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As a guideline for experimental tests of the ideal glass transition (Random Pinning Glass Tran-
sition, RPGT) that shall be induced in a system by randomly pinning particles, we performed
first-principle computations within the Hypernetted chain approximation and numerical simula-
tions of a Hard Sphere model of glass-former. We obtain confirmation of the expected enhancement
of glassy behaviour under the procedure of random pinning, which consists in freezing a fraction c
of randomly chosen particles in the positions they have in an equilibrium configuration. We present
the analytical phase diagram as a function of c and of the packing fraction φ, showing a line of
RPGT ending in a critical point. We also obtain first microscopic results on cooperative length-
scales characterizing medium-range amorphous order in Hard Spere glasses and indirect quantitative
information on a key thermodynamic quantity defined in proximity of ideal glass transitions, the
amorphous surface tension. Finally, we present numerical results of pair correlation functions able
to differentiate the liquid and the glass phases, as predicted by the analytic computations.

PACS numbers: Valid PACS appear here

A common feature of liquids deep below the melting
point (supercooled) is the remarkably steep increase of
relaxation time, until the system falls out of equilibrium
at a conventional temperature TG. Since decades, it is
present in the literature the claim of the possible presence
of a phase transition1,2, the ideal glass transition (IGT),
underlying the dynamical arrest and located at a lower
temperature TK . Despite the first formulation of a con-
sistent phenomenological thermodynamic picture3 this
intuition remained at length debated for the lack of other
indicators of the imminent thermodynamic singularity.
In this context, other theoretical perspectives based on
dynamic or topological approaches, sometimes excluding
the presence of any transition, have been proposed as al-
ternative explanations of the sluggish dynamics4,5.
In recent times, new important results have been ob-
tained in the development of the thermodynamic sce-
nario. We particularly refer on the one hand, to the
first definition and measure of a new kind of coopera-
tive length-scale6,7 detecting the spatial extent of amor-
phous order8, called point-to-set lPS , and on the other
hand, to the development of a field theory descrip-
tion of the IGT in terms of a suitable large deviation
function9–11 and the introduction of perturbative12,13

and non-perturbative14,15 fluctuations in this descrip-
tion. In view of a full fledged theory of glass-formers
and quantitative predictions of their properties, these ad-
vancements have been corroborated by the formulation
of a microscopic theory16–19 inspired to classical first-
principle computations techniques in liquids20,21.
Due to particularly severe critical properties of the IGT,

i.e. an exponential growth of relaxation time and a power
law increase of the cooperative length, the revealing of its
properties still remains too difficult to be achieved, leav-
ing fundamental doubts on the whole theoretical picture
and on the existence of the IGT itself.
With the aim of giving an answer to these fundamental
questions one of us recently proposed22,23 a procedure
to induce in real systems a glass transition of more easy
access than the IGT. The idea is as follows: freeze the po-
sition of a fraction c of particles of an equilibrated config-
uration and study the thermodynamics of the remaining
free particles. This procedure should allow the obser-
vation of a remarkable growth of the relaxation time in
the free-particles equilibrium dynamics and the eventual
reaching of a glass transition, called Random Pinning
Glass Transition (RPGT), as soon as the concentration
of frozen particles reaches a critical value cK . This result
is valid in a full range of moderate and deep supercooling
leading to the formation of a line of RPGT, cK(T ), end-
ing in the IGT at TK and in a new glass critical point at
high temperature. This suggests that the way for a test
of the theory of IGT is open and calls for numerical24–28

and experimental studies of the phase diagram of glass-
formers with a fraction of frozen particles. On the other
side, a microscopic first-principles theory of the RPGT
is needed to give more detailed predictions on its physics
and provide quantitative information useful in the plan-
ning stage of experimental and numerical tests.

In this rapid communication we report the results
of a first-principle computation of the RPGT scenario
following the method for a quantitative approach to
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IGT proposed in Ref. 16: an extension to glasses of the
Hypernetted Chain (HNC) approximation of classical
theory of simple liquids. Moreover, we report numer-
ical simulation results to be compared with analytic
predictions. As glass-former model we chose an Hard
Sphere system in 3 dimensions, for which a microscopic
thermodynamic theory has already been developed19 in
the unconstrained case. In HS models, particles interact
through the usual HS potential ψ(r) = 0 for r ≥ Dij

and ∞ for r < Dij , where Dij is the sum of the radii
Ri,j of particles i and j. HNC computations refer to a
monodisperse HSs system. The control parameter ruling
the approach to IGT is the density, ρ = N/V for a
system with N particles in a volume V , or the packing
fraction φ = 4πR3ρ/3: the fraction of volume occupied
by the particles. To prevent crystallization, numerical
simulations have instead be realised for a 50 : 50 binary
mixture of N = 250 type A and B spheres of radius
RB = 1.4RA and packing fraction φ = 2π(R3

A +R3
B)ρ/3.

As anticipated in the introduction, the emergence
of medium range fluctuations of amorphous order in
proximity of the IGT is a long standing open issue.
Despite many efforts6,14,29,30, quantitative information
on spatial correlation of glass order remained out of
reach of the HNC and of other first principles approaches
to realistic glass-formers. The present computation,
combining together the HNC analytic approach with
the pinning particle procedure, at last overcomes this
limitation obtaining first quantitative predictions on
diverging length-scales of the unconstrained system and
even some indirect results on the amorhpous surface
tension, a thermodynamic quantity expected to play a
major role in the vicinity of the IGT.

According to the Random First Order Transition
(RFOT) theory, above a dynamical crossover density φd
(or below Td), thermodynamics of dense granular systems
(or deeply supercooled liquids) starts to be dominated by
a large number of particularly stable amorphous config-
urations corresponding to specific local rearrangements.
A non-zero entropy of the N stable amorphous configu-
rations can be defined as Sc = limN→∞ log(N )/N 6= 0
and is called configurational entropy. Further increasing
the density (or supercooling) the entropy of stable amor-
phous configurations decreases and vanishes at finite con-
centration (or temperature) leading in the RFOT theory
to the occurrence at φK (or TK) of the IGT, a singularity
of the thermodynamic entropy (or free-energy) potential.
The classical theory of liquids based on diagrammatic ex-
pansion of the Morita-Hiroike (M-H) potential20,21 has
been adapted to capture the effects of this multi-state
scenario and the occurrence of the IGT. Among other
approximation schemes adopted to compute pair corre-
lation functions, HNC corresponds to a stationary point
of a truncated M-H potential where two-line irreducible
diagrams have been neglected21.
A fundamental step in the formulation of a HNC theory
of glass-formers is the introduction of a number of copies

(or replicas) of the system and the study of pair cor-
relation functions between particles of different replicas.
In practice a system is considered composed by a mix-
ture of particles from different m copies of the original
glass-former with positions given by the mN vectors in
3 dimensions {xai }, where i ∈ [1, N ] is the particle index
and a ∈ [1,m] the replica index. Particles of the same
replica interact through the usual pair-potential ψ(r) of
the chosen model glass-former, while particles from dif-
ferent replicas do not see each other.
For m = 1 the problem becomes a standard HNC liq-
uid computation in terms of usual pair correlation func-
tion g(x, y) = V 2/N2

∑
i6=j〈δ(x − xai )δ(y − yaj )〉. A

pair correlation function between particles of different
replicas also appears in the general case: g̃(x, y) =
V 2/N2

∑
i,j〈δ(x − xai )δ(y − ybj)〉 with a 6= b. Thermo-

dynamic potentials of the glass-former as a function of
φ (or T ) can be computed using the M-H potential of
replicated system SM-H

m . The entropy of glass-former31 is
s = ∂SM-H

m /∂m
∣∣
m=1

and the configurational entropy31 is

Sc = −m2∂[m−1SM-H
m ]/∂m

∣∣
m=1

.
In the liquid phase, pair correlation functions among dif-
ferent replicas are trivially equal to one, indicating that
replicas are always completely independent. As soon as
thermodynamics starts to be dominated by particularly
stable configurations, a metastable solution (a new sta-
tionary point of the M-H truncated potential) with a non
trivial g̃(x, y) structure appears. Still, particles of differ-
ent replicas do not directly interact, but the glassy multi-
state structure forces different copies of the system to lie
in the same stable configuration and originates effective
inter-replica couplings.
To study RPGT, we deal with a Hard Sphere system
where a fraction c of particles are frozen in an equilibrium
reference configuration. We then study the thermody-
namics of the remaining free particles replicated m times
to probe the formation of a glassy multi-state structure.
Finally we average over the equilibrium configurations of
frozen particles. In practice, to realize this construction
without breaking translational invariance, we will con-
sider a mixture of N(1− c) particles replicated m times
(m species), such that particles interact only within the
same specie ψa,a(r) = ψ(r), and ψa,b(r) = 0, and an ad-
ditional specie (the 0th one) of Nc particles that interact
with all particles in the system: ψ0,a(r) = ψ(r). The m
copies of N(1 − c) particles will hence freely reorganize
in presence of the same (pinned) equilibrium template
provided by the Nc non-replicated particles32.
The entropy of this mixture of m + 1 species can be ex-
pressed as prescribed by the M-H potential for mixtures
(see Ref.19–21) in terms of densities ρα with α ∈ [0,m],
of pair correlation functions gαβ(x, y) and of the Fourier
Transform (FT) of hαβ(x, y) = gαβ(x, y)−1. These func-
tions are determined by the HNC equations

log gαβ(x, y) + ψαβ(x, y) = hαβ(x, y)− cαβ(x, y) (1)
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and by the Ornstein-Zwernicke closures

hαβ(x, y) = cαβ(x, y) +
∑
γ

∫
dwhαγ(x,w)ργcγβ(w, y) .

(2)
For m = 1, assuming symmetry among the m copies of
the free particles, these sets of equations simplify and as
in the unconstrained case only two different pair correla-
tion functions, g(x, y) and g̃(x, y), appear:

log g(x, y) + ψ(x, y) = h(x, y)− c(x, y) (3)

log g̃(x, y) = h̃(x, y)− c̃(x, y) , (4)

with

h(x, y)− c(x, y) = ρ

∫
dwh(x,w)c(w, y) (5)

h̃(x, y)− c̃(x, y) = h(x, y)− c(x, y) + (6)

− (1− c)ρ
∫
dw[h(x,w)− h̃(x,w)][c(w, y)− c̃(w, y)] .

The first ones imply a solution g(r) independent from
g̃(r) and identical to the simple liquid solution33. The
second ones admit two different solutions, g̃L(r) and
g̃G(r), both present in some ranges of the control pa-
rameters φ (or T ) and c. These two solutions encode
respectively the liquid (L) low correlations between par-
ticles of different replicas induced by the presence of a
fraction of Nc particles, and the glass (G) high correla-
tions effectively generated by the multi-state structure.
In the M-H entropy expression we deal with matrices of
pair correlation functions

√
ραρβgαβ with only four differ-

ent elements that, assuming translational and rotational
invariance, is: ρ0g00 = cρg(r), if α 6= 0

√
ρ0ραg0α =√

ρ0ραgα0 =
√
c(1− c)ρg(r), and ραgαα = (1 − c)ρg(r),

and if also β 6= 0
√
ραρβgαβ =

√
ραρβgβα = (1− c)ρg̃(r).

Hence the entropy of glass-former, obtained from the M-
H potential of replicated system SM-H

m , reads

s[φ, c; g, g̃] = −ρ
2

∫
4πr2dr(1− c)

[
(1 + c)g(r)(log(g(r))− 1) + (1− c)g̃(r)(log(g̃(r))− 1) + (1 + c)ψ(r)g(r) + 2

]
+(7)

+
1

2ρ

∫
q

(1− c)

−(1 + c)ρh+ cρh̃+
1

2
(1 + c)ρ2h2 +

1

2
(1− c)ρ2h̃2 + ρ

ch+ (1− c)h̃
1 + ρh

+
log
(

1 + (1− c)ρ(h− h̃)
)

1− c

 ,

where h and h̃ are the FTs of h(x) and h̃(x), and
∫
q

rep-

resents integration in the 3d momentum space34.
Through numerical iterative solution35 of Eqs.(3-6) we
can obtain: g̃L(r) using g̃(r) = 1 as initial condition, and
g̃G(r) when the initial condition is the non-trivial g̃(r)
solution of unconstrained systems. We can also compute
the entropy and hence the stability of the correspond-
ing phases. For φ ∈ (φd, φK) and c = 0 the entropy of
L is larger than the entropy of G and the L solution is
stable. When c increases, for fixed φ, the difference in
entropy between the two phases decreases, vanishes at
cK(φ), and eventually changes sign for c > cK(φ) where
the G solution becomes stable (see Fig.1). Finally, the L
phase disappears beyond the spinodal line36 cs(φ). When
particles are pinned from equilibrium configurations, the
entropy (or more in general the free-energy) mismatch
between the L and G phases coincides with the configura-
tional entropy of the constrained system (see appendices
of Ref.23). Hence, the transition occurring at cK(φ) is
an actual entropy-vanishing transition, the RPGT, with
similar features to the IGT22. For φ < φd, a second
spinodal, cd(φ), of the G phase appears and the RPGT
line continues in this low concentration regime, indicating
that in a HS model the glass solution can be generated
by pinning particles even if it was completely absent in
the unconstrained system. When φ decreases, the two
spinodals cd(φ) and cs(φ) slowly approach the transition

line cK(φ) and the two solutions g̃L(r) and g̃G(r) com-
puted at cK(φ) approach each other (see inset of Fig.1).
The three lines meet in a critical point12,13,15,22 {c∗, φ∗},
where g̃L(r) and g̃G(r) eventually merge. For lower pack-
ing fraction, random pinning only induces trivial pair cor-
relation g̃L(r) among particles.
The HNC study of randomly pinned systems allows us to
obtain the first microscopic results on cooperative length-
scales of non-trivial glass fluctuations and an indirect
evaluation of a key thermodynamic quantity of RFOT:
the free-energy cost of the matching between different
amorphous stable configurations, a.k.a. the amorphous
surface tension. From cK(φ) the glass phase is stable: the
system is able to spontaneously reconstruct the template
configuration starting from the local constraints imposed
by pinned particles. This reveals in the template configu-
ration the presence of a subtle medium-range correlation
that extends over length-scales smaller than the typical
distance ξ between pairs of pinned particles at critical-

ity: ξ(φ) ∼ c−1/dK (φ), where d = 3 is the dimensionality of
the system. In quite perfect agreement with phenomeno-
logical scaling arguments, we obtain for ξ(φ) vs φk − φ a
simple inverse cubic square behavior (see Fig.2), ruled by
the almost linear vanishing of Sc(φ) ∼ φK−φ, except for
mild deviations in the pre-asymptotic range. Moreover,
we notice that pinning a finite fraction of particles leads22

to a decrease of the configurational entropy of the orig-
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FIG. 1. Phase diagram of the randomly pinned Hard Sphere
model in HNC approximations. A RPGT line is expected
to begin in the IGT of unconstrained system and end in a
critical glass transition point {c∗, φ∗}. Two spinodal lines
of the liquid L (cs(φ)) and ideal glass G (cd(φ)) phases are
also reported. The inset shows the g(r), g̃L(r) and g̃G(r)
in correspondence of the cross in the phase diagram (φ =
0.601 > φ∗ and cK(φ = 0.601)).
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FIG. 2. Growth of non-trivial correlation length-scales of
amorphous order. Small corrections to the power law be-
havior with exponent −1/3 are present in the pre-asymptotic
growth of ξ. The much faster increase of lPS follows a power
law divergence with exponent −1. Inset: configurational en-
tropy and an indirect result on the amorphous surface tension
of the unpinned system.

inal system Sc(φ) rougly proportional to c, when c is
small. Hence the configurational entropy for the pinned
system is SPc (φ, c) ' Sc(φ) − cY (φ) and Y (φ) is a mi-
croscopic configurational entropy loss due to the locally
imposed constraint, a quantity complementary22 to the
amorphous surface tension: the interface free-energy cost
between typical amorphous configurations. We can easily
compute its value from a linear fit of the configurational
entropy decrease due to small pinning. We consistently
find that Y is only defined where Sc(φ) exists, hence

above φd, and it moderately increases when the IGT is
approached37,38, as it is shown in the inset of Fig.2. Fi-
nally, we can compute a second cooperative length scale,
called point-to-set, lPS . This length was initially opera-
tively defined by using an alternative pinning procedure
where all the particles are pinned except those in a cavity
of size l. Phenomenological arguments on that construc-
tion gave as a result39 lPS ∼ Y (φ)/Sc(φ) ∼ ξ(φ)d and we
can compute it having obtained Sc(φ) and Y (φ) from the
present HNC computation. In Fig.2 the two cooperative
length scales rescaled to 1 at φd are compared showing a
much faster growth of lPS , highlighting the difference be-
tween the two lengths, and indicating the convenience of
the point-to-set procedure to reveal growth of amorphous
order in real systems. Note that this result warns about
actual important differences between apparently analo-
gous procedures to detect cooperative length scales40.

In this last part, we study the validity of the HNC pic-
ture described above via numerical simulations of HSs.
Despite the advantages of detecting a transition at φ well
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The big triangles represent QL and QG and they are plotted
as function of c in the inset. (Bottom) The pair correlation
functions (for the B particles) at the two maxima for c = 0.16.

below φK, probing numerically the existence of an ideal
transition line cK(φ) in equilibrium is still very hard. In-
deed, dynamics at φ & φd is already very slow, and from
there, characteristic times grow very fast as cK(φ) is ap-
proached. In this study we only attempt to equilibrate
in the liquid part of the phase diagram in Fig.1. Still
we can to obtain an indication of cK(φ) by studying the
relative weight between the (metastable) glass phase G
and the (stable) liquid phase L.
As in the analytical calculations, we chose a reference
configuration C0 from a well equilibrated system at φ =
0.58, and frozen (pin) the positions of cN particles
(c = 0, 0.06, 0.12 and 0.16). Since here we just want
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to show qualitatively that the random pinning does en-
hance the glassy behavior, we will only present results
for a single reference configuration C0, at which we are
able to thermalize up to high values of c (a complete
numerical study of the transition will be presented else-
where41). To tackle with thermalization issues, we apply
the reversible Event Chain Monte Carlo (ECMC) algo-
rithm42,43 (with a slight variation to account for the cN
immobile variables44), which represents a gain of a fac-
tor 10 in times with respect to standard Monte Carlo
(MC) moves. In addition to that, we used the teth-
ered MC method45 to quantify the relative weight be-
tween the L and G phases without waiting for the oc-
currence of spontaneous activated events during the dy-
namics. The tethered strategy45 relies on independent
simulations at fixed values of the order parameter, in
this case the overlap Q(C, C0) between the running con-
figuration C and the reference one C0 (the overlap is de-

fined as Q(C, C0) = 1
N

∑Nb

i (nCi,An
C0
i,A + nCi,Bn

C0
i,B) where

ni are the occupation variables of the Nb small boxes
of size ` . 1/

√
3DA,A: ni = 1 if occupied 0 if not).

One can recover the full probability distribution function,
PC0(Q) = 〈δ(Q−Q(C, C0))〉C0 , being 〈·〉C0 the equilibrium
average being C0 fixed, via a thermodynamic integration
on the mesh of Q simulation-points11. We plot the log-
arithm of PC0(Q) in the top panel of Fig.3 for several
values of c. PC0(Q) always has a maximum at QL(c),
and develops an elbow at high values of Q that becomes
more pronounced as c is increased: a clear indication of
the glassy enhancement upon pinning particles. Since
the second glass maximum is never properly formed, as
it is expected beyond mean-field, we identify the QG(c)
with the position at which the high-Q maximum would

be if an external field ε coupled to the overlap were in-
troduced to make QεL(c) and QεG(c) equally probable (see
Refs.10,11,46 for technical details). The behavior of QL

and QG with c is shown in the inset of Fig.3. The IGT is
given by the point at which the two maxima are equally
probable, which occurs here cK & 0.16. We can study
the corresponding g̃L(r) and g̃G(r) at these two max-
ima (see bottom panel of Fig.3). Now g̃L,G(r) is the
pair-correlation function between particles in configura-
tion C0 and in C when Q = QL,G. In a bidisperse system,
one can compute three different g̃(r): g̃AAL,G(r), g̃ABL,G(r)

and g̃BBL,G(r). We just show the g̃BBL,G(r) computed with

the small particles, since g̃AAL,G(r) displays the same qual-

itative behavior. g̃BBL (r) and g̃BBG (r) show two distinct
behaviours but they appear to be at the edge of merging
as it is expected in proximity of the end of the RPGT
line, see inset in Fig.1.

We presented the microscopic results of first princi-
ple HNC computations and of numerical simulations in a
Hard Sphere model glass-former with a fraction of frozen
particles. The analytical and numerical results confirm
expectations on the existence of a new kind of glass tran-
sition, called RPGT, induced by pinning particles and
provide microscopic information on its occurrence in the
φ − c phase diagram. First microscopic results on non-
trivial static cooperative length scales of glass order and
on the amorphous surface tension also derive from the
HNC computation. Finally first numerical results on
g̃L,G(r) in a bidisperse HS model simulated with an op-
timized Monte-Carlo dynamics have been presented and
confirm the analytic predictions on the appearance of a
glass phase when pinning is increased and on the features
of g̃G(r) compared to the trivial g̃L(r).
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