.
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Concerning minimal boundaries (boundaries of least area), the typical oriented Plateau prob-
lem, such approximations are well known by now, the most common ones being the so-called
phase field approximations. They usually rely on the minimization of an energy functional based
on the van der Waals-Cahn-Hilliard theory for phase transitions (see e.g. [20, 26, 27]), explaining
the terminology. Applications of phase field methods to unoriented problems are more recent.
The first one might be the Ambrosio-Tortorelli method [3, 4] used to approximate the Mumford-
Shah functional from image segmentation [28]. Nowadays, the Mumford-Shah functional re-
ceives a lot of interest from the materials science community, and the Ambrosio-Tortorelli ap-
proximation is, for instance, heavily used to simulate crack propagation in elastic solids [11, 12].

For a long time, no phase field methods (for unoriented Plateau type problems) were designed
to include topological constraints such as connectedness. Only recently such a method has been
suggested, first in [22], and then in [9], to approximate the planar Steiner problem and/or related
minimization problems involving the length of connected sets. In [17] the same approach has
been successfully implemented (theoretically and numerically) to approximate the Willmore en-
ergy of connected curves or surfaces. At the present time, two alternative (but complementary)
methods to solves the Steiner problem just appeared as preprints [8, 15].

The main objective of this article is to complement the analysis initiated in [9, 22] in the
following way. Although the Γ-convergence result of [9, 22] proves that “some approximate
minimization problems” indeed approximate the Steiner problem (or variants), existence of min-
imizers for the underlying functionals cannot be proved (at least easily), nor qualitative properties
of “almost” minimizers. This is essentially due to the analytical complexity in the construction of
those functionals. Here we introduce a tiny variant of [9, 22] with great benefits. In few words,
we are able to prove for the new functional existence and regularity of minimizers, as well as
a more precise description of their behavior in the singular limit. Before going further, let us
describe our results in detail.

Consider a bounded and convex open set Ω0 ⊆ R2. Given a nonnegative Borel measurable
function w : Ω0 → [0,∞), we define the (generalized) geodesic distance between two points
a, b ∈ Ω0 relative to the conformal metric w to be

D(w; a, b) := inf
Γ:a b

ˆ
Γ

w dH1 ∈ [0,+∞] ,

where Γ : a b means that Γ is a rectifiable curve in Ω0 of finite length connecting a and b (i.e.,
Γ a Lipschitz image of [0, 1] contained in Ω0 running from a to b).

We fix a positive finite measure µ supported on Ω0, a base point a0 ∈ Ω0, and a bounded
smooth open set Ω ⊆ R2 such that Ω0 ⊆ Ω. For a given set of parameters ε, λε, δε ∈ (0, 1), we
consider the functional Fµε : H1(Ω) ∩ L∞(Ω)→ [0,+∞) defined by

Fµε (u) := ε

ˆ
Ω

|∇u|2 dx+
1

4ε

ˆ
Ω

(u− 1)2 dx+
1

λε

ˆ
Ω0

D
(
δε + u2; a0, x

)
dµ ,

where, in the D-term, δε+u2 denotes the precise representative of the Sobolev function δε+u2 ∈
W 1,1(Ω) ∩ L∞(Ω). In this way, the value of D

(
δε + u2; a0, x

)
only depends on a0, x, and the

equivalence class of δε + u2. Moreover, the function x 7→ D
(
δε + u2; a0, x

)
turns out to be

(δε + ‖u‖2L∞(Ω))-Lipschitz continuous (see Remark 2.1), so that Fµε is well defined (or more
precisely, its last term).

We are interested in the minimization problem

min
u∈1+H1

0 (Ω)∩L∞(Ω)
Fµε (u) . (1.1)

Our first main result deals with existence and regularity of solutions.
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Theorem 1.1. Problem (1.1) admits at least one solution. In addition, any solution uε belongs to
W 1,p(Ω) for every p <∞ (in particular, uε ∈ C0,α(Ω) for every α ∈ (0, 1)), and 0 6 uε 6 1.

Let us mention that the regularity above is essentially sharp in the sense that uε is in general
not Lipschitz continuous globally in Ω (see Remarks 2.11 & 2.16). In the case where sptµ is
finite, we shall see that uε is in fact C∞ away from finitely many C1,α-curves connecting a0 to
sptµ (given by minimizing geodesics for the distance D

(
δε + u2

ε)).

We now describe the asymptotic behavior of minimizers of Fµε as ε → 0. For this issue, we
shall assume (for simplicity) that the two parameters λε and δε satisfy the following relation:

λε−→
ε→0

0 and δε = λβε for some β ∈ (1, 2) . (1.2)

Provided that H1(sptµ) < ∞, our second main result shows that sublevel sets of minimizers
converge to a solution of the generalized Steiner probem

min
{
H1(K) : K ⊆ R2 compact and connected, K ⊇ {a0} ∪ sptµ

}
. (1.3)

Note that for µ =
∑N
i=0 δai and some distinct points ai ∈ Ω0, problem (1.3) coincides with the

classical Steiner problem described previously.

Theorem 1.2. Assume that sptµ is not reduced to {a0} and that H1(sptµ) <∞. Assume also
that (1.2) holds. Let εk ↓ 0 and {uk}k∈N ⊆ 1 +H1

0 (Ω) be such that

Fµεk(uk) = min
1+H1

0 (Ω)
Fµεk for each k ∈ N .

There exist a (not relabeled) subsequence and a compact connected set K∗ ⊆ Ω0 such that
{uk 6 t} → K∗ in the Hausdorff sense for every t ∈ (0, 1). In addition, K∗ solves the Steiner
problem (1.3) relative to {a0} ∪ sptµ , and the following holds:

(i) Fµεk(uk)→ H1(K∗);

(ii) D
(
δεk + u2

k; a0, x
)
→ dist(x,K∗) uniformly on Ω0;

(iii) uk → 1 in C2
loc(Ω \K∗).

In proving this theorem, we make use of the main result in [9, 22] that we now briefly present.
The original functional introduced in [9, 22] is (essentially) F̃µε : 1 +H1

0 (Ω)∩C0(Ω)→ [0,∞)

given by

F̃µε (u) :=


ε

ˆ
Ω

|∇u|2 dx+
1

4ε

ˆ
Ω

(1− u)2 dx+
1

λε

ˆ
Ω0

D(u; a0, x) dµ if 0 6 u 6 1 ,

+∞ otherwise .
(1.4)

As explained [9, Section 5.4], the possible lack of lower semicontinuity of F̃µε prevents one to
prove existence of minimizers (at least easily – and existence is still unknown1). The main result
of [9, 22] is of Γ-convergence nature, and shows the two following facts: (1) if a sequence {vε}
satisfies F̃µε (vε) = O(1), then x 7→ D(vε; a0, x) (sub-)converges uniformly as ε → 0 to some
function d∗, {d∗ = 0} is a compact connected set containing {a0}∪sptµ, andH1({d∗ = 0}) 6
lim infε F̃

µ
ε (vε); (2) for every compact connected set K containing {a0} ∪ sptµ, there exists

a sequence {wε} of functions of finite F̃µε -energy satisfying lim supε F̃
µ
ε (wε) 6 H1(K). In

particular, if the sequence {vε} is “almost” minimizing in the sense that F̃µε (vε)−inf F̃µε = o(1),
then the set {d∗ = 0} solves the Steiner problem (1.3), and F̃µε (vε)→ H1({d∗ = 0}).

1We learned from Dorin Bucur that the recent preprint [7] contains results solving some lower semicontinuity issues
in a similar direction.
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In conclusion, the main contribution of Theorem 1.2 is the Hausdorff convergence of the
sublevel sets {uε 6 t}, the convergence estimate away from the limiting Steiner set, and the
identification of the limiting function d∗. Compare to F̃µε , this is made possible by introducing
the additional parameter δε and replacing u by u2 in the D-term. The parameter δε, already
suggested in [9], can be seen as an elliptic regularisation term. In turn, the term u2 is the key new
ingredient which allows to get a linear elliptic equation for uε (at least if sptµ is finite). A large
part of the arguments used to prove both Theorem 1.1 and Theorem 1.2 rests on this equation
and rather classical linear estimates. The introduction of the “safety zone” Ω \ Ω0 (not present
in [9]) is just a convenient way to avoid boundary effects, and has no other importance. Finally,
we impose relation (1.2) between λε and δε for the following reason: on one hand the condition
δε = o(λε) is necessary to derive the Steiner problem in the limit; on the other hand the condition
λ2
ε = o(δε) allows us to use [9] in a straightforward way, even if it is probably unnecessary.

We close this introduction mentioning our companion paper [10], second part of our work,
where we consider the minimization of a discretized version Fµε based on finite P1-elements. A
special attention will be devoted on how to handle the D-term in this discrete framework. Using
the material of this paper, we will be able to determine explicit estimates on the grid size in terms
of ε to ensure the convergence of discrete minimizers to Steiner sets, in the spirit of Theorem 1.2.

This paper is organized as follows. In Section 2, we consider the case where µ has a finite
support. We start establishing a priori estimates leading to existence and (as a byproduct) regu-
larity of minimizers (see Corollary 2.13). The case of a general measure µ is treated in Section 3
through an approximation argument using finitely supported measures. In Subsection 3.2, we ap-
ply our existence theory for Fµε to prove existence of minimizers for functionals introduced in [9]
(and accordingly modified here) to approximate the average distance and compliance problems.
Theorem 1.2 is finally proved in Section 4.

2. EXISTENCE AND REGULARITY FOR MEASURES WITH FINITE SUPPORT

Throughout this section, we assume that the measure µ has finite support, i.e.,

µ =

N∑
i=1

βi δai (2.1)

for some distinct points a1, . . . , aN ∈ Ω0 and coefficients βi > 0. We fix a base point a0 ∈ Ω0

(possibly equal to one of the ai’s), and to the resulting collection of points, we associate the
following space of Lipschitz curves

P(a0, µ) :=
{−→γ = (γi)

N
i=1 : γi ∈P(a0, ai)

}
,

where we have set

P(a, b) :=
{
γ ∈ Lip([0, 1]; Ω0) : γ(0) = a and γ(1) = b

}
.

We endow P(a0, µ) with the topology of uniform convergence. In this way, P(a0, µ) appears
to be a subset of the complete metric space [C0([0, 1]; Ω0)]N . For −→γ ∈P(a0, µ), we write

Γ(γi) := γi([0, 1]) and Γ(−→γ ) :=

N⋃
i=1

γi([0, 1]) .

For a given −→γ ∈ P(a0, µ), we consider the functional Eµε (·,−→γ ) : H1(Ω) → [0,+∞] defined
by

Eµε (u,−→γ ) := ε

ˆ
Ω

|∇u|2 dx+
1

4ε

ˆ
Ω

(u− 1)2 dx+
1

λε

N∑
i=1

βi

ˆ
Γ(γi)

(δε + u2) dH1 , (2.2)
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where each term
´

Γ(γi)
(δε+u

2) dH1 is understood as the integration of the precise representative
of δε + u2 with respect to the measureH1 Γ(γi), see Subsection 2.1 below.

By the very definition of Fµε , the functional Eµε relates to Fµε through the formula

Fµε (u) = inf−→γ ∈P(a0,µ)
Eµε (u,−→γ ) ∀u ∈ H1(Ω) ∩ L∞(Ω) . (2.3)

As we shall see, this identity is the key ingredient to investigate existence and regularity of
minimizers of Fµε . In the same spirit, we also consider the functionalGµε : P(a0, µ)→ [0,+∞)

defined by

Gµε (−→γ ) := inf
u∈1+H1

0 (Ω)
Eµε (u,−→γ ) , (2.4)

and prove existence of minimizers.

2.1. The precise representative of a Lebesgue function. The object of this subsection is to
summarize some basic facts concerning the precise representative of a function, and their impli-
cations for the generalized geodesic distance. In doing so, we consider an open set U ⊆ Rn. For
v ∈ L1

loc(U), the value of the precise representative of v at x ∈ U is defined by

v∗(x) :=


lim
r↓0

 
B(x,r)

v(y) dy if the limit exists ,

0 otherwise .

The pointwise defined function v∗ only depends on the equivalence class of v, and v∗ = v a.e.
in U . In turn, we say that v has an approximate limit at x if there exists t ∈ R such that

lim
r↓0

 
B(x,r)

|v(y)− t| dy = 0 . (2.5)

The set Sv of points where this property fails is called the approximate discontinuity set. It is
a Ln-negligible Borel set, and for x ∈ U the value t determined by (2.5) is equal to v∗(x).
In addition, the Borel function v∗ : Ω \ Sv → R is approximately continuous at every point
x ∈ U \ Sv (see e.g. [2, Section 3.6] and [18, Section 1.7.2]).

We shall make use of the following elementary properties:

(i) if v1 6 v2 a.e. in U , then v∗1(x) 6 v∗2(x) for every x ∈ U \ (Sv1 ∪ Sv2);

(ii) if f : R → R is a Lipschitz function and w := f ◦ v, then Sw ⊆ Sv and w∗(x) =

f(v∗(x)) for every x ∈ Ω \ Sv .

Finally, by standard results on BV -functions (see [2, Section 3.7]), we have Hn−1(Sv) = 0

whenever v ∈ W 1,1
loc (U). In what follows, we may write v instead of v∗ if it is clear from the

context.

Remark 2.1. For a nonnegative v ∈ W 1,1
loc (U) ∩ L∞(U), one has 0 6 v∗(x) 6 ‖v‖L∞(U) at

every point x ∈ U \ Sv , as a consequence of (i) above. In particular,

0 6
ˆ

Γ

v dH1 6 ‖v‖L∞(U)H1(Γ)

for every rectifiable curve Γ ⊆ U . As a consequence, if U is assumed to be convex, one has

0 6 D(v; a, b) := inf
Γ:a b

ˆ
Γ

v dH1 6 ‖v‖L∞(U)|a− b| ∀a, b ∈ U ,

where the infimum is taken over all rectifiable curves Γ ⊆ U running from a to b. It is then
customary to prove that the function x 7→ D(v; a, x) is ‖v‖L∞(U)-Lipschitz continuous.
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2.2. The minimization problem with prescribed curves. In this subsection, we investigate the
minimization problem

min
u∈1+H1

0 (Ω)
Eµε (u,−→γ ) (2.6)

for a prescribed set of curves −→γ satisfying a mild regularity constraint: we shall assume that it
belongs to

PΛ(a0, µ) :=
{−→γ ∈P(a0, µ) : Al

(
Γ(γi)

)
6 Λ for each i

}
,

for a given constant Λ > 2, where we have set

Al(K) := sup

{
H1(K ∩B(x, r))

r
: r > 0 , x ∈ K

}
for a closed set K ⊆ R2 .

In this context, we establish existence and uniqueness of the solution, as well as regularity es-
timates. The introduction of this regularity constraint is motivated by the following lemma,
consequence of a classical result due to N.G. Meyers & W.P. Ziemer [25].

Lemma 2.2. If −→γ ∈PΛ(a0, µ), then the functional

Bµ[−→γ ] : (u, v) ∈ H1(Ω)×H1(Ω) 7→
N∑
i=1

βi

ˆ
Γ(γi)

uv dH1

defines a symmetric, nonnegative, and continuous bilinear form on H1(Ω) satisfying∥∥Bµ[−→γ ]
∥∥ 6 CΩ‖µ‖Λ ,

for some constant CΩ depending only on Ω.

Proof. Step 1. For a given i ∈ {1, . . . , N}, we consider the finite measure on R2 defined by
µi := H1 Γ(γi). Let x ∈ R2 and r > 0 such that Γ(γi) ∩ B(x, r) 6= ∅. Choose a point
z ∈ Γ(γi) ∩B(x, r), and notice that Γ(γi) ∩B(x, r) ⊆ Γ(γi) ∩B(z, 2r). Then,

µi
(
B(x, r)

)
6 µi

(
B(z, 2r)

)
6 2rAl

(
Γ(γi)

)
,

which shows that

sup

{
µi
(
B(x, r)

)
r

: r > 0 , x ∈ R2

}
6 2Λ .

SinceW 1,1(R2)-functions are approximately continuousH1-a.e. in R2, we can apply [29, Theo-
rem 5.12.4] (see also [25]) to infer that w ∈ L1(µi) for every w ∈W 1,1(R2) (or more precisely,
w∗ ∈ L1(µi)), with the estimateˆ

Γ(γi)

|w| dH1 =

ˆ
R2

|w| dµi 6 CΛ

ˆ
R2

|∇w| dx , (2.7)

for some universal constant C > 0.

Step 2. Let u ∈ H1(Ω) 7→ ū ∈ H1(R2) be a continuous linear extension operator (whose exis-
tence is ensured by the smoothness of Ω). Note that for u, v ∈ H1(Ω), we have ūv̄ ∈W 1,1(R2).
Since

∑
i βi = µ(Ω), it follows from Step 1 that ūv̄ ∈ L1(µi) for each i ∈ {1, . . . , N} (or more

precisely, (ūv̄)∗ ∈ L1(µi)), and

∣∣Bµ[−→γ ](u, v)
∣∣ 6 C‖µ‖Λ ˆ

R2

|∇(ūv̄)| dx

6 C‖µ‖Λ‖ū‖H1(R2)‖v̄‖H1(R2) 6 CΩ‖µ‖Λ‖u‖H1(Ω)‖v‖H1(Ω) ,

which completes the proof. �
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Given −→γ ∈PΛ(a0, µ), we now rewrite for u ∈ H1(Ω),

Eµε (u,−→γ ) = ε

ˆ
Ω

|∇u|2 dx+
1

4ε

ˆ
Ω

(u− 1)2 dx+
1

λε
Bµ[−→γ ](u, u) +

δε
λε

N∑
i=1

βiH1(Γ(γi)) .

By the previous lemma, Eµε (u,−→γ ) < ∞ for every u ∈ H1(Ω), and Eµε (·,−→γ ) is lower semi-
continuous with respect to weak convergence in H1(Ω). Owing to the strict convexity of the
functional Eµε (·,−→γ ), we conclude to the following

Theorem 2.3. Given −→γ ∈PΛ(a0, µ), problem (2.6) admits a unique solution u−→γ .

For −→γ ∈ PΛ(a0, µ), we shall refer to u−→γ as the potential of −→γ . It satisfies the Euler-
Lagrange equation

−ε2∆u−→γ =
1

4
(1− u−→γ )− ε

λε
Bµ[−→γ ](u−→γ , ·) in H−1(Ω) ,

u−→γ = 1 on ∂Ω .

(2.8)

Our next objective is to obtain some regularity estimates on u−→γ with explicit dependence on the
parameters. We start with an elementary lemma.

Lemma 2.4. Let −→γ ∈ PΛ(a0, µ). The potential u−→γ satisfies 0 6 u−→γ 6 1 a.e. in Ω, and
u−→γ ∈ C∞

(
Ω \ Γ(−→γ )

)
.

Proof. Let us first prove that 0 6 u−→γ 6 1 a.e. in Ω. To this purpose, we consider the Lipschitz
function f(t) := max(min(t, 1), 0), and the competitor v := f ◦ u−→γ . It is a classical fact that
v ∈ 1 + H1

0 (Ω), and |∇v| 6 |∇u−→γ | a.e. in Ω. Since u2−→γ belongs to W 1,1(Ω), we also have
f ◦ u2−→γ ∈W

1,1(Ω). Noticing that v2 6 f ◦ u2−→γ a.e. in Ω, we derive that

(v2)∗(x) 6
(
f ◦ u2−→γ

)∗
(x) = f

(
(u2−→γ )∗(x)

)
6 (u2−→γ )∗(x) for every x ∈ Ω \ (Sv2 ∪ Su2−→γ

) .

Consequently, (v2)∗ 6 (u2−→γ )∗ H1-a.e. in Ω, so that Bµ[−→γ ](v, v) 6 Bµ[−→γ ](u−→γ , u−→γ ).
From this discussion, we easily infer that Eµε (v,−→γ ) 6 Eµε (u−→γ ,

−→γ ) with strict inequality
if {v 6= u−→γ } has a non vanishing Lebesgue measure. Hence the conclusion follows from the
minimality of u−→γ .

Now we observe that u−→γ ∈ H1(Ω) ∩ L∞(Ω) satisfies

−ε2∆u−→γ =
1

4
(1− u−→γ ) in D ′

(
Ω \ Γ(−→γ )

)
.

From this equation and (2.8), we conclude that u−→γ ∈ C∞
(
Ω \ Γ(−→γ )

)
by means of the standard

elliptic regularity theory for bounded weak solutions (see e.g. [19]). �

Lemma 2.5. Let −→γ ∈ PΛ(a0, µ). At every x0 ∈ Ω \ Γ(−→γ ) satisfying dist(x0,Γ(−→γ )) > 12ε,
we have

0 6 1− u−→γ (x0) 6 exp

(
−3 dist(x0,Γ(−→γ ))

32ε

)
.

Proof. Set R := 3
4dist

(
x0,Γ(−→γ )

)
> 9ε. We consider the function v := 1− u−→γ which satisfies

0 6 v 6 1 and solves {
−4ε2∆v + v = 0 in B(x0, R) ∩ Ω ,

v = 0 on B(x0, R) ∩ ∂Ω .

Now we introduce the function

ω(x) := exp

(
|x− x0|2 −R2

8εR

)
.
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As in [6, Lemma 2], our choice of R implies that ω satisfies
−4ε2∆ω + ω > 0 in B(x0, R) ∩ Ω ,

ω = 1 on ∂B(x0, R) ∩ Ω ,

ω > 0 on B(x0, R) ∩ ∂Ω .

Then we infer from the maximum principle that v 6 ω inB(x0, R)∩Ω. Evaluating this inequal-
ity at x0 leads to the announced inequality. �

We now provide some pointwise estimates for the first and second derivatives of u−→γ . Useful-
ness of these explicit estimates will be revealed in the second part of our work [10].

Lemma 2.6. Let −→γ ∈ PΛ(a0, µ). At every x0 ∈ Ω \ Γ(−→γ ) satisfying dist(x0,Γ(−→γ )) > 13ε,
we have ∣∣∇u−→γ (x0)

∣∣ 6 Cη0

ε
exp

(
−dist(x0,Γ(−→γ ))

32ε

)
,

and ∣∣∇2u−→γ (x0)
∣∣ 6 Cη0

ε2
exp

(
−dist(x0,Γ(−→γ ))

32ε

)
,

for some constant Cη0
depending only on Ω and η0 := min

{
dist(z,Ω0) : z ∈ ∂Ω

}
> 0.

Proof. Step 1 (Interior estimates). We assume in this step thatB(x0, ε) ⊆ Ω. Define for x ∈ B1,
the function wε := 1− u−→γ (x0 + εx). Then, wε solves

−∆wε =
1

4
wε in B1 . (2.9)

By Lemma 2.5, we have for every x ∈ B1,

0 6 wε(x) 6 exp

(
−3 dist(x0 + εx,Γ(−→γ ))

32ε

)
6 C exp

(
−3 dist(x0,Γ(−→γ ))

32ε

)
.

Then we infer from (2.9) and [19, Theorem 3.9] that

|∇wε(x)| 6 C‖wε‖L∞(B1) 6 C exp

(
−3 dist(x0,Γ(−→γ ))

32ε

)
∀x ∈ B1/2 . (2.10)

By linearity of the equation, the gradient vector ∇wε satisfies −∆(∇wε) = 1/4∇wε in B1.
Applying again [19, Theorem 3.9] to each component of ∇wε in the smaller ball B1/2, we
deduce from (2.10) that

|∇2wε(x)| 6 C‖∇wε‖L∞(B1/2) 6 C exp

(
−3 dist(x0,Γ(−→γ ))

32ε

)
∀x ∈ B1/4 .

Noticing that |∇wε(0)| = ε|∇u(x0)| and |∇2wε(0)| = ε2|∇2u(x0)|, the conclusion follows.

Step 2 (Boundary estimates). Let Ω1 ⊆ Ω be a smooth and convex open set such that Ω0 ⊆ Ω1

and min{dist(z, ∂Ω ∪ ∂Ω0) : z ∈ ∂Ω1} > η0/4. Consider the smooth open set U := Ω \ Ω1,
and the function v : U → R given by v := 1− u−→γ . Then v satisfies −∆v = (1/4ε2)v in U , and
v = 0 on ∂Ω. On the other hand, Lemma 2.5 and Step 1 imply that

1

ε2
‖v‖L∞(U) + ‖v‖C1,1(∂Ω1) 6 Cη0

exp
(
− η0

64ε

)
.

From [19, Theorem 8.33] we deduce that
1

ε2
‖v‖C1(U) 6 Cη0

exp
(
− η0

128ε

)
.

Setting Vη0
:= {x ∈ Ω : dist(x, ∂Ω) < η0/5}, [19, Theorem 4.12] now implies

‖v‖C2(Vη0
) 6 Cη0

exp
(
− η0

128ε

)
.

This last estimate leads to the conclusion since dist(x0,Γ(−→γ )) > η0/4 for every x0 ∈ Vη0
. �
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Lemma 2.7. Let −→γ ∈ PΛ(a0, µ). At every x0 ∈ Ω \ Γ(−→γ ) satisfying dist(x0,Γ(−→γ )) 6 13ε,
we have ∣∣∇u−→γ (x0)

∣∣ 6 Cη0

dist(x0,Γ(−→γ ))
,

and ∣∣∇2u−→γ (x0)
∣∣ 6 Cη0

dist2(x0,Γ(−→γ ))
,

for some constant Cη0
depending only on Ω and η0 (given in Lemma 2.6).

Proof. By Lemma 2.6, we can assume that ε < η0/26. Then dist(x0, ∂Ω) > η0/2, and setting
R := dist(x0,Γ(−→γ )) 6 13ε, we have B(x0, R) ⊆ Ω.

Since −∆u−→γ = 1/(4ε2)(1 − u−→γ ) in B(x0, R) and 0 6 u−→γ 6 1, we deduce from [6,
Lemma A.1] that for x ∈ B(x0, R/2),

|∇u−→γ (x)|2 6 C
(‖1− u−→γ ‖L∞(B(x0,R))

ε2
+
‖u−→γ ‖L∞(B(x0,R))

(R− |x− x0|)2

)
‖u−→γ ‖L∞(B(x0,R)) 6

C

R2
,

for some universal constant C. Now, the gradient vector field ∇u−→γ satisfies the equation

−∆(∇u−→γ ) = − 1

4ε2
∇u−→γ in B(x0, R) ,

and ‖∇u−→γ ‖L∞(B(x0,R/2)) 6 CR−1. Applying again [6, Lemma A.1] in B(x0, R/2) to each
component of ∇u−→γ leads to

|∇2u−→γ (x0)|2 6 C
(

1

ε2
+

1

R2

)
‖∇u−→γ ‖2L∞(B(x0,R/2)) 6

C

R4
,

and the proof is complete. �

Lemma 2.8. Let −→γ ∈ P(a0, µ). For every ρ > 0, there exists a finite covering of Γ(−→γ ) by
closed balls {Bj(xj , ρ)}j∈J with xj ∈ Γ(−→γ ) such that

Card(J) 6 max
{

min
{

5H1(Γ(−→γ ))ρ−1, 25diam(Γ(−→γ ))2ρ−2
}
, 1
}
.

In particular,

L2
({
x ∈ R2 : dist(x,Γ(−→γ )) 6 ρ

})
6 max

{
20πH1(Γ(−→γ ))ρ, 4πρ2

}
.

Proof. If ρ > diam(Γ(−→γ )), then we can cover Γ(−→γ ) with the single ball B(a0, ρ), and the
announced estimates become trivial. Hence we can assume that ρ < diam(Γ(−→γ )). By compact-
ness of Γ(−→γ ), we can cover Γ(−→γ ) with a finite collection of closed balls {B(xj , ρ/5)}j∈J̃ such

that xj ∈ Γ(−→γ ). By the 5r-covering theorem (see for instance [24]), we can find a subset J ⊆ J̃
such that B(xi, ρ/5) ∩B(xj , ρ/5) = ∅ if i 6= j with i, j ∈ J , and

Γ(−→γ ) ⊆
⋃
j∈J

B(xj , ρ) .

In particular, ⋃
j∈J

B(xj , ρ/5) ⊆
{
x ∈ R2 : dist(x,Γ(−→γ )) 6 ρ

}
⊆
⋃
j∈J

B(xj , 2ρ) ,

so that
π

25
ρ2 Card(J) 6 L2

({
x ∈ R2 : dist(x,Γ(−→γ )) 6 ρ

})
6 4πρ2 Card(J) .

From the first inequality, we easily deduce that Card(J) 6 25diam(Γ(−→γ ))2ρ−2.
Next we claim that for each j ∈ J ,

H1(Γ(−→γ ) ∩B(xj , ρ/5)) > ρ/5 . (2.11)
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Note that this estimate leads to the announced result since

H1(Γ(−→γ )) >
∑
j∈J
H1(Γ(−→γ ) ∩B(xj , ρ/5)) > Card(J)ρ/5 .

To prove (2.11), we argue as follows. Since ρ < diam(Γ(−→γ )), there exists a point yj ∈ Γ(−→γ ) \
B(xj , ρ/5). On the other hand, the set Γ(−→γ ) is arcwise connected since γi(0) = a0 for each
i ∈ {1, . . . , N}. Hence, we can find a continuous path ` : [0, 1] → Γ(−→γ ) such that `(0) = xj
and `(1) = yj . Set

t∗ := sup
{
t : t ∈ [0, 1] and `(s) ∈ B(xj , ρ/5) for every s ∈ [0, t]

}
.

By continuity of `, we have `(t∗) ∈ ∂B(xj , ρ/5). Consequently,

H1(Γ(−→γ ) ∩B(xj , ρ/5)) > H1
(
`([0, t∗))

)
> |`(t∗)− `(0)| = ρ/5 ,

which completes the proof. �

We are now ready to prove the following higher integrability estimate, with explicit control
with respect to the parameters. Here, the main point is the uniformity of the estimate with respect
to µ/‖µ‖. The explicit dependence with respect to ε will be (strongly) used in the second part of
our work [10].

Proposition 2.9. If −→γ ∈PΛ(a0, µ), then u−→γ ∈W 1,p(Ω) for every p <∞, and for p > 2,

‖∇u−→γ ‖Lp(Ω)

6 Cp,η0
max

{
min

{
H1(Γ(−→γ )),

1

ε| log ε|
}
, ε| log ε|

}1/p
(
| log ε|1+1/p

ε1−1/p

+
Λ‖µ‖| log ε|1/p

λεε1−1/p

)
,

for some constant Cp,η0
depending only on p, Ω, and η0 (given in Lemma 2.6).

Proof. Step 1. Replacing λε by λε/‖µ‖ and µ by µ/‖µ‖, we may assume that ‖µ‖ = 1. Without
loss of generality, we can also assume that ε| log ε| < η0/256. Let us fix some point x0 ∈ Ω0

and 0 < ρ < η0/4. Let Tρ ∈ D ′(R2) be the distribution defined by

〈Tρ, ϕ〉 :=

N∑
i=1

βi

ˆ
Γ(γi)

u−→γ ϕρ dH1 = Bµ[−→γ ](u−→γ , ϕρ) ,

where ϕρ(x) := ϕ((x− x0)/ρ) and ϕ ∈ C∞c (R2).
By Lemma 2.4 and (2.7), for every ϕ ∈ C∞c (B2) we have

∣∣〈Tρ, ϕ〉∣∣ 6 N∑
i=1

βi

ˆ
Γ(γi)

|ϕρ| dH1 6 CΛ

ˆ
B(x0,2ρ)

|∇ϕρ| dx = CΛρ

ˆ
B(0,2)

|∇ϕ| dx .

Then we infer from Hölder’s inequality that∣∣〈Tρ, ϕ〉∣∣ 6 CΛρ‖∇ϕ‖Lq(B2) ∀ϕ ∈ C∞c (B2) ,∀ 1 6 q 6 2 .

Therefore Tρ ∈W−1,p(B2) with

‖Tρ‖W−1,p(B2) 6 CΛρ

for every 2 6 p <∞.
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Step 2. Let us now fix the exponent 2 < p < ∞. By our choice of ρ, we have B(x0, 2ρ) ⊆ Ω.
As a consequence of Step 1, there exists a vector field f ∈ Lp(B2;R2) such that div f = Tρ in
D ′(B2) and satisfying

C−1
p ‖Tρ‖W−1,p(B2) 6 ‖f‖Lp(B2) 6 Cp‖Tρ‖W−1,p(B2)

(see e.g. [1, Sections 3.7 to 3.14]). By classical elliptic theory (see e.g. [19, Theorem 9.15 and
Lemma 9.17], there exists a (unique) solution ξ ∈W 2,p(B2) ∩W 1,p

0 (B2) of{
−∆ξ = f in B2 ,

ξ = 0 on ∂B2 ,

satisfying the estimate
‖ξ‖W 2,p(B2) 6 Cp‖f‖Lp(B2) 6 CpΛρ ,

thanks to Step 1.
Now we define vρ := div ξ ∈W 1,p(B2) which satisfies

−∆vρ = Tρ in D ′(B2) ,

together with the estimate
‖vρ‖W 1,p(B2) 6 CpΛρ .

Notice that, by the Sobolev embedding Theorem, vρ ∈ L∞(B2) and

‖vρ‖L∞(B2) 6 Cp‖vρ‖W 1,p(B2) 6 CpΛρ . (2.12)

Step 3. Next we define for x ∈ B2, uρ(x) := u−→γ (x0 + ρx). Notice that

−∆uρ =
ρ2

4ε2
(1− uρ)−

1

λεε
Tρ in D ′(B2) .

Indeed, for ϕ ∈ C∞c (B2) we haveˆ
B2

∇uρ∇ϕdx =

ˆ
B(x0,2ρ)

∇u−→γ∇ϕρ dx

=
1

4ε2

ˆ
B(x0,2ρ)

(1− u−→γ )ϕρ dx−
1

λεε
B[−→γ ](u−→γ , ϕρ)

=
ρ2

4ε2

ˆ
B2

(1− uρ)ϕdx−
1

λεε
〈Tρ, ϕ〉 .

Consider the function wρ := uρ + 1
λεε

vρ ∈ H1(B2) ∩ L∞(B2) which (therefore) satisfies

−∆wρ =
ρ2

4ε2
(1− uρ) in B2 .

By [19, Corollary 8.36], wρ ∈ C1,α
loc (B2) for some α > 0, and

‖∇wρ‖L∞(B1) 6 C

(
ρ2

ε2
‖1− uρ‖L∞(B2) + ‖wρ‖L∞(B2)

)
6 Cp

(
ρ2

ε2
+ 1 +

Λρ

λεε

)
,

in view of (2.12) and the fact that 0 6 uρ 6 1. Going back to uρ = wρ − 1
λεε

vρ, we deduce that
uρ ∈W 1,p(B1) with the estimate

‖∇uρ‖Lp(B1) 6 ‖∇wρ‖L∞(B1) +
‖∇vρ‖Lp(B1)

λεε
6 Cp

(
ρ2

ε2
+ 1 +

Λρ

λεε

)
. (2.13)

Scaling back we finally obtain

‖∇u−→γ ‖
p
Lp(B(x0,ρ))

6 Cp

(
ρp+2

ε2p
+

1

ρp−2
+

Λpρ2

λpεεp

)
. (2.14)
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Step 4. Applying Lemma 2.8, we can cover Γ(−→γ ) by finitely many balls {B(xj , ρ/2)}j∈J with
xj ∈ Γ(−→γ ) and

ρCard(J) 6 C max
{

min{H1(Γ(−→γ )), ρ−1}, ρ
}
.

Then,

Vρ/2 := {x ∈ Ω : dist(x,Γ(−→γ )) < ρ/2} ⊆
⋃
j∈J

B(xj , ρ) ,

and we deduce from (2.14) that
ˆ
Vρ/2

|∇u−→γ |p dx 6
∑
j∈J

ˆ
B(xj ,ρ)

|∇u|p dx

6 Cp max
{

min
{
H1(Γ(−→γ )), ρ−1

}
, ρ
}(ρp+1

ε2p
+

1

ρp−3
+

Λpρ

λpεεp

)
.

In particular,

‖∇u−→γ ‖Lp(Vρ/2)

6 Cp max
{

min{H1(Γ(−→γ )), ρ−1}, ρ
}1/p

(
ρ1+1/p

ε2
+

1

ρ1−3/p
+

Λρ1/p

λεε

)
. (2.15)

Observe that, using the gradient estimate in Lemma 2.6, the choice ρ = 64ε| log ε| yields∣∣∇u−→γ ∣∣ 6 Cη0
in Ω \ V32ε| log ε|. Plugging this value of ρ in (2.15), we deduce that

‖∇u−→γ ‖Lp(V32ε| log ε|)

6 Cp max
{

min
{
H1(Γ(−→γ )),

1

ε| log ε|
}
, ε| log ε|

}1/p
(
| log ε|1+1/p

ε1−1/p

+
Λ| log ε|1/p

λεε1−1/p

)
,

and the conclusion follows. �

Proposition 2.10. If −→γ ∈PΛ(a0, µ), then u−→γ ∈ C0,α(Ω) for every 0 < α < 1, and

‖u−→γ ‖C0,α(Ω) 6 Cα,η0

(1 + Λ‖µ‖λ−1
ε )

εα
,

for some constant Cα,η0
depending only on α, Ω, and η0 (given in Lemma 2.6).

Proof. Note that it is enough to prove the announced estimate when ε is small; thus we can
assume that 13ε < η0/4. Recall that, upon replacing λε by λε/‖µ‖ and µ by µ/‖µ‖, we can
also assume that ‖µ‖ = 1. Then we fix some distinct points x, y ∈ Ω, and we set x0 := (x+y)/2.

If |x− y| > ε, then we have

|u−→γ (x)− u−→γ (y)|
|x− y|α

6
2

εα
,

since 0 6 u−→γ 6 1.
Now we assume that |x − y| < ε. If dist(x0, ∂Ω) 6 η0/2, then dist(z,Γ(−→γ )) > η0/4 for

every z ∈ B(x0, ε), and the conclusion follows from Lemma 2.6. If dist(x0, ∂Ω) > η0/2, then
B(x0, ε) ⊆ Ω. Going back to estimate (2.13) in the previous proof, we deduce that for ρ = ε

and p = 2/(1− α),

‖∇uε‖Lp(B1) 6 Cα

(
1 +

Λ

λε

)
.
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By the Sobolev embedding Theorem, the former estimate yields ‖uε‖C0,α(B(0,1)) 6 Cα(1 +

Λ/λε). Scaling back, we conclude that

|u−→γ (x)− u−→γ (y)|
|x− y|α

6 Cα
(1 + Λλ−1

ε )

εα
,

and the proof is complete. �

Remark 2.11. The regularity estimates in Proposition 2.9 and Proposition 2.10 are optimal in
the sense that ∇u−→γ 6∈ L∞(Ω) in general. To illustrate this fact, let us consider the simple case
where N = 1, a0 = 0, a1 = τ for some τ ∈ S1, and Γ(−→γ ) = S := [0, τ ] (the straight line
segment). From the Euler-Lagrange equation (2.8) and the continuity of u−→γ , we have

−∆u−→γ =
1

4ε2
(1− u−→γ )− β1

λεε
u−→γH1 S in D ′(Ω) .

By elliptic regularity, u−→γ has essentially the regularity of the solution of the Poisson equation

−∆v∗ = −u−→γH1 S in D ′(R2) ,

given by the convolution of the measure−u−→γH1 S with the fundamental solution of the Lapla-
cian, i.e.,

v∗(x) :=
1

2π

ˆ
S

log(|x− y|)u−→γ (y) dH1
y =

1

2π

ˆ 1

0

log(|x− tτ |)u−→γ (tτ) dt .

Differentiating this formula, we obtain

∇v∗(x) =
1

2π

ˆ 1

0

(x− tτ)

|x− tτ |2
u−→γ (tτ) dt for every x ∈ R2 \ S .

In particular,

τ · ∇v∗(sτ) =
1

2π
log
(
s/(1− s)

)
u−→γ (sτ)− 1

2π

ˆ 1

0

u−→γ (sτ)− u−→γ (tτ)

s− t
dt for s > 1 .

In view of Proposition 2.10, we have for every α ∈ (0, 1),

|∇v∗(sτ)| > 1

2π
| log(s− 1)|u−→γ (sτ)− Cα for s > 1 ,

where Cα is a constant independent of s. Therefore |∇v∗| cannot be essentially bounded near
the point τ whenever u−→γ (τ) 6= 0. Similarly, |∇v∗| is not bounded near 0 whenever u−→γ (0) 6= 0.
These last conditions are ensured for β1 << 1. Indeed, using Proposition 2.10, one may easily
check that u−→γ → 1 uniformly in Ω as β1 → 0 (with ε fixed).

2.3. Existence and regularity of minimizing pairs. In this subsection, we move on the ex-
istence problem for minimizing pairs of the functional Eµε . Regularity of minimizers will es-
sentially follow from our considerations about the problem with prescribed curves. In all our
statements, we shall use the upper Alhfors threshold

Λε := 2 +
3

δε
. (2.16)

Our main results are the following.

Theorem 2.12. Assume that µ is of the form (2.1). The functional Eµε admits at least one
minimizing pair (uε,

−→γ ε) in (1 +H1
0 (Ω))×P(a0, µ). In addition, for any such minimizer, −→γ ε

belongs to PΛε(a0, µ), and uε is the potential of −→γ ε.

A byproduct of this theorem is the following existence and regularity result for our original
functional Fµε in case of a measure µ with finite support.
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Corollary 2.13. Assume that µ is of the form (2.1). The functional Fµε admits at least one
minimizer uε in 1 + H1

0 (Ω) ∩ L∞(Ω). In addition, any such minimizer belongs to W 1,p(Ω)

for every p < ∞ (in particular, uε ∈ C0,α(Ω) for every α ∈ (0, 1)). Moreover, there exists
−→γ ε ∈P(a0, µ) such that (uε,

−→γ ε) is a minimizing pair of Eµε in (1 +H1
0 (Ω))×P(a0, µ).

In the same way, we have an analogous result concerning the auxiliary functional Gµε defined
in (2.4).

Corollary 2.14. Assume that µ is of the form (2.1). The functional Gµε admits at least one mini-
mizer−→γ ε = (γε1 , . . . , γ

ε
N ) ∈P(a0, µ). In addition, any such minimizer belongs to PΛε(a0, µ),

and (u−→γ ε ,
−→γ ε) is a minimizing pair of Eµε in (1 +H1

0 (Ω))×P(a0, µ).

Remark 2.15. Concerning the regularity of Γ(−→γ ε), we can invoke the results of [16] and the
Hölder continuity of uε to show that each Γ(γεi ) is in fact a C1,α curve for every α ∈ (0, 1/2)

in a neighborhood of every point in Ω \ {a0, . . . , aN} (assuming eventually that ∂Ω0 is smooth).
One could use this further information to get improved (partial) regularity on uε, but we do not
pursue this issue here. We also believe that the curves admit a tangent line at the ai’s, and that
the C1,α regularity holds true up to each ai. This latter fact does not derive directly from the
statements of [16], but can certainly be proved using the material developed there.

Remark 2.16. In all the statements above, we believe the regularity of uε to be optimal in the
sense that uε is not Lipschitz continuous. More precisely, Lipschitz continuity should fail near
the ai’s. In view of Remarks 2.11 & 2.15, the question boils down to determine whether or not
uε(ai) vanishes or not. Up to some trivial situations, we believe that uε(ai) 6= 0, and that |∇uε|
actually behaves like | log(|x− ai|)| in the neighborhood of ai (as in Remark 2.15).

Theorem 2.12, Corollary 2.13, and Corollary 2.14 follow from the regularity estimates ob-
tained in the previous subsection together with a set of lemmas of independent interest. Our first
fundamental step is a replacement procedure allowing to show the upper Alhfors regularity of
the curves.

Lemma 2.17. Let u ∈ 1 + H1
0 (Ω) ∩ L∞(Ω) be such that ‖u‖L∞(Ω) 6 1, and let −→γ =

(γ1, . . . , γN ) ∈P(a0, µ). If for some i0 ∈ {1, . . . , N}, x ∈ Γ(γi0), and r > 0,

H1
(
Γ(γi0) ∩B(x, r)

)
> Λεr , (2.17)

where Λε is defined in (2.16), then there exists −→γ ] = (γ1, . . . , γi0−1, γ
]
i0
, γi0+1, . . . , γN ) ∈

P(a0, µ) such that

Eµε (u,−→γ ]) 6 E
µ
ε (u,−→γ )− βi0r

λε
.

Proof. Assume that (2.17) holds. We shall suitably modify Γ(γi0) in B(x, r) to produce the
competitor −→γ ]. We proceed as follows. We first define

tin :=

{
sup

{
t ∈ [0, 1] : γi0(s) 6∈ B(x, r) for all s ∈ [0, t)

}
if a0 6∈ B(x, r) ,

0 otherwise ,

and

tout :=

{
inf
{
t ∈ [0, 1] : γi0(s) 6∈ B(x, r) for all s ∈ (t, 1]

}
if ai0 6∈ B(x, r) ,

1 otherwise .

Then we set a := γi0(tin) and b := γi0(tout). We finally define

γ]i0(t) :=


γi0(t) if t ∈ [0, tin] ∪ [tout, 1] ,

t− tin
tout − tin

b+
tout − t
tout − tin

a if t ∈ [tin, tout] .
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Since Ω0 is convex, we have

Γ(γ]i0) ⊆
(
Γ(γi0) \B(x, r)

)
∪ [a, b] ⊆ Ω0 .

Now we estimate
βi0
λε

ˆ
Γ(γ]i0

)∩B(x,r)

δε + u2 dH1 6
2βi0
λε

(1 + δε)r ,

and
βi0
λε

ˆ
Γ(γi0 )∩B(x,r)

δε + u2 dH1 >
βi0δε
λε
H1
(
Γ(γi0) ∩B(x, r)

)
>
βi0
λε

(3 + 2δε)r .

Since
(
Γ(γ]i0) \B(x, r)

)
⊆
(
Γ(γi0) \B(x, r)

)
, we conclude that

Eµε (u,−→γ )− Eµε (u,−→γ ]) >
βi0
λε

(3 + 2δε)r −
2βi0
λε

(1 + δε)r =
βi0r

λε
,

and the proof is complete. �

The following lemma provides the existence of a minimizer −→γ ] in PΛε(a0, µ) associated to
some fixed smooth function u.

Lemma 2.18. Let u ∈ 1 + H1
0 (Ω) ∩ C1(Ω) be such that 0 6 u 6 1. There exists −→γ ] =

(γ]1, . . . , γ
]
N ) ∈PΛε(a0, µ) satisfying

Eµε (u,−→γ ]) 6 E
µ
ε (u,−→γ ) ∀−→γ ∈P(a0, µ) , (2.18)

and such that each γ]i : [0, 1]→ Ω0 is injective if ai 6= a0, and constant if ai = a0.

Proof. If ai = a0, we choose γ]i to be the constant map equal to ai. Then, for each ai 6= a0, we
consider the minimization problem

min
P(a0,ai)

ˆ 1

0

(
δε + u2(γ(t))

)
|γ′(t)| dt .

By [14, Theorem 5.22] this problem admits a solution γ]i satisfying(
δε + u2(γ]i (t))

)
|(γ]i )

′(t)| = hi a.e. in (0, 1) ,

for some constant hi > 0. We claim that γ]i is injective. Indeed, if γ]i (t1) = γ]i (t2) for some
t1 < t2, then we can consider the competitor γ̃]i ∈P(a0, ai) defined by

γ̃]i (t)


γ]i (t) for t ∈ [0, t1] ,

γ]i (t1) for t ∈ [t1, t2] ,

γ]i (t1) for t ∈ [t2, 1] .

Comparing energies, we have
ˆ 1

0

(
δε + u2(γ̃]i (t))

)
|(γ̃]i )

′(t)| dt−
ˆ 1

0

(
δε + u2(γ]i (t))

)
|(γ]i )

′(t)| dt = −hi(t2 − t2) < 0 ,

which contradicts the minimality of γ]i .
Now we set−→γ ] = (γ]1, . . . , γ

]
N ), and we claim that (2.18) holds. Clearly, it is enough to show

that for each i ∈ {1, . . . , N},ˆ
Γ(γ]i )

(δε + u2) dH1 6
ˆ

Γ(γ)

(δε + u2) dH1 ∀γ ∈P(a0, ai) . (2.19)

Obviously, this inequality holds if ai = a0 since the left hand side vanishes. Hence we may
assume that ai 6= a0. Let us then consider an arbitrary γ ∈P(a0, ai). SinceH1(Γ(γ)) <∞, [5,
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Theorem 4.4.7] tells us that there exists an injective curve γ̃ ∈P(a0, ai) such that Γ(γ̃) ⊆ Γ(γ).
Now we infer from the area formula (see e.g. [2, Theorem 2.71]) and the minimality of γ]i that

ˆ
Γ(γ]i )

(δε + u2) dH1 =

ˆ 1

0

(
δε + u2(γ]i (t))

)
|(γ]i )

′(t)| dt

6
ˆ 1

0

(
δε + u2(γ̃(t))

)
|γ̃′(t)| dt =

ˆ
Γ(γ̃)

(δε + u2) dH1 6
ˆ

Γ(γ)

(δε + u2) dH1 ,

and (2.19) is proved.
Finally, we notice that −→γ ] ∈PΛε(a0, µ) as a direct consequence of (2.18) and Lemma 2.17,

and the proof is complete. �

The next lemma will allow us to replace an arbitrary pair (u,−→γ ) by a regular one, with con-
trolled energy.

Lemma 2.19. For every σ > 0, u ∈ 1 + H1
0 (Ω), and −→γ ∈ P(a0, µ), there exist uσ ∈ 1 +

H1
0 (Ω) ∩ C1(Ω) and −→γ σ ∈PΛε(a0, µ) such that 0 6 uσ 6 1 and

Eµε (uσ,
−→γ σ) 6 Eµε (u,−→γ ) + σ .

Proof. We first claim that there exists ũ ∈ 1 +H1
0 (Ω) ∩ C0(Ω) such that 0 6 ũ 6 1 and

Eµε (ũ,−→γ ) 6 Eµε (u,−→γ ) + σ .

Without loss of generality, we may assume that Eµε (u,−→γ ) < ∞. Moreover, by the truncation
argument in the proof of Lemma 2.4, we can reduce the question to the case 0 6 u 6 1. Then
write u = 1 − v with v ∈ H1

0 (Ω). Since C∞c (Ω) is dense in H1
0 (Ω), we can find a sequence

(vn)n∈N ⊆ C∞c (Ω) such that vn → v strongly in H1
0 (Ω) as n→∞. Since 0 6 v 6 1, we may

even assume that 0 6 vn 6 1. By [13, Theorem 4.1.2] we can find a (not relabeled) subsequence
such that vn → v quasi-everywhere in Ω (i.e., vn → v in the pointwise sense away from a set of
vanishingH1-capacity). Since a set of vanishingH1-capacity isH1-null, we deduce that vn → v

H1-a.e. on Γ(−→γ ). Then, by the dominated convergence, we have for each i ∈ {1, . . . , N},ˆ
Γ(γi)

δε + (1− vn)2 dH1 →
ˆ

Γ(γi)

δε + (1− v)2 dH1 .

Setting un := 1 − vn, we conclude that for n large enough, Eµε (un,
−→γ ) 6 Eµε (u,−→γ ) + σ, and

the claim is proved.
Finally, we apply Lemma 2.18 to find −→γ ] ∈PΛε(a0, µ) such that

Eµε (un,
−→γ ]) 6 E

µ
ε (un,

−→γ ) 6 Eµε (u,−→γ ) + σ ,

and the announced result is proved for uσ := un and −→γ σ := −→γ ]. �

Proof of Theorem 2.12. Step 1 (existence). Let {(un,−→γ n)}n∈N be a minimizing sequence for
Eε over (1 +H1

0 (Ω))×P(a0, µ), i.e.,

lim
n→∞

Eµε (un,
−→γ n) = inf

(1+H1
0 (Ω))×P(a0,µ)

Eµε .

By Lemma 2.19, there is no loss of generality assuming that (un,
−→γ n) ∈ C1(Ω)×PΛε(a0, µ)

and 0 6 un 6 1. In addition, by Lemma 2.18 we can even assume that, setting −→γ n =

(γn1 , . . . , γ
n
N ), all γni ’s are injective curves for ai 6= a0, and constant for ai = a0. Then we

consider the sequence {(u−→γ n ,
−→γ n)}n∈N, where u−→γ n is the potential of −→γ n, i.e., the minimizer

of Eµε (·,−→γ n) over 1 + H1
0 (Ω). Obviously, {(u−→γ n ,

−→γ n)}n∈N is still a minimizing sequence by
minimality of u−→γ n .
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By Proposition 2.10,

‖u−→γ n‖C0,α(Ω) 6 Cα,η0
(ε) ∀α ∈ (0, 1) ,

for some constant Cα,η0
(ε) independent of n. By the Arzelà-Ascoli Theorem, we can extract a

(not relabeled) subsequence such that u−→γ n → uε uniformly in Ω and weakly in H1(Ω) for some
function uε ∈ 1 +H1

0 (Ω) ∩ C0,α(Ω) for every α ∈ (0, 1).
On the other hand, the energy being invariant under reparametrization, we can assume that

each γni is a constant speed parametrization of its image Γ(γni ). In particular, each γni is a
H1(Γ(γni ))-Lipschitz curve. Since

H1(Γ(γni )) 6
λε
δε
Eµε (u−→γ n ,

−→γ n) 6 C(ε) ,

we infer that each sequence {γni }n∈N is equi-Lipschitz. Therefore, we can extract a further
subsequence such that, for each i ∈ {1, . . . , N}, γni → γεi uniformly on [0, 1] and weakly* in
W 1,∞(0, 1) for some γεi ∈P(a0, ai). Then we set −→γ ε := (γε1 , . . . , γ

ε
N ) ∈P(a0, µ).

Let us now fix an arbitrary κ ∈ (0, δε/2). By the uniform convergence of u−→γ n towards uε,
we have u2

ε 6 u2−→γ n + κ in Ω for n large enough. From the injectivity of each γni (for ai 6= a0)
and the area formula, we derive that for ai 6= a0 and n large,

ˆ
Γ(γni )

(δε + u2−→γ n) dH1 >
ˆ

Γ(γni )

(δε − κ+ u2
ε) dH1

=

ˆ 1

0

(
δε − κ+ u2

ε(γ
n
i (t))

)
|(γni )′(t)| dt . (2.20)

Since γni
∗
⇀γεi weakly* in W 1,∞((0, 1)), the lower semicontinuity result in [23, Theorem 3.8]

tells us that

lim inf
n→∞

ˆ 1

0

(
δε − κ+ u2

ε(γ
n
i (t))

)
|(γni )′(t)| dt >

ˆ 1

0

(
δε − κ+ u2

ε(γ
ε
i (t))

)
|(γεi )′(t)| dt . (2.21)

By the area formula again,ˆ 1

0

(
δε − κ+ u2

ε(γ
ε
i (t))

)
|(γεi )′(t)| dt >

ˆ
Γ(γεi )

(δε − κ+ u2
ε) dH1 . (2.22)

Gathering (2.20), (2.21), (2.22), and letting κ→ 0, we deduce that

lim inf
n→∞

ˆ
Γ(γni )

(δε + u2−→γ n) dH1 >
ˆ

Γ(γεi )

(δε + u2
ε) dH1 ∀i ∈ {1, . . . , N} .

(Note that for ai = a0, this inequality is trivial since γni is the constant map equal to a0.)
Since the diffuse part of the energy is clearly lower semicontinuous with respect to weak H1-
convergence, we conclude that

Eµε (uε,
−→γ ε) 6 lim

n→∞
Eµε (un,

−→γ n) ,

and thus (uε,
−→γ ε) is a minimizer of Eµε .

Step 2 (regularity). Now we consider an arbitrary minimizer (uε,
−→γ ε) of Eµε in (1 +H1

0 (Ω))×
P(a0, µ). Arguing as in the proof of Lemma 2.4, we obtain 0 6 uε 6 1 by minimality of uε
for Eµε (·,−→γ ε). In turn, the minimality of −→γ ε for Eµε (uε, ·) implies that −→γ ε ∈ PΛε(a0, µ) by
Lemma 2.17. Now Theorem 2.3 shows that uε is the potential of −→γ ε. �

Proof of Corollary 2.13. Existence of a minimizer of Fµε in 1 +H1
0 (Ω) ∩ L∞(Ω) is ensured by

Theorem 2.12 since inf Fµε = minEµε by (2.3). Let us now consider an arbitrary minimizer
uε of Fµε in 1 + H1

0 (Ω) ∩ L∞(Ω). We first claim that 0 6 uε 6 1 a.e. in Ω. Indeed, setting
v := max(min(uε, 1), 0) ∈ 1 + H1

0 (Ω), we can argue as in the proof of Lemma 2.4 to show
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Eµε (v,−→γ ) 6 Eµε (uε,
−→γ ) for every −→γ ∈ P(a0, µ). Hence Fµε (v) 6 Fµε (uε) by (2.3), the in-

equality being strict whenever {v 6= uε} has a non vanishing Lebesgue measure. The minimality
of uε then implies that v = uε a.e. in Ω.

Next, by definition of Fµε , there exists a sequence {−→γ n}n∈N ⊆P(a0, µ) such that

Eµε (uε,
−→γ n) 6 Fµε (uε) + 2−n−1 ∀n ∈ N .

On the other hand, we can argue as in the proof of Lemma 2.19 to find, for each n ∈ N, a function
un ∈ (1 +H1

0 (Ω)) ∩ C1(Ω) such that 0 6 un 6 1 in Ω, ‖un − uε‖H1(Ω) 6 2−n, and

Eµε (un,
−→γ n) 6 Eµε (uε,

−→γ n) + 2−n−1 6 Fµε (uε) + 2−n .

Applying Lemma 2.18 to each un, we find (injective or constant) curves −→γ ],n ∈PΛε(a0, µ) of
constant speed such that

Eµε (un,
−→γ ],n) 6 Eµε (un,

−→γ n) 6 Fµε (uε) + 2−n .

Now we consider the potential u−→γ ],n of −→γ ],n. Then,

Eµε (u−→γ ],n ,
−→γ ],n) 6 Eµε (un,

−→γ ],n) 6 Fµε (uε) + 2−n . (2.23)

Setting wn := un − u−→γ ],n ∈ H
1
0 (Ω), we infer from the equation (2.8) satisfied by u−→γ ],n that

2−n > Eµε (un,
−→γ ],n)− Eµε (u−→γ ],n ,

−→γ ],n) = ε

ˆ
Ω

|∇wn|2 dx+
1

4ε

ˆ
Ω

|wn|2 dx

+
1

λε
Bµ[−→γ ],n](wn, wn) .

Consequently, ‖wn‖H1(Ω) 6 Cε2
−n/2, so that ‖uε − u−→γ ],n‖H1(Ω) 6 Cε2

−n/2. On the other
hand, the sequence {u−→γ ],n} remains bounded in W 1,p(Ω) for each p < ∞ by Proposition 2.9.
Since u−→γ ],n → uε in H1(Ω), we conclude that uε ∈ W 1,p(Ω) for each p < ∞. In particular,
uε ∈ C0,α(Ω) for every α ∈ (0, 1), and u−→γ ],n → uε uniformly in Ω.

To conclude, we proceed as in the proof of Theorem 2.12, Step 1: for a (not relabeled) subse-
quence, −→γ ],n

∗
⇀−→γ ε weakly* in W 1,∞(0, 1) for some −→γ ε ∈P(a0, µ), and

lim inf
n→∞

Eµε (u−→γ ],n ,
−→γ ],n) > Eµε (uε,

−→γ ε) > F
µ
ε (uε) .

In view of (2.23), we have Fµε (uε) = Eµε (uε,
−→γ ε), which shows that (uε,

−→γ ε) is a minimizer of
Eµε in (1 +H1

0 (Ω))×P(a0, µ). �

Proof of Corollary 2.14. Existence of a minimizer of Gµε is ensured by Theorem 2.12 since
inf Gµε = minEµε . Let us now consider an arbitrary minimizer −→γ ε in P(a0, µ). We first claim
that −→γ ε = (γε1 , . . . , γ

ε
N ) ∈ P2Λε(a0, µ). Assume by contradiction that it does not belongs to

P2Λε(a0, µ). Then we can find i0 ∈ {1, . . . , N}, x0 ∈ Γ(γεi0), and r > 0 such that

H1(Γ(γεi0) ∩B(x0, r)) > Λεr .

By the very definition of Gµε , we can find ũ ∈ 1 +H1
0 (Ω) such that

Eµε (ũ,−→γ ε) 6 G
µ
ε (−→γ ε) +

βi0r

2λε
.

Arguing as in the proof of Lemma 2.4, we may assume that 0 6 ũ 6 1. Then, by Lemma 2.17
there exists −→γ ] ∈P(a0, µ) such that

Gµε (−→γ ]) 6 E
µ
ε (ũ,−→γ ]) 6 E

µ
ε (ũ,−→γ ε)−

βi0r

λε
6 Gµε (−→γ ε)−

βi0r

2λε
< Gµε (−→γ ε) ,

which contradicts the minimality of −→γ ε.
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Since −→γ ε ∈P2Λε(a0, µ), we conclude that Gµ(−→γ ε) = Eµε (u−→γ ε ,
−→γ ε), so that (u−→γ ε ,

−→γ ε) is
minimizing Eµε in (1 +H1

0 (Ω))×P(a0, µ). In particular, −→γ ε ∈PΛε(a0, µ) by Theorem 2.12,
and the proof is complete. �

3. THE CASE OF A GENERAL FINITE MEASURE

3.1. Existence and regularity for a general finite measure. We consider in this subsection an
arbitrary (non negative) finite measure µ supported in Ω0, and we fix a base point a0 ∈ Ω0. We
are interested in existence and regularity of solutions of the minimization problem

min
u∈1+H1

0 (Ω)∩L∞(Ω)
Fµε (u) . (3.1)

To pursue these issues, we rely on the results of the previous section. For this, we will need the
following elementary lemma.

Lemma 3.1. Let µ be a finite non negative measure supported on Ω0. Then there exists a se-
quence of measures {µk}k∈N with finite support in Ω0 such that µk

∗
⇀µ and sptµk → sptµ in

the Hausdorff sense.

Proof. For k ∈ N, we denote by Ck be the standard family of dyadic semi-cubes in R2 of size
2−k, i.e.,

Ck :=
{
Q = 2−kz + 2−k

(
[0, 1)× [0, 1)

)
: z ∈ Z2

}
.

Then we define C ′k :=
{
Q ∈ Ck : Q ∩ Ω0 6= ∅

}
, and for each Q ∈ C ′k, we choose a point

aQ ∈ Q ∩ Ω0. We set

µk :=
∑
Q∈C ′k

µ(Q ∩ Ω0)δaQ .

By construction, µk has finite support, ‖µk‖ = ‖µ‖, and sptµk ⊆ Ω0 ∩ T2−k+2(sptµ) where
T2−k+2(sptµ) denotes the tubular neighborhood of radius 2−k+1 of sptµ. Similarly, sptµ ⊆
T2−k+2(sptµk), and we infer that sptµk → sptµ in the Hausdorff sense.

We now claim that µk
∗
⇀µ as measures on Ω0. To prove this claim, let us fix an arbitrary

function ϕ ∈ C0(Ω0). Then we can find a (non decreasing) modulus of continuity ω : [0,∞)→
[0,∞) satisfying ω(t)→ 0 as t ↓ 0 such that

sup
|x−y|6t

|ϕ(x)− ϕ(y)| 6 ω(t) .

Now we estimate∣∣∣∣ˆ ϕdµk −
ˆ
ϕdµ

∣∣∣∣ 6 ∑
Q∈C ′k

ˆ
Q∩Ω0

∣∣ϕ(aQ)− ϕ(x)
∣∣ dµ 6 ‖µ‖ω(2−k+1) −→

k→∞
0 ,

which completes the proof. �

Theorem 3.2. The minimization problem (3.1) admits at least one solution.

Proof. We consider the sequence of discrete measures {µk}k∈N provided by Lemma 3.1. For
each k ∈ N, we consider a solution uk of the minimization problem

min
u∈1+H1

0 (Ω)
Fµkε (u) ,

for some base point ak0 ∈ Ω0 satisfying ak0 → a0. Since ‖µk‖ is bounded, by Proposition 2.10,
the sequence {uk}k∈N is bounded in C0,α(Ω) for every α ∈ (0, 1), and 0 6 uk 6 1. Moreover,
choosing a (k-independent) C1-function to test the minimality of uk, we infer that Fµkε (uk) 6 C

for some constant C independent of k. As a consequence, {uk}k∈N is bounded in H1(Ω).
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Therefore, we can find a (not relabeled) subsequence such that uk → u∗ in C0,α(Ω) for every
α ∈ (0, 1) and uk ⇀ u∗ weakly in H1(Ω). Then, u∗ ∈ 1 +H1

0 (Ω) and

lim inf
k→∞

ε

ˆ
Ω

|∇uk|2 dx+
1

4ε

ˆ
Ω

(1− uk)2 dx > ε
ˆ

Ω

|∇u∗|2 dx+
1

4ε

ˆ
Ω

(1− u∗)2 dx . (3.2)

We now claim that the sequence of continuous functions dk : x 7→ D(δε + u2
k; ak0 , x) converges

uniformly on Ω to d∗ : x 7→ D(δε + u2
∗; a0, x). Since ‖uk‖L∞(Ω) 6 1, each function dk is

(1 + δε)-Lipschitz continuous. Hence the sequence {dk}k∈N is uniformly equicontinuous, and
it is enough to prove that dk converges pointwise to d∗. Let us then fix an arbitrary point x ∈ Ω.
For γ ∈P(a0, x), we have

dk(x) 6 D(δε + u2
k; a0, x) + (1 + δε)|ak0 − a0|

6
ˆ

Γ(γ)

(δε + u2
k) dH1 + (1 + δε)|ak0 − a0| ,

and we obtain by dominated convergence,

lim sup
k→∞

dk(x) 6
ˆ

Γ(γ)

(δε + u2
∗) dH1 .

Taking the infimum over γ shows that lim supk dk(x) 6 d∗(x). On the other hand, if σ ∈ (0, 1),
we can find γk ∈P(ak0 , x) such thatˆ

Γ(γk)

(δε + u2
k) dH1 6 dk(x) + σ .

In particular, H1(Γ(γk)) 6 δ−1
ε (dk(x) + σ) 6 C. Since uk → u∗ uniformly, we have u2

k >

u2
∗ − σ whenever k is large enough. For such k’s, we estimate

dk(x) >
ˆ

Γ(γk)

(δε + u2
∗) dH1 −

(
1 +H1(Γ(γk))

)
σ

> D(δε + u2
∗; a

k
0 , x)− Cσ > d∗(x)− (1 + δε)|ak0 − a0| − Cσ .

Letting k ↑ ∞ and then σ ↓ 0, we deduce that lim infk dk(x) > d∗(x), whence dk(x)→ d∗(x).
Now, as a consequence of this uniform convergence, we haveˆ

Ω0

D(δε + u2
k; ak0 , x) dµk −→

ˆ
Ω0

D(δε + u2
∗; a0, x) dµ . (3.3)

Gathering (3.2) and (3.3) leads to

lim inf
k→∞

Fµkε (uk) > Fµε (u∗) .

To conclude, we consider an arbitrary ϕ ∈ 1 +H1
0 (Ω) ∩ L∞(Ω). Since∣∣D(δε + ϕ2; a0, x)−D(δε + ϕ2; ak0 , x)
∣∣ 6 (δε + ‖ϕ‖2L∞(Ω))|a

k
0 − a0| → 0 ,

we have
´
D(δε + ϕ2; ak0 , x) dµk →

´
D(δε + ϕ2; a0, x) dµ, and thus Fµkε (ϕ) → Fµε (ϕ). By

minimality of uk, we conclude that

Fµε (u∗) 6 lim inf
k→∞

Fµkε (uk) 6 lim sup
k→∞

Fµkε (uk) 6 lim
k→∞

Fµkε (ϕ) = Fµε (ϕ) .

Consequently, u∗ is minimizing Fµε , and (choosing ϕ = u∗) Fµkε (uk)→ Fµε (u∗). For later use,
we also observe that the lim inf in (3.2) now becomes a limit (in view of (3.3)), and the inequality
turns into an equality, i.e.,

lim
k→∞

ε

ˆ
Ω

|∇uk|2 dx+
1

4ε

ˆ
Ω

(1− uk)2 dx = ε

ˆ
Ω

|∇u∗|2 dx+
1

4ε

ˆ
Ω

(1− u∗)2 dx .

From this identity, it classicaly follows that uk → u∗ strongly in H1(Ω). �
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Note that the previous proof not only produces a minimizer of Fµε , but it produces a W 1,p-
minimizer. Our next theorem shows that, in fact, any minimizer shares the same regularity.

Theorem 3.3. Any solution of the minimization problem (3.1) belongs to W 1,p(Ω) for every
p <∞ (and in particular to C0,α(Ω) for every α ∈ (0, 1)).

Proof. Consider u∗ a solution of (3.1). First we claim that 0 6 u∗ 6 1 a.e. in Ω. Indeed, if
this is not the case, then we consider the competitor ū := max(min(u∗, 1), 0). Arguing as in the
proof of Lemma 2.4, we have D(δε+(ū)2; a0, x) 6 D(δε+u2

∗; a0, x) for every x ∈ Ω. Then, as
in the proof of Corollary 2.13, it leads to Fµε (ū) < Fµε (u∗), in contradiction with the minimality
of u∗.

Now the strategy consists in introducing the modified functionals F̂µε : H1(Ω) ∩ L∞(Ω) →
[0,∞) defined by

F̂µε (u) := Fµε (u) +
1

4

ˆ
Ω

|u− u∗|2 dx .

Since u∗ is minimizing Fµε , it is also the unique minimizer of F̂µε over 1 + H1
0 (Ω) ∩ L∞(Ω).

Then we consider the sequence of discrete measures {µk}k∈N provided by Lemma 3.1, and the
corresponding functionals F̂µkε : H1(Ω) ∩ L∞(Ω)→ [0,∞) given by

F̂µkε (u) := Fµkε (u) +
1

4

ˆ
Ω

|u− u∗|2 dx ,

with base point ak0 ∈ sptµk. We aim to address the minimization problems

min
u∈1+H1

0 (Ω)∩L∞(Ω)
F̂µkε (u) . (3.4)

We shall prove existence and regularity of minimizers for (3.4) following the main lines of Sec-
tion 2. More precisely, we will prove that the W 1,p-norm of a constructed minimizer uk of F̂µkε
remains bounded for every p < ∞ independently of k (and thus also the C0,α-norm for every
α ∈ (0, 1)). Assuming that this is indeed the case, we can run the proof of Theorem 3.2 noticing
the additional term ‖u− u∗‖2L2(Ω) is continuous with respect to weak H1-convergence. In other
words, we can extract from the resulting sequence {uk}k∈N, a subsequence converging strongly
in H1(Ω) (and in C0,α) to a limiting function u0 ∈ 1 +H1

0 (Ω)∩L∞(Ω) minimizing F̂µε . Since
u∗ is the unique minimizer of F̂µε over 1 + H1

0 (Ω) ∩ L∞(Ω), we have u0 = u∗ and uk → u∗.
Finally, since {uk}k∈N remains bounded in W 1,p(Ω), it shows that u∗ ∈ W 1,p(Ω) for every
p <∞.

Now comes the analysis of problem (3.4):

Step 1: Minimization with prescribed curves. We write

µk =

Nk∑
i=0

βki δaki ,

with βki > 0. For −→γ ∈ P(ak0 , µk), we consider the functional Êµkε (·,−→γ ) : H1(Ω) → [0,+∞]

defined by

Êµkε (u,−→γ ) := Eµkε (u,−→γ ) +
1

4

ˆ
Ω

|u− u∗|2 dx ,

where Eµkε (u,−→γ ) is given by (2.2). Then,

F̂µkε (u) = inf−→γ ∈P(ak0 ,µk)
Êµkε (u,−→γ ) ∀u ∈ H1(Ω) ∩ L∞(Ω) . (3.5)

Let us now fix −→γ ∈PΛ(a0, µk) for some Λ ≥ 2. By Lemma 2.2, the minimization problem

min
u∈1+H1

0 (Ω)
Êµkε (u,−→γ )
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admits a unique solution û−→γ solving
−ε2∆û−→γ =

1

4
(1− ũ−→γ ) +

ε

4
(u∗ − û−→γ )− ε

λε
Bµ[−→γ ](û−→γ , ·) in H−1(Ω) ,

û−→γ = 1 on ∂Ω .

In addition, since 0 6 u∗ 6 1, the truncation argument in the proof of Lemma 2.4 shows that
0 6 û−→γ 6 1 a.e. in Ω. As a consequence, |u∗ − û−→γ | 6 1 a.e. in Ω. By elliptic regularity, we
then infer that û−→γ ∈ C

1,α
loc

(
Ω \ Γ(−→γ )

)
for every α ∈ (0, 1).

Considering the function v̂ := 1− û−→γ , we notice that{
−4ε2∆v̂ + v̂ 6 ε in Ω \ Γ(−→γ ) ,

0 6 v̂ 6 1 in Ω .

Then a straightforward modification of Lemma 2.5 shows that

0 6 1− û−→γ (x0) 6 ε+ exp

(
−3 dist(x0,Γ(−→γ ))

32ε

)
at every x0 ∈ Ω \ Γ(−→γ ) satisfying dist(x0,Γ(−→γ )) > 12ε. As in Lemma 2.6, this leads to the
gradient estimate ∣∣∇û−→γ (x0)

∣∣ 6 Cη0

(
1 +

1

ε
exp

(
−dist(x0,Γ(−→γ ))

32ε

))
(3.6)

at every x0 ∈ Ω \ Γ(−→γ ) satisfying dist(x0,Γ(−→γ )) > 13ε (with η0 given by Lemma 2.6).
Since ‖u∗ − û−→γ ‖L∞(Ω) 6 1, we can reproduce the proof of Proposition 2.9 with minor

modifications to prove that û−→γ ∈W 1,p(Ω) for every 2 < p <∞ together with the estimate

‖∇û−→γ ‖Lp(V32ε| log ε|) 6 Cp,η0

(
| log ε|
ε

+
Λ‖µk‖
λεε

)
,

where V32ε| log ε| := {x ∈ Ω : dist(x,Γ(−→γ )) < 32ε| log ε|}. On the other hand, (3.6) yields the
estimate |∇û−→γ | 6 Cη0

on Ω \ V32ε| log ε|. Therefore,

‖∇û−→γ ‖Lp(Ω) 6 Cp,η0

(
| log ε|
ε

+
Λ‖µk‖
λεε

)
for 2 < p <∞ .

Since ‖µk‖ is bounded, we have thus proved that ‖û−→γ ‖W 1,p(Ω) is bounded independently of k
for each p <∞.

Step 2: Existence of minimizing pairs. Define Λε as in (2.16). Then we notice that Lemma 2.17,
Lemma 2.18, and Lemma 2.19 hold with Êµkε in place of Eµkε . Hence we can follow the proof
of Theorem 2.12 to find −→γ k ∈ PΛε(a

k
0 , µk) such that the pair (û−→γ k ,

−→γ k) is minimizing Êµkε
over (1 +H1

0 (Ω))×P(ak0 , µk).

Step 3: Conclusion. Set uk := û−→γ k . Since uk ∈ L∞(Ω), we infer from (3.5) that F̂µkε (uk) =

Êµkε (uk,
−→γ k), and thus uk is minimizing F̂µkε over 1 + H1

0 (Ω) ∩ L∞(Ω). Finally, it follows
from Step 1 that ‖uk‖W 1,p(Ω) is bounded independently of k for every p <∞. �

Remark 3.4. The proof of Theorem 3.3 (together with the results in Subsection 2.2) shows that
any minimizer uε of Fµε over 1 +H1

0 (Ω) ∩ L∞(Ω) satisfies the following estimates

‖∇uε‖Lp(Ω) 6 Cp,η0

(
| log ε|
ε

+
‖µ‖
δελεε

)
∀p ∈ (2,∞) ,

and

‖uε‖C0,α(Ω) 6 Cα,η0

1 + ‖µ‖δ−1
ε λ−1

ε

εα
∀α ∈ (0, 1) ,
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for some constants Cp,η0
and Cα,η0

depending only on p, α, and η0 (given in Lemma 2.6). Even
if those estimates are not optimal with respect to ε (but nearly), they only depends on the total
mass of µ, and not on the internal structure of µ.

In view of the uniform estimates above, one can reproduce (verbatim) the proof of Theo-
rem 3.2 to show the following stability result.

Proposition 3.5. Let {µk}k∈N be a sequence of finite measures supported on Ω0, and {ak0}k∈N ⊆
Ω0. Assume that µk

∗
⇀µ as measures and ak0 → a0. If uk is a minimizer of Fµkε with base point

ak0 over 1 +H1
0 (Ω)∩L∞(Ω), then the sequence {uk}k∈N admits a (not relabeled) subsequence

converging strongly in H1(Ω) and in C0,α(Ω) for every α ∈ (0, 1) to a minimizer u∗ of Fµε with
base point a0 over 1 +H1

0 (Ω) ∩ L∞(Ω). In addition, Fµkε (uk)→ Fµε (u∗).

3.2. Application to the average distance and optimal compliance problems. In this subsec-
tion, we briefly review and complement two applications suggested in [9]: the average distance
problem and the optimal compliance problem.

(1) The average distance problem. Given a nonnegative density f ∈ L1(Ω0), it consists in
finding a connected compact set K] ⊆ Ω0 minimizing the functional

AVD(K) :=

ˆ
Ω0

dist(x,K)f(x) dx+H1(K)

among all connected and compact subsets K of Ω0.

(2) The optimal compliance problem. Given a nonnegative f ∈ L2(Ω0), it consists in finding a
connected compact set K] ⊆ Ω0 minimizing the functional

OPC(K) :=
1

2

ˆ
Ω0

fuK dx+H1(K)

among all connected and compact subsetsK of Ω0 of positiveH1-measure, where uK ∈ H1(Ω0)

denotes the unique solution of the minimization problem

min
{1

2

ˆ
Ω0

|∇u|2 dx−
ˆ

Ω0

fu dx : u ∈ H1(Ω0) , u = 0 on K
}
.

Reformulating problems (1) and (2). The starting point in [9] is a suitable reformulation of
the average distance and optimal compliance problems by a duality argument. To describe in
detail these reformulations, we need first to introduced the functional spaces involved. We fix a
base point a0 ∈ Ω0. Setting M (Ω0), respectively M (Ω0;R2), the space of (finite) R-valued,
respectively R2-valued, measures on R2 supported on Ω0, we consider the following families of
(generalized) vector fields

Vavd(Ω0) :=
{
v ∈M (Ω0;R2) : div v ∈M (Ω0) and div v(Ω0) = 0

}
,

and

Vopc(Ω0) :=
{
v ∈ L2(Ω0;R2) : div(χΩ0v) ∈M (Ω0) and div(χΩ0v)(Ω0) = 0

}
.

For such a vector field v, we associate the (finite) nonnegative measure

µ(v) :=

{
|div v + χΩ0f | if v ∈ Vavd(Ω0) ,

|div(χΩ0v) + χΩ0f | if v ∈ Vopc(Ω0) .
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We define the pointed functionals Favd : Ω0 × M (Ω0;R2) → [0,∞] and Fopc : Ω0 ×
L2(Ω0;R2)→ [0,∞] by

Favd(a0, v) :=

{
‖v‖+ ‖div v‖+ S

(
{a0} ∪ sptµ(v)

)
if v ∈ Vavd(Ω0) ,

+∞ otherwise ,

and

Fopc(a0, v) :=


1

2

ˆ
Ω0

|v|2 dx+ ‖div v‖+ S
(
{a0} ∪ sptµ(v)

)
if v ∈ Vopc(Ω0) ,

+∞ otherwise ,

where ‖v‖ and ‖div v‖ denote the total variations of v and div v, and

S
(
{a0} ∪ sptµ(v)

)
:= inf

{
H1(K) : K ⊆ Ω0 compact connected, K ⊇ {a0} ∪ sptµ(v)

}
(the infimum being infinite if the class of competitors is empty).

Following [9, proof of Proposition 5.6], the variational problems

min
a0∈Ω0

(
min

Vavd(Ω0)
Favd(v, a0)

)
and min

a0∈Ω0

(
min

Vopc(Ω0)
Fopc(v, a0)

)
admit at least one solution (a]0, v

]
avd) and (a]0, v

]
opc), respectively. According to [9, Section 5.1],

their resolution is equivalent to problems (1) and (2), respectively2. As our purpose is not focused
on this equivalent formulation, we only indicate the following implication: if K]

avd and K]
opc are

compact connected subsets of Ω0 satisfying

H1(K]
avd) = S

(
{a]0} ∪ sptµ(v]avd)

)
and H1(K]

opc) = S
(
{a]0} ∪ sptµ(v]opc)

)
, (3.7)

then,
AVD(K]

avd) = min AVD and OPC(K]
opc) = min OPC . (3.8)

In other words, K]
avd and K]

opc solve problem (1) and problem (2) respectively.

The phase field approximation. The phase field approximation introduced in [9] to solve problem
(1) or (2) consists in replacing the term S

(
{a0}∪ sptµ(·)

)
in Favd(·, a0) or Fopc(·, a0) by the

functional F̃µ(·)
ε defined in (1.4). As explained in the introduction (see also [9, Section 5.4]), the

possible lack of lower semicontinuity of F̃µ(·)
ε prevents one to obtain existence of minimizers for

the resulting phase field functionals.
Here we follow the approach of [9] using the functional Fµ(·)

ε instead of F̃µ(·)
ε . More pre-

cisely, we consider the functionals F ε
avd : Ω0×M (Ω0;R2)×

(
1 +H1

0 (Ω)∩L∞(Ω)
)
→ [0,∞]

and F ε
opc : Ω0 × L2(Ω0;R2)×

(
1 +H1

0 (Ω) ∩ L∞(Ω)
)
→ [0,∞] given by

F ε
avd(a0, v, u) :=

{
‖v‖+ ‖div v‖+ F

µ(v)
ε (u) if v ∈ Vavd(Ω0) ,

+∞ otherwise ,
(3.9)

and

F ε
opc(a0, v, u) :=


1

2

ˆ
Ω0

|v|2 dx+ ‖div v‖+ Fµ(v)
ε (u) if v ∈ Vopc(Ω0) ,

+∞ otherwise ,
(3.10)

where a0 is the base point in Fµ(v)
ε . As a consequence of Theorem 3.2 and Proposition 3.5,

we have the following existence result of minimizers. Their convergence as ε → 0 towards

2In the original formulation of [9], one requires a0 ∈ sptµ(v) in the definition Favd(a0, v) or Fopc(a0, v). A
quick inspection of [9, Section 5.1] reveals that this condition can be dropped when considering S

(
{a0} ∪ sptµ(v)

)
instead of S

(
sptµ(v)

)
.
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minimizers of Favd or Fopc (essentially proved in [9]) shall be discussed for completeness in
Subsection 4.2.

Theorem 3.6. The functionals F ε
avd and F ε

opc admit at least one minimizer.

Proof. First notice that, for a ∈ Ω0, the competitor (a, 0, 1) has a finite energy, so that the
infimum of F ε

avd and F ε
opc are finite. Let us now consider an arbitrary minimizing sequence

{(ak0 , vk, ũk)}k∈N for F ε
avd or F ε

opc. By Theorem 3.2, we can find for each k ∈ N a minimizer

uk of Fµ(vk)
ε with base point ak0 over 1 + H1

0 (Ω) ∩ L∞(Ω). Then, Fµ(vk)
ε (uk) 6 F

µ(vk)
ε (ũk),

so that {(ak0 , vk, uk)}k∈N is also a minimizing sequence.

Case 1: minimizing F ε
avd. Since supk F ε

avd(ak0 , vk, uk) < ∞, we can find a (not relabeled)
subsequence such that vk

∗
⇀vε and div vk

∗
⇀div vε as measures for some vε ∈ Vavd (note that

the divergence free condition is closed under those weak* convergences), and ak0 → aε0 for some
aε0 ∈ Ω0. Since µ(vk)

∗
⇀µ(vε), we infer from Proposition 3.5 that (up to a further subsequence)

uk → uε strongly inH1(Ω) to some minimizer uε of Fµ(vε)
ε with base point aε0 over 1+H1

0 (Ω)∩
L∞(Ω), and Fµ(vk)

ε (uk) → F
µ(vε)
ε (uε). Since the total variation is lower semicontinuous with

respect to the weak* convergence of measures, we can now deduce that

F ε
avd(aε0, vε, uε) 6 lim

k→∞
F ε

avd(ak0 , vk, uk) = inf F ε
avd ,

and (aε0, vε, uε) is a minimizer of F ε
avd.

Case 2: minimizing F ε
opc. We argue as in Case 1, replacing the weak* convergence of the vk’s

by the weak convergence in L2(Ω0). �

Remark 3.7. If (aε0, vε, uε) is a minimizer of F ε
avd or F ε

opc, then uε is a minimizer of Fµ(vε)
ε

with base point aε0 over 1 + H1
0 (Ω) ∩ L∞(Ω). Therefore, uε ∈ W 1,p(Ω) for every p < ∞ (in

particular, uε ∈ C0,α(Ω) for every α ∈ (0, 1)). We did not investigate the regularity of the vector
field vε, and this question remains essentially open.

4. ASYMPTOTIC OF MINIMIZERS

4.1. Towards the Steiner problem. The objective of this subsection is to prove Theorem 1.2.
We start with elementary comments about the Steiner problem (1.3). Setting

S ({a0} ∪ sptµ) := inf
{
H1(K) : K ⊆ R2 compact connected, K ⊇ {a0} ∪ sptµ

}
,

one has S ({a0} ∪ sptµ) < ∞ if and only if H1(sptµ) < ∞. In addition, if we denote by π0

the orthogonal projection on the convex set Ω0, then H1(π0(K)) 6 H1(K) for any admissible
competitor K ⊆ R2, with equality if and only if K in contained in Ω0. Obviously π0(K) is
still an admissible competitor, and we infer that any solution of the Steiner problem (1.3) is
contained Ω0. Hence,

S ({a0} ∪ sptµ) = min
{
H1(K) : K ⊆ Ω0 compact connected,

K ⊇ {a0} ∪ sptµ
}
<∞ , (4.1)

and existence easily follows from Blaschke and Golab theorems (see e.g. [5]).

The proof of Theorem 1.2 departs from the results in [9]. The first ingredient is the following
lower estimate taken from [9, Lemma 3.1].

Lemma 4.1 ([9]). Let {vk}k∈N ⊆ 1 +H1
0 (Ω) ∩ C0(Ω) satisfying 0 6 vk 6 1, and

sup
k∈N

(
εk

ˆ
Ω

|∇vk|2 dx+
1

4εk

ˆ
Ω

(1− vk)2 dx+
1

αk

ˆ
Ω0

D(vk; a0, x) dµ

)
<∞ , (4.2)
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for some sequence αk → 0 of positive numbers. Assume that the sequence x 7→ D(vk; a0, x)

converges uniformly on Ω0 to some function d∗ : Ω0 → [0,∞). Then, K∗ := {d∗ = 0} is a
compact connected subset of Ω0 containing {a0} ∪ sptµ, and

H1(K∗) 6 lim inf
k→∞

(
εk

ˆ
Ω

|∇vk|2 dx+
1

4εk

ˆ
Ω

(1− vk)2 dx

)
. (4.3)

The second ingredient is an explicit construction of a “recovery sequence” showing the sharp-
ness of the previous lemma. The construction is provided by [9, Lemma 2.8] (see also [3]) that
we (slightly) reformulate as

Lemma 4.2 ([9]). Let K ⊆ Ω0 be a compact connected set containing {a0} ∪ sptµ and such
that H1(K) < ∞. There exists a sequence {ϕk}k∈N ⊆ H1(Ω) ∩ C0

c (Ω) satisfying ϕk = 1

on K, and

lim sup
k→∞

(
εk

ˆ
Ω

|∇ϕk|2 dx+
1

4εk

ˆ
Ω

|ϕk|2 dx
)
6 H1(K) . (4.4)

Remark 4.3. As we shall see below, Lemmas 4.1 & 4.2 imply that assumptionH1(sptµ) <∞
is necessary and sufficient to ensure that the minimum value of Fµε over 1 + H1

0 (Ω) remains
bounded as ε ↓ 0.

Proof of Theorem 1.2. Step 1. As discussed above, our assumption H1(sptµ) < ∞ implies
S ({a0} ∪ sptµ) <∞. Now, given an arbitrary compact connected K ⊆ Ω0 containing {a0} ∪
sptµ and such that H1(K) < ∞, we consider the sequence {ϕk}k∈N provided by Lemma 4.2,
and we set vk := 1− ϕk ∈ 1 +H1

0 (Ω) ∩ C0(Ω). We claim thatˆ
Ω0

D(δεk + v2
k; a0, x) dµ 6 δεkH1(K)‖µ‖ . (4.5)

Indeed, sinceK is connected andH1(K) <∞, [5, Theorem 4.4.7] yields the existence for every
x ∈ sptµ of a curve γx ∈P(a0, x) such that Γ(γx) ⊆ K. Since vk = 0 on K, we deduce that

D(δεk + v2
k; a0, x) 6

ˆ
Γ(γx)

(δεk + v2
k) dH1 = δεkH1(Γ(γx)) 6 δεkH1(K) ∀x ∈ sptµ .

Integrating this inequality with respect to µ leads to (4.5). Since δεk/λεk → 0, we infer from
(4.4) and (4.5) that lim supk F

µ
εk

(vk) 6 H1(K). On the other hand, Fµεk(uk) 6 Fµεk(vk) by
minimality of uk, and we deduce that lim supk F

µ
εk

(uk) 6 H1(K). From the arbitrariness of K
and (4.1), we conclude that

lim sup
k→∞

Fµεk(uk) 6 S ({a0} ∪ sptµ) <∞ . (4.6)

Step 2. Since 0 6 uk 6 1, the sequence x 7→ D(δεk + u2
k; a0, x) is a sequence of (1 + δεk)-

Lipschitz functions on Ω0, all vanishing at the point a0. By the Arzelà-Ascoli Theorem, we can
find a (not relabeled) subsequence such that x 7→ D(δε + u2

k; a0, x) converges uniformly on Ω0

to some function d∗ : Ω0 → [0,∞).
Let us now set αk := λεk/(2

√
δεk). Since δεk = λβεk with β ∈ (1, 2), we have αk → 0.

Noticing that 2
√
δεkuk 6 δεk +u2

k, we have 2
√
δεkD(uk; a0, x) 6 D(δεk +u2

k; a0, x) for every
x ∈ Ω0. In view of (4.6), we conclude that

εk

ˆ
Ω

|∇uk|2 dx+
1

4εk

ˆ
Ω

(1− uk)2 dx+
1

αk

ˆ
Ω0

D(uk; a0, x) dµ 6 Fµεk(uk) 6 C , (4.7)

for some constant C independent of k. By Lemma 4.1, the compact set K∗ := {d∗ = 0} is
connected and contains {a0} ∪ sptµ. Gathering (4.3), (4.6), and (4.7) yields

H1(K∗) 6 lim inf
k→∞

Fµεk(uk) 6 lim sup
k→∞

Fµεk(uk) 6 S ({a0} ∪ sptµ) .
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Therefore, H1(K∗) = S ({a0} ∪ sptµ) (i.e., K∗ solves the Steiner problem relative to {a0} ∪
sptµ), and Fµεk(uk)→ H1(K∗).

Step 3. For a radius r ∈ (0,η0/2) (where η0 is given in Lemma 2.6), we denote by Vr the open
tubular neighborhood of K∗ of radius r. Since K∗ ⊆ Ω0, we have V r/2 ⊆ V r ⊆ Ω. We claim
that for every r ∈ (0,η0/2) there exists k0(r) ∈ N such that for every k > k0(r),

−ε2
k∆uk =

1

4
(1− uk) in D ′(Ω \ V r/2) . (4.8)

To establish (4.8), we first invoke the continuity of d∗ to find τr > 0 such that {d∗ < 3τr} ⊆
Vr/2. Since x 7→ D(δεk + u2

k; a0, x) converges uniformly to d∗, we can find k1(r) ∈ N such
that {

x ∈ Ω0 : D(δεk + u2
k; a0, x) 6 2τr

}
⊆ {d∗ < 3τr} ⊆ Vr/2 ∀k > k1(r) . (4.9)

On the other hand, since x 7→ D(δεk + u2
k; a0, x) converges uniformly to 0 on K∗ ⊇ sptµ, we

can find k2(r) ∈ N such that

sptµ ⊆
{
x ∈ Ω0 : D(δεk + u2

k; a0, x) 6 τr
}
∀k > k2(r) . (4.10)

Set k0(r) := max(k1(r), k2(r)), and let us prove that for k > k0(r),

for all x ∈ sptµ and all κ ∈ (0, τr) , there exists γκx ∈P(a0, x) satisfying

Γ(γκx ) ⊆ Vr/2 and
ˆ

Γ(γκx )

(δεk + u2
k) dH1 6 D(δεk + u2

k; a0, x) + κ . (4.11)

Obviously, for x ∈ sptµ and κ ∈ (0, τr) given, we can find γκx ∈P(a0, x) satisfying the second
condition, and it suffices to check that Γ(γκx ) ⊆ Vr/2. Fix y ∈ Γ(γκx ), and consider θy ∈ [0, 1]

such that γκx (θy) = y. Setting γ̃y(t) := γκx (tθy), we have γ̃y ∈ P(a0, y) and Γ(γ̃y) ⊆ Γ(γκx ).
Consequently,

D(δεk + u2
k; a0, y) 6

ˆ
Γ(γ̃y)

(δεk + u2
k) dH1

6
ˆ

Γ(γκx )

(δεk + u2
k) dH1 6 D(δεk + u2

k; a0, x) + τr 6 2τr ,

by (4.10). In view of (4.9), we have y ∈ Vr/2. Hence Γ(γκx ) ⊆ Vr/2, and (4.11) is proved.
From now on, we assume that k > k0(r). Fix an arbitrary ϕ ∈ D(Ω \ V r/2), t ∈ R \ {0},

and set wk := uk + tϕ. Since wk = uk in Vr/2, we infer from (4.11) that for every x ∈ sptµ,

D(δεk + w2
k; a0, x) 6

ˆ
Γ(γκx )

(δεk + w2
k) dH1

=

ˆ
Γ(γκx )

(δεk + u2
k) dH1 6 D(δεk + u2

k; a0, x) + κ ∀κ ∈ (0, τr) .

Letting κ ↓ 0 leads to D(δεk +w2
k; a0, x) 6 D(δεk + u2

k; a0, x) for every x ∈ sptµ. Therefore,
ˆ

Ω0

D(δεk + w2
k; a0, x) dµ 6

ˆ
Ω0

D(δεk + u2
k; a0, x) dµ . (4.12)

By minimality of uk we have Fµεk(wk) − Fµεk(uk) > 0, and inserting (4.12) in this inequality
leads to

2tεk

ˆ
Ω

∇uk∇ϕdx+
t

2εk

ˆ
Ω

(1− uk)ϕdx+ t2εk

ˆ
Ω

|∇ϕ|2 dx+
t2

ε2

ˆ
Ω

|ϕ|2 dx > 0 .
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Dividing this inequality by t, and letting t ↓ 0 and t ↑ 0 yields

2εk

ˆ
Ω

∇uk∇ϕdx+
1

2εk

ˆ
Ω

(1− uk)ϕdx = 0 ,

and (4.8) is proved.

Step 4. Let us fix r ∈ (0,η0/2). From (4.8) and standard elliptic regularity, we infer that
uk ∈ C∞(Ω \V r/2) whenever k > k0(r). Then, arguing as in Lemma 2.5, we derive from (4.8)
that for k > k0(r),

0 6 1− uk(x) 6 exp
(
− Cr/εk

)
∀x ∈ Ω \ V3r/4 , (4.13)

for some constant Cr > 0 independent of εk. Inserting estimate (4.13) in (4.8), we deduce as in
Lemma 2.6 that for k > k0(r),

εk|∇uk|+ ε2
k|∇2uk| 6 Cr,η0 exp

(
− C ′r/εk

)
in Ω \ Vr ,

for some constants Cr,η0 and C ′r > 0 independent of εk. Hence uk → 1 in C2(Ω \ Vr).

Step 5. Let us fix t ∈ (0, 1), and show that {uk 6 t} → K∗ in the Hausdorff sense. To this
purpose, we fix a radius r > 0. From Step 4 above, we first deduce that {uk 6 t} ⊆ Vr
whenever k is large enough. Before going further, notice that {uk 6 t} 6= ∅ for k large. Indeed,
if {uk 6 t} = ∅ for infinitely many k’s, thenˆ

Ω0

D(δε + u2
k; a0, x) dµ > t2

ˆ
Ω0

|x− a0| dµ for infinitely many k’s .

Since sptµ is not reduced to {a0}, the right hand side does not vanish, while the left goes to 0

as k →∞ by (4.6), a contradiction.
We now denote by W k

r the open tubular neighborhood of {uk 6 t} of radius r. We aim to
show thatK∗ ⊆W k

r for k sufficiently large. Assume by contradiction that for some subsequence
{kj}, we have K∗ 6⊆ W

kj
r . Then we can find a sequence {xj} ⊆ K∗ such that xj 6∈ W

kj
r

for every j ∈ N. Extracting a subsequence if necessary, we can assume that xj → x∗ for
some point x∗ ∈ K∗. Since {ukj 6 t} ⊆ Ω, by Blaschke’s theorem we can also assume that
{ukj 6 t} → St in the Hausdorff sense for some compact set St. Then dist(x∗, St) > r, and we
cand find j0(r) ∈ N such that B(x∗, r/2) ∩ {ukj 6 t} = ∅ for j > j0(r). We now distinguish
two cases.
Case 1. If x∗ 6= a0, set τ := 1/2 min(r, |x∗ − a0|). Then for every γ ∈P(a0, x∗) we can find
tγ ∈ (0, 1) such that γ(tγ) ∈ ∂B(x∗, τ) and γ([tγ , 1]) ⊆ B(x∗, τ). Consequently, for j > j0(r)

we have ˆ
Γ(γ)

(δεkj + u2
kj ) dH

1 > t2H1
(
γ([tγ , 1])

)
> t2τ ∀γ ∈P(a0, x∗) .

In particular D(δεkj + u2
kj

; a0, x∗) > t2τ for j > j0(r). Letting j → ∞ yields d∗(x∗) > t2τ

which contradicts the fact x∗ ∈ K∗ := {d∗ = 0}.
Case 2. Assume that x∗ = a0. Then the same argument as in Case 1 (applied to x ∈ sptµ

instead of x∗) shows that if j > j0(r), then

D(δεkj + u2
kj ; a0, x) >

t2

2
min(r, |x− a0|) ∀x ∈ sptµ .

Since sptµ is not reduced to {a0} by assumption, we have for j > j0(r),ˆ
Ω0

D(δεkj + u2
kj ; a0, x) dµ >

t2

2

ˆ
Ω0

min(r, |x− a0|) dµ > 0 .

Once again, the left hand side of this inequality goes to 0 as j →∞ by (4.6), which provides the
desired contradiction.
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Step 6. To complete the proof of Theorem 1.2, it only remains to show that d∗(x) = dist(x,K∗).
Since K∗ := {d∗ = 0}, we only have to show this identity for x 6∈ K∗. First, since d∗ is a 1-
Lipschitz function (as pointwise limite of (1 + δεk)-Lipschitz functions), we obviously have
d∗(x) 6 dist(x,K∗). Now fix a point x ∈ Ω0 \ K∗, an arbitrary τ ∈

(
0,dist(x,K∗)

)
, and

an arbitrary t ∈ (0, 1). We infer from Step 5 that u2
k > t2 in B(x, τ) for k large enough.

Then, arguing as in Step 5, Case 1, we obtain D(δεk + u2
k; a0, x) > t2τ for k large enough.

Letting k → ∞ yields d∗(x) > t2τ . From the arbitrariness of τ and t, we conclude that
d∗(x) > dist(x,K∗). �

Remark 4.4. In the spirit of Proposition 3.5, one can study the asymptotic behavior of mini-
mizers of Fµεε over 1 + H1

0 (Ω), for some sequence of measures µε
∗
⇀µ as ε → 0, and even-

tually varying base points aε0 → a0. In this general setting, it is necessary to assume that
supε∈(0,1) F

µε
ε (uε) < ∞, where uε denotes a minimizer of Fµεε over 1 + H1

0 (Ω). Since [9,
Lemma 3.1] actually allows for such ε-dependence in the a priori estimate (4.2), Steps 1 & 2 in
the previous proof carry over. Hence, up to a subsequence, x 7→ D(δε + u2

ε; a
ε
0, x) converges

uniformly on Ω0 as ε→ 0 to some 1-Lipschitz function d∗, the compact set K∗ := {d∗ = 0} is
connected and {a0}∪ sptµ ⊆ K∗. Then, K∗ solves the Steiner problem relative to {a0}∪ sptµ,
and Fµεε (uε)→ H1(K∗).

If we assume that

sptµε → sptµ in the Hausdorff sense , (4.14)

then (all) the other conclusions of Theorem 1.2 remain. The argument follows essentially the
same lines as above. Note that (4.14) includes the case where µε is a discrete approximation of
µ as in Lemma 3.1.

On the other hand, if one drops condition (4.14), then Hausdorff convergence of sublevel sets
of minimizers can fail (their Hausdorff limit can be different from any Steiner set relative to
{a0} ∪ sptµ). To illustrate this fact, let us consider the following example. Let a0, a1, a2 ∈ Ω0

be three distinct points such that a1 ∈ (a0, a2), and set µκ := δa0 + δa1 + κδa2 with κ ∈ [0, 1].
For each κ > 0, the segment [a0, a2] is the unique solution of the Steiner problem (1.3) relative
to µκ, while [a0, a1] is the unique solution relative to µ0. Obviously, µκ

∗
⇀µ0 as κ ↓ 0, but

sptµκ = {a0, a1, a2} 6→ sptµ0 = {a0, a1}. Now, consider two sequences κj ↓ 0 and εn ↓ 0,
and for each (j, n) ∈ N2, a minimizer uj,n ∈ 1 + H1

0 (Ω) of F
µκj
εn (with base point a0). By

Theorem 1.2, {un,j 6 1/2} → [a0, a2] in the Hausdorff sense as n → ∞ for every j ∈ N.
Consequently, we can find a subsequence {nj} such that {unj ,j 6 1/2} → [a0, a2] in the
Hausdorff sense as j →∞.

4.2. Towards the average distance and optimal compliance problems. In this last subsection,
we discuss the asymptotic behavior as ε → 0 of the functionals F ε

avd and F ε
opc defined in (3.9)

and (3.10), and of their minimizers. For this purpose, it is more convenient to consider the
reduced functionals F̃ ε

avd : Ω0 ×M (Ω0;R2)→ [0,∞] and F̃ ε
opc : Ω0 × L2(Ω0;R2)→ [0,∞]

given by

F̃ ε
avd(a0, v) := min

u∈1+H1
0 (Ω)∩L∞(Ω)

F ε
avd(a0, v, u) ,

and

F̃ ε
opc(a0, v) := min

u∈1+H1
0 (Ω)∩L∞(Ω)

F ε
opc(a0, v, u) .

By Theorem 3.3, for every (a0, v) ∈ Ω0 ×M (Ω0;R2), respectively every (a0, v) ∈ Ω0 ×
L2(Ω0;R2), there exists uε = uε(a0, v) ∈ 1 +H1

0 (Ω) ∩ L∞(Ω) such that

F̃ ε
avd(a0, v) = F ε

avd(a0, v, uε) or F̃ ε
avd(a0, v) = F ε

opc(a0, v, uε) .



30 MATTHIEU BONNIVARD, ANTOINE LEMENANT, AND VINCENT MILLOT

Assuming that (1.2) holds, Theorem 1.2 and Remark 4.3 then imply that F̃ ε
avd and F̃ ε

opc converge
pointwise as ε→ 0 to Favd and Fopc, respectively.

Beyond this pointwise convergence, one can reproduce the proof of [9, Theorem 5.7] (us-
ing assumption (1.2) as in Step 2 of the proof of Theorem 1.2) to show that F̃ ε

avd actually
Γ-converges to Favd (for the (Ω0×weak*)-topology), and F̃ ε

opc Γ-converges to Fopc (for the
(Ω0×weak)-topology). In addition, if {(aε0, vε)}ε>0 is a recovery sequence of a configuration
(a0, v) of finite energy, and F̃ ε

avd(aε0, vε) = F ε
avd(aε0, vε, uε) or F̃ ε

opc(aε0, vε) = F ε
opc(aε0, vε, uε),

then Fµ(vε)
ε (uε) → S ({a0} ∪ sptµ(v)) as ε → 0, and the sequence x 7→ D(δε + u2

ε; a
ε
0, x)

converges uniformly on Ω0 to some function d∗. The set K∗ := {d∗ = 0} is connected,
{a0} ∪ sptµ(v) ⊆ K∗, andH1(K∗) = S ({a0} ∪ sptµ(v)), see Remark 4.4.

The same consideration applies in case (aε0, vε, uε) is a minimizer of either F ε
avd or F ε

opc.
By Γ-convergence, (aε0, vε) (sub)-converges as ε → 0 to a minimizer (a]0, v

]) of Favd or Fopc,
respectively. Consequently, K∗ = K]

avd or K∗ = K]
opc as in (3.7)–(3.8), i.e., K∗ solves the av-

erage distance problem or the optimal compliance problem, respectively. To conclude, one may
wonder wether or not the sublevel sets {uε 6 t} Hausdorff converge to K∗, as in Theorem 1.2.
In view of Remark 4.4, this question remains quite unclear, and it certainly requires a specific
analysis taking full advantage of the minimality of the pair (vε, uε).
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[14] G. BUTTAZZO, M. GIAQUINTA, S. HILDEBRANDT : One-dimensional variational problems, Oxford Lecture
Series in Mathematics and its Applications 15, The Clarendon Press, Oxford University Press, New York (1998).

[15] A. CHAMBOLLE, B. MERLET, L. FERRARI : A simple phase-field approximation of the Steiner problem in
dimension two, preprint arXiv:1609.00519.

[16] T. DE PAUW, A. LEMENANT, V. MILLOT : On sets minimizing their weighted length in uniformly convex
separable Banach spaces, to appear in Adv. Math.

[17] P. DONDL, A. LEMENANT, S. WOJTOWYTSCH : Phase field models for thin elastic structures with topological
constraint, to appear in Arch. Ration. Mech. Anal., preprint arXiv:1507.01856.

[18] L.C. EVANS, R.F. GARIEPY : Measure theory and fine properties of functions, Studies in Advanced Mathematics,
CRC Press, Boca Raton FL (1992).

[19] D. GILBARG, N.S. TRUDINGER : Elliptic Partial Differential Equations of Second Order, Classics in Mathemat-
ics, Springer-Verlag, Berlin (2001).

[20] M.E. GURTIN : On a theory of phase transitions with interfacial energy, Arch. Ration. Mech. Anal. 87 (1984),
187–212.

[21] R. KARP : Reducibility among combinatorial problems, Complexity of Computer Computations, Plenum Press,
(1972).

[22] A. LEMENANT, F. SANTAMBROGIO : A Modica-Mortola approximation for the Steiner problem, C. R. Math.
Acad. Sci. Paris 352 (2014), 451–454.

[23] P. MARCELLINI, C. SBORDONE : Semicontinuity problems in the calculus of variations, Nonlinear Anal. 4
(1980), 241–257.

[24] P. MATTILA : Geometry of Sets and Measures in Euclidean Spaces: Fractals and rectifiability, Cambridge studies
in advanced mathematics, Cambridge University Press, Cambridge (1995).

[25] N.G. MEYERS, W.P. ZIEMER : Integral inequalities of Poincaré and Wirtinger type for BV -functions, Amer. J.
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