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Vertex-centred Method to Detect Overlapping
Communities in Evolving Networks

Maël Canu, Marie-Jeanne Lesot and Adrien Revault d’Allonnes

Abstract Finding communities in evolving networks is a difficult task and raises
issues different from the classic static detection case. We introduce an approach
based on the recent vertex-centred paradigm. The proposed algorithm, named Dyn-
LOCNeSs, detects communities by scanning and evaluating each vertex neighbour-
hood by means of a preference measure, using these preferences to handle commu-
nity changes. We also introduce a new vertex neighbourhood preference measure,
CWCN, more efficient than current existing ones in the considered context. Exper-
imental results show the relevance of this measure and the ability of the proposed
approach to detect classical community evolution patterns such as grow-shrink and
merge-split.

1 Introduction

A main task in computational network analysis is community detection, that consists
in identifying denser subnetworks related to a specific role (eg. common interests
in social networks, groups of interacting proteins in biological networks...) Though
there is no universal definition for community, many have been proposed: intuitively,
a community is a group of entities whose members have more relations between
them than with the rest of the network. Many definitions and methods exist and
keep being proposed [9, 3].

Most community detection methods to date were designed to process static net-
works (see Section 2), however complex networks change over time and require
methods able to take into account their dynamic (also referred to as temporal or
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evolutionary) dimension. It has been proved that straightforward use of static com-
munity detection algorithms at each time step (re-computation) is not relevant, in
particular the output partition is not stable [1].

In this paper, we propose two contributions: first, an event-based detection algo-
rithm relying on a vertex-centred process allowing a fast computation and a de-
centralised implementation, as well as a preference measure, Community-based
Weighted Common Neighbours (CWCN) used in the vertex-centred process and
more efficient than existing measures in the considered context.

The rest of this paper is organised as follows. Section 2 presents related works
about static and dynamic community detection methods. Section 3 describes the
principles of the proposed method DynLOCNeSs, and introduces the vertex neigh-
borhood measure CWCN. Experimental results to assess the ability of the method
to capture simple network dynamics are provided in Section 4.

2 Related Works

We first present here static and dynamic community detection methods relevant to
this paper. Other classic methods are reviewed in [9, 27, 3]. Then, we review an
approach more related to the proposed method: the vertex-centred paradigm.

Static Paradigms Numerous static community detection approaches exist in the
literature. They can be generic graph partitioning algorithms or take into account
typical characteristics of the type of network they are designed for, such as power-
law degree and small world effect in the case of social networks.

The main community detection method family is criterion optimisation. A global
or local criterion measuring the quality of a graph partition into communities, such
as the well-known modularity [9], is optimised through several iterations of an al-
gorithm loop until convergence. Many existing criteria yield good quality partition
(compared to a ground truth for example), but suffer from different drawbacks such
as being subject to local extremum or resolution limit [10]. This kind of method is
also known to be time-consuming [9].

More recently, label propagation methods [24, 13, 27] offer a decentralised alter-
native. They rely on propagation of a node identifier (so-called “label”) from each
vertex to every other in the network. However, despite being fast and suitable for
detection in a decentralised environment, they have been found not to be stable as
well [18, 25]. Moreover, they make massive use of propagation and can overflood
the network with unnecessary traffic, especially in a decentralised environment.

Dynamic Paradigms The changeover from the static to the dynamic case is not
easy. In particular, it depends on hypothesis about the graph evolution model. The
most widespread considers a dynamic graph as a collection of static graphs, dis-
cretising the dynamic aspect with one graph instance per time step. Naive static
detection on each time step, named static re-computation, has quickly been found
to be unstable [1], especially when using optimisation methods, because the identi-
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fied community structure varies too much, unrelatedly to the community evolution.
For example, a good modularity value can be achieved on several very different
community partitions of the same graph. To address this issue, concepts like tem-
poral smoothness introduced by Chakrabarti for evolutionary clustering were inte-
grated [6].

But even more than in the static case, taking into account the nature of the con-
sidered networks and the dynamics they are subject to is essential to design efficient
methods [19]. In this context, decentralised methods adaptation to process the dy-
namic case have been found to offer good performance, in terms of partition quality
as well as computational efficiency, also offering the advantage to be easily imple-
mented in parallel frameworks, as it is the case for label propagation [18, 7]. It is also
very popular for applications in specific environments such as small decentralised
mobile networks such as Pocket Switched Networks (PSN), for which community
detection helps to improve network discovery and information routing [15, 21].

Vertex-centred Methods Finally, vertex-centred approaches have gained popular-
ity as a promising new community detection method family. They rely on the prin-
ciple that some vertices in the network are “leaders” or “seeds” and the rest are
followers [26]. Communities are formed by gathering followers around leaders, like
in the Top-Leaders approach [23]. Although this method is more related to k-means
clustering (re-allocating the leaders) than to a true leader-follower design, the in-
troduced idea of expanding communities around leaders considering the potential
preference of a follower vertex (resp. a group of follower vertices) to join a leader
vertex has been exploited by numerous algorithms. YASCA [16] greedily expands
communities around seeds and gather communities using ensemble clustering. LI-
COD [28] starts with a careful selection of leaders before computing ranked com-
munity membership for each follower, then adjusting preferences and memberships
using strategies borrowed from social choice theories until stabilisation. EMc and
PGDc [17] locally expand around seed via EM or Projected Gradient Descent al-
gorithm, using conductance to delimit communities. Canu et al. [4] consider each
vertex as a potential leader and build preference dependencies allowing to form
communities. True leaders are the core of the dependencies were the rest can be
considered as followers.

Vertex-centred methods have also attracted attention to develop new dynamic
community detection algorithms: for instance Evo-Leaders, an adaptation of Top-
Leaders [11], mux-LICOD, an adaptation of LICOD for multiplex networks en-
abling use on evolving networks [14], OLEM/OLTM [22] that locally optimises
modularity and the original approach of [29] based on weighted-edge graphs, using
weight update rules to cope with the dynamicity together with a fitness function to
ensure partition quality.

We can also cite agent-based approaches like iLCD consider each vertex as an
agent and apply dynamic evolution rules to simulate the community formation,
yielding a community structure [5].

The major drawback with these algorithms is that they loose one of the initial
benefits of the leader-based approach, i.e. lightness and flexibility. Built on top of
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Top-Leaders, Evo-Leaders [11] adds a costly split-merge of community at each time
step. mux-LICOD [14] uses degree centrality and shortest path calculation to com-
pare leaders and followers. Shortest path computation can be costly if used for each
vertex to each potential leader. It also relies on an aggregation phase repeated until
stabilisation, though experiments do not reveal whether the stabilisation is fast or
not. Finally, Zakrzewska et al.’s method [29] relies on a fitness function and a set
of ad-hoc update rules and pruning over updates. It is hard to know however how
efficient this policy is, as the experiments proposed by the authors are limited to a
comparison with re-computation of the static counterpart. While faster than static
re-computation (which is generally expected for specifically dynamic-addressed al-
gorithms), the proposed F-score comparison with the set of static re-computed in-
stances is not meaningful, as static re-computation has been proved to give unstable
results [1].

3 Proposed Approach

This section describes the proposed approach, after defining the considered dynam-
icity model. We sketch the principles of the proposed method and describe in details
the algorithm, which requires a vertex neighbourhood preference measure. We dis-
cuss such preference measures and introduce a new one, CWCN.

3.1 Principles

In the following, G = (V,E) denotes an undirected graph, Γ (v) for v ∈ V , the set
of v’s neighbours and dv the degree of v. C denotes the set of detected communities
and C(v) the community of v. S ⊂ V is the leader set, of all vertices being a leader
for at least one other vertex. Each leader s ∈ S has a set of followers F(s) ⊂ V .
Alternatively, a follower f has a set of preferred leaders, denoted L( f ) ⊂ V . Pref-
erence measures between two vertices are denoted here using a preference function
σ : V ×V → R+.

Dynamicity We call time step ti, i ∈ N a date corresponding to a given state of the
graph G. The next time step ti+1 occurs when at least an edge changes (appears or
disappears).The vertex event are treated as consequences of the edge moves: a vertex
addition is captured as a new edge connecting a formerly isolated vertex. A vertex
removal is captured in the same way, as the deletion of the last edge connecting this
vertex to the rest of the graph. This constant vertex set model is widely used [12].

We denote Gi = (V,Ei) the state of G and Ci the state of communities at time ti,
eg. G0 is the initial graph at t0. Note that the time interval |ti−ti−1| is not necessarily
constant.
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3.2 Proposed Algorithm: DynLOCNeSs

We propose DynLOCNeSs (Dynamic Locating of Overlapping Communities in
Nework Structures), a vertex-centred approach to detect communities in dynamic
graphs, more precisely a leader-based approach using a vertex neighbourhood pref-
erence measure. The idea is to change from a batch to an event-based detection
and modification process, and to perform the detection with as little as possible re-
computation. Each vertex must determine whether it should change its leader. If so,
it may also change community.

The proposed method takes as input an initial graph, G0, along with initial com-
munity structure C0 and leader set S0, and only deals with the detection over time.
These initial states can be computed using any leader-based method (see Section 2).
The implementation presented here uses an approach in which each vertex v ∈V is
considered as a potential leader and evaluates its neighbourhood, like iLCD [5] or
Canu et al. [4]. It has the advandage of not pre-selecting a set of leaders, thus not
suffering from the bad seed selection issue.

The main part of the algorithm is the vertex update procedure described in Al-
gorithm 1). It is run when an edge (dis)appears, which is the only event considered
here. The algorithm also relies on a times-step related vertex marking, which is used
to identify whether the leaders or community must be re-computed. The marking is
explained first, and then the vertex update procedure.

Marking A vertex is marked to signify it has changed community, and is meant to
be seen only by the vertex neighbours. The marks made at ti are visible at time ti+1.
Vertices having a marked vertex in their leader set will reconsider their community
membership. This marking is the way to accelerate changes propagation through the
graph, because a community change for a vertex increases the probability of one of
its neighbours to change community too.

Vertex Update Procedure This procedure is run for a vertex v only if a change
occured in its neighbourhood, the only possibility that may lead to a community
change for v. In this case, at time ti, each vertex v locally computes all the pref-
erences between itself and its neighbours, ie. all the σ(v,v′) for all v′ ∈ Γ (v). Be-
cause of the neighbourhood change, a leader could have disappeared or a new one
appeared. If the new preferences values imply an actual change in L(v), the commu-
nity of v is also re-evaluated. If that results in C(v) changing, then v marks itself as
previously stated.

Flexibility and Local Computation. The proposed algorithm only uses local com-
putations from each vertex, thus keeping the vertex-centred methods flexibility ad-
vantage. This allows an easy decentralised implementation in Pregel-like frame-
works (see [20]): the vertex program is simple to write and few informations are
susceptible to be shared between parallel processes.
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Algorithm 1 Vertex Update Procedure for time step ti
Require:

v ∈V , a vertex
Γi(v), its neighbours at time ti

Ensure:
Ci(v), updated community for v

1: if Γi(v) 6= Γi−1(v) then
2: recompute v’s preferred leaders : L(v)← argmaxu∈Γi(v) σ(v,u)
3: if L(v) changes or any u ∈ L(v) is marked then
4: Ci(v)← most frequent community among L(v)
5: if Ci(v) 6=Ci−1(v) then
6: mark each v for time ti
7: end if
8: end if
9: end if

3.3 Preference Measures

The proposed method relies on a vertex neighbourhood preference measure σ : V ×
V → R+, evaluating at which point a vertex v ∈ V is close to a given neighbour
u ∈ Γ (v). It must reflect a closeness or attraction dynamics at work in the graph.
For example, in a social network, σ(v,u) must account for the friendship level of
v towards u. Such closeness often relies on the quantity of common neighbours
between u and v. The measures presented below make use of these quantities.

We review here three measures as presented in [8] (Section 2.2), and pro-
pose a new proposed measure Community-based Weighted Common Neighbours
(CWCN), taking into account known information community. Section 4 presents
results of the algorithm implementing each of these measures. The mathematical
expression is given for each measure for any u,v ∈V .

Jaccard coefficient of neighbours is an adaptation of the well-known Jaccard In-
dex for neighbour vertices in a graph, and compares the number of common neigh-
bours to the total number of neighbours of both u and v. It is defined as follows:

σJac(u,v) =
|Γ (u)∩Γ (v)|
|Γ (u)∪Γ (v)|

(1)

Adamic-Adar is an adaptation of the eponymous measure used for web search
and link prediction. It sums the number of common neighbours between u and v,
using a logarithmic function that gives more importance to “rarer” features, here to
less connected neighbours. It is defined as follows:

σAA(u,v) = ∑
w∈Γ (u)∩Γ (v)

1
log(|Γ (w)|)

(2)

The Preferential Attachment measure is based on the eponymous concept pop-
ularised by Barabási and Albert [2]: the tendency of entities having many connec-
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tions to attract more new connections than weakly connected ones. It multiplies the
neighbourhood sizes of u and v, meaning that preference hugely depends on vertex
degree. Using this measure results in large agglomerations of vertices around hubs.
It is defined as follows:

σPA(u,v) = |Γ (u)|× |Γ (v)| (3)

The proposed measure Community-based Weighted Common Neighbours, is a
common neighbour measure weighted by the degree of the vertex being com-
pared. While similar to the common neighbours |Γ (u)∩Γ (v)|, the degree weighting
scheme “attracts” a vertex much more toward high degree leaders and thus higher
density areas in the graph, related to communities. This follows Barabási & Albert’s
preferential attachment principle [2] but is less strong that the preferential attach-
ment measure described above. It is given by:

σCWCN(u,v) = |Γ (u)∩Γ (v)|×dv (4)

4 Experiments

This section presents several experiments supporting the validity of the proposed
method. It compares the effectiveness of various preference measures presented Sec-
tion 3.3. The goal of these experiments is to prove the ability of DynLOCNeSs (to-
gether with an appropriate preference measure) to capture the dynamics of evolution
of the network, and as such is done on small interpretable graphes, with experiments
similar to [12]. The experiments on big graphs (data mining) are left to future works.

4.1 Protocol

Datasets. We use artificial benchmark graphs to assess the properties and valid-
ity of the proposed algorithm. They are obtained using the generator proposed by
Granell et al. [12]. It keeps the vertex set constant and uses two community evo-
lution patterns: grow-shrink where some communities grow (gain vertices) while
others shrink (lose vertices), and merge/split where merge and splits occur between
communities. It can generate an evolving graph of controlled size and density af-
ter one or both patterns, together with the ground truth community structure. We
specify for each experiment the benchmark parameters used to generate the graphs.

Evaluation Criteria. We use the same criteria for partition comparison as in [12]:
the classical information entropy-based measures Normalised Variation of Infor-
mation (NVI) and Normalised Mutual Information (NMI), both bounded between
[0,1]. However, opposite to the NVI, a NMI value of 1 indicates that the two parti-
tions contain the same information (identical) whereas 0 indicates that the partitions
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Fig. 1 Comparison for the grow-shrink pattern on 100 time steps

are totally dissimilar. A good community structure partition thus minimises the NVI
and maximises the NMI. See the mathematical expressions in [12].

We choose not to use the proposed windowed variant [12] as it does not bring
significant benefit and it is difficult to interpret. As a matter of fact it requires to
carefully select the time window value, leading to significantly impact the relative
performance of two methods if improperly done.

4.2 Preference Measure Comparison

The first experiment is performed in order to compare the effect of the different
preference measures exposed in Section 3.3. We use here the classic planted bissec-
tion model [7, 12]. In this model, the graph is divided into two communities and the
algorithm has to correctly classify each vertex as belonging to one or the other.

The proposed algorithm is tested for each preference measure on two evolution
patterns : grow-shrink and merge-split. For each pattern, 10 instances of a graph of
64 vertices are generated, with intra-community density of 0.5 and inter-community
density of 0.05, for 100 time steps. These parameters are those used in [12]. The
ground truth, shown on Fig. 2a and 4a, is thus made of 2 communities of 32 vertices
each at t0.

Results for the Grow-Shrink pattern are presented on Figures 1 and 2 (the mea-
sures not shown on Figure 4 produce only one community at each time step, there-
fore the colormap is all black) are the mean of NVI and NMI runs over the 10 graphs,
and a colormap visualisation where each pixel color represents the community as-
signment of a vertex (id on the y axis) at a given time step (on the x axis). We can see
that DynLOCNeSs with σCWCN globally detects the grow-shrink bissection pattern,
except that a third community (orange) is identified. This community in fact re-
places the black one at the beginning and the white one at the end: the method takes
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Fig. 2 (Colors online) Comparative visualisation of the community repartition between σJac and
σCWCN evaluated on the grow-shrink process.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90 100

N
V

I

Time step

Adamic−Adar
Jaccard

Preferential Attachment
CWCN

(a) NVI (to be minimised)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  10  20  30  40  50  60  70  80  90 100

N
M

I

Time step

(b) NMI (to be maximised)

Fig. 3 Comparison for the merge-split pattern on 100 time steps

the grow-shrink evolution as a transfer between two communities via a third one,
impacting NVI and NMI values. However, the clearly visible grow-shrink triangle
shapes indicate that the evolution pattern has correctly been identified.

This is less obvious for the method with σJac. It detects 14 communities and
even if the triangle shape can be guessed there is a lot of noise and community
misassignment.

The other two cases, σAA and σPA, are not pictured because they assign every
vertex to a single community, resulting in an entire black colormap.

The merge-split process is presented in Figures 3 (criteria) and 4 (visualisation).
Again, the measures not shown on Figure 4 produce only one community at each
time step, therefore the colormap is all black.

Merge-Split is less successfully detected. We notice that σCWCN finds two com-
munities where σJac finds ten, but the abrupt merge is not correctly identified, al-
though the CWCN variant yields less noise than Jaccard one.

Let aside the merge, the CWCN variant nonetheless achieves better NMI and
NVI than the other methods. The perfect NVI for σAA and σPA during the merge
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Fig. 4 (Colors online) Comparative visualisation of the community repartition between σJac and
σCWCN evaluated on the merge-split process.
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can be explained by the fact that both methods only detect one community at any
time step. This is prejudiced when two communities exist, but it is correct during
the merge. It is a side effect related to the chosen planted bissection, but inherently
denotes a poor quality of detection for these two criteria.

Execution Time Because the input and output of dynamic community detection
algorithms depend on the dynamicity model used, it is difficult to compare to them.
For example, iLCD input is event-based (edge addition or deletion) and its output is
a chronological sequence of community states. A state change can happen any time
an edge is removed. The consequence is that, if launched on a time step sequence
similar to those used to test the proposed algorithm, the community structure can
vary several times during a same time step. Any heuristic to gather all the changes
made during a time step would inevitably erase information and introduce a bias.

Another example, the multi-step adaptation of Louvain algorithm [1] takes a se-
quence of time steps into account, but outputs a unique community structure at the
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end of the process and it is not possible to track the evolution of this structure during
the detection process.

A more neutral comparison axis is the execution time, presented below, chosen
to illustrate the performance of the proposed method : six graphs, of 64, 128, 256,
512, 1024 and 2048 vertices respectively, were generated with the same density as
in the previous experiments: 0.05 intra-community and 0.5 inter-community, over
10 time steps. For example, the 1024 had roughly 375,000 edges to process over the
10 time steps.

We measure the mean time, over 5 runs, taken by DynLOCNeSs and by iLCD to
process each graph. The platform used is a Intel Core i7-2600K CPU @ 3.40GHz
Workstation with 16GB RAM.

Results are presented on Figure 5. We can see that iLCD processing time is sky-
rocketing before the method we propose, which is a significant advantage to process
either large graphs or large number of time steps.

5 Conclusion and Future Works

We propose a new dynamic community detection method, named DynLOCNeSs
that consists in a vertex-centred approach to re-compute only a small local frac-
tion of vertex neighbourhood. The algorithm relies on a vertex neighbourhood pref-
erence measure. We introduced a novel one, CWCN. Experiments on benchmark
graphs show that CWCN yields better results than the other measures and that the
overall method is well able to detect common patterns in community evolution such
as grow-shrink and merge-split.

We are considering additionnal work on the community evolution patterns to
better capture the dynamics and improve the quality of DynLOCNeSs pattern iden-
tification. We are also working on experiments to assess the performance of the
method on large graphs (up to millions of vertices).
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