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Introduction

Internal mobility of a protein is recognized as a basic factor affecting its mechanism of action at the molecular level, and therefore its function. This has motivated the development of various techiques to study protein dynamics, amongst which NMR has the unique capability to provide dynamical information covering time scales ranging from the pico-second to the microsecond and beyond, together with localization at atomic resolution. However, an accurate characterization of internal motions in the protein that goes beyond the mere identification of characteristic time scales and includes possible correlations across the protein, remains an open issue. Molecular dynamics (MD) simulations represent a most valuable tool to contribute to shed some light on these questions.

When analyzing experimental observables of protein dynamics, one of the main issues is to characterize the underlying key motions in relation with some particular aspect of the dynamics probed by the experiments. These problems can be tackled by different approaches that aim at capturing the most important collective motions. Several methods, such as 2 principal components analysis [1][2][3] or essential dynamics, [4][5][6] are based on analyses of the covariance matrix through the projection of the atomic position fluctuations in an all-atom MD trajectory onto the eigenspace of coordinate fluctuations. This allows one to distinguish possibly different domains and to analyze their motions separately. Alternatively, the dynamic behaviour of a protein can be described in a coarse-grained manner by clustering together subsets of atoms in the molecule to form elementary rigid units. As far as coarse-graining is concerned, it is usually performed on structural (spatial proximity) or energetics (free-energy profiles) bases. [7][8][9][10] Since these approaches are more or less explicitly related to the protein structure and the amplitudes of the fluctuations thereof, through the covariance matrix, so are the derived methods to identify motional domains, giving rise to structure-based motional domains.

Moreover, such approaches do not explicitly take into account the time scales at which motions occur. And due to the wide range of time scales usually present, the "correlation maps" obtained by such analyses may significantly depend on the length of the simulation, which can make it difficult to reach stationary correlation matrix through MD simulations. 11 In fact, relative motions of such ensembles occur on an extremely wide range of time scales, including both long times such as those compatible with allostery, and short ones, in the THz range, where collective motions also seem to exist. 12 In this paper, we propose an alternative clustering approach of the ensemble of atoms representing the protein into subsets, that is based exclusively on the characteristic times of their position cross-correlation functions. We define atomic correlation solely on the basis of the characteristic times of their correlation functions, without reference to the amplitudes of the correlated motions. To this aim, we build our protein motion analysis on suitably chosen cross-correlated functions of the atomic coordinates, and we show that the characteristic times of these correlation functions, defined as the area under the curve of that part of the correlation function that decays to zero, can be used to perform a cluster reduction of the protein. A metric in the space of correlation times of the protein is introduced, which is 3 used to define groups of dynamically nearby atoms. This time-windowed clustering analysis was performed on MD simulation trajectories through implementation of the Affinity Propagation algorithm. 13 This allows one to identify subsets of atoms in the protein belonging to common "motional units" that are defined without any direct reference to the protein structure and are unrelated to its structural domains. Our approach is therefore in contrast with widely used covariance matrix methods relying on the analysis of the coordinate fluctuation amplitudes 11,14,15 to determine groups of 'linked' atoms in a protein.

The paper is organized as follows: in Section 2 the computational procedure used for the decomposition of the protein structure into dynamics-correlated domains is presented in details. In Section 3, our method is then applied to a test protein. Results are then discussed and compared with more conventional methods typically used for the rigid-body decomposition of proteins.

Computational framework

In this section, the protocol developed for the determination of time-dependent similarities between pairs of atoms, in terms of effective correlation times, is described. Such a goal requires the definition of the atoms that represent the protein (all atoms, heavy atoms, etc), as well as the type of correlation functions to be used for the analysis (atomic positions, distances, relative orientations, etc).

Reference atoms Since there is no unique choice of the atoms representing a protein, this should be tailored to the problem at hand. In our case, in order to reduce the computational burden of the protocol, a few representative atoms only were selected for each residue to probe the dynamical properties of the latter. This choice may also depend on the experimental observables (e.g. X-ray diffraction, NMR spectroscopy). Moreover, if the investigation is focused, for example, on slow backbone motions, a rather natural set of representative atoms Correlation functions To describe correlated motions several, potentially complementary, observables can be envisaged. The correlation functions of atomic coordinates represent the most straightforward and natural tool to analyse internal motions in proteins. However, coordinate cross-correlation functions do not necessarily decay to zero nor have a constant sign, and are therefore more difficult to handle from the computational point of view.

We therefore introduced an alternative useful and computationally cheap set of observables, which is provided by normalized distance correlation functions:

D ij (t) := u ij (0)|u ij (t) u 2 ij = 1 u 2 ij T M D T M D 0 u ij (τ )u ij (t -τ )dτ, (1) 
where

u ij = r ij -r ij and r ij = |r ij | = |r i -r j |
is the distance between atoms i and j, of coordinates r i and r j . The integral in the above equation is normalized with respect to

u 2 ij = D ij (0)
. These quantities suffer much less from non-ideal sampling than coordinate correlation functions, because they only refer to correlated motions along the direction given by the distance vector r ij . Additionally, they decay monotonously to zero and are easily integrated (see next Section), and at the same time, still account for cross-correlated motions of pairs of atoms. Finally their calculation do not require the global motions of the protein to be removed beforehand. This is particularly interesting, as it prevents the introduction of the additional assumption that global and local motions are statistically uncorrelated. This condition may not be satisfied for small molecules in which overall tumbling happens in the same time scale of internal motions. For these reasons, such distance correlation functions are less prone to statistical and numerical problems and are therefore good candidates to probe internal motions.

Convergence of correlation functions An automated and reliable procedure for the assessment of convergence of the correlation functions is therefore designed, and performed 5 T md /t max large enough to limit the effects of the finite value of T md and thus to allow the correlation functions to be computed with good enough statistics. 16 In our definition a correlation function of the type defined in eq. ( 1) has converged if its long-time tail reaches a plateau value around zero without significant large fluctuations.

To automatically detect these properties we evaluated the average value (α), the standard deviation (σ) and the linear slope (ρ = |D ij (t max ) -D ij (t maxt plateau )|/t plateau ) of each CF's long-time tail. These quantities are calculated over the time range t plateau , with t plateau ∼ 0.1t max .

The zero thresholds of α, σ and ρ are given by the set of control parameters {ǫ α , ǫ σ , ǫ ρ }.

The procedure applied to each CF is described below and illustrated in the flow-chart in Fig. 1.

1 If α < ǫ α , σ < ǫ σ and ρ < ǫ ρ then a close-to-zero plateau has been reached and convergence is assumed if also step 5 is verified.

2 If α ≥ ǫ α or σ ≥ ǫ tail , then the CF does not reach convergence.

3 Else if α < ǫ α and ρ ≥ ǫ ρ , then protocol proceeds to step 4. 

= Γ CF [k + 1] -Γ CF [k].
6 Effective correlation times As mentioned in the introduction, the usual approach to the study of internal motion correlations in protein makes use of time-independent quantities, such as the covariance matrix, for instance. However, true time independence cannot always be ascertained, due to the inherent time limitations of MD simulations. In this respect, it has been pointed out by many authors that covariance matrix computed on simulations of different durations yield different correlation patterns. 11,14,15 This severely impair the interpretation of MD simulations in terms of protein dynamics. 11 Here, we propose to analyze motion correlation in proteins through atom pair distance correlation functions. The latter provides a characterization of pairwise atomic motions in the molecule through an effective correlation time τ ij , which defines the characteristic time over which correlated dynamics takes place between a pair of atoms i and j:

ACS
τ ij := +∞ 0 (D ij (t) -D ij (∞)) dt (2) 
Note that for an exponentially decay of D ij (t) -D ij (∞) = e -t/τ ij , the characteristic time defined by Eq. 2 is exactly the exponential decay rate. Thus, τ ij is computed from the atom pair distance correlation functions obtained from the MD simulations, leading to a cross-correlation time map (CCTM). In the following examples, the analysis is restricted to backbone C α carbon atoms, which are thus connected in a pairwise manner through their effective correlation times τ ij .

Measures of (Dis)similarity One can reconstruct ensembles of atoms with mutually correlated motions, together with the associated time scales, by using the complete set of effective cross-correlation times extracted from an MD simulation. In this new framework, the i th atom is represented by its set Λ i of cross-correlation times with all other atoms 8 Page 8 of 30
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Journal of Chemical Theory and Computation j = 1, . . . , N , j = i: Λ i = {τ i1 , τ i2 , ..., τ ij , τ iN }. Thus, each Λ i defines a point in the space of the cross-correlation times of the protein, in which a metric is defined. A distance between points Λ m , Λ n , m, n = 1, . . . , N in this correlation-time space therefore allows to define proximities between atoms according to their sets of cross-correlated times.

One of the most robust and efficient method of comparing point sets of arbitrary dimension is the Hausdorff distance, [START_REF] Hausdorff | Set theory[END_REF][START_REF] Vlasblom | [END_REF] which allows to measure the distance of two set of points by taking into account also the similarity of their shapes. [START_REF] Hausdorff | Set theory[END_REF] The Hausdorff distance between atoms n and m is defined as follows,

d H (m, n) = max sup τ mj ∈Λm d(τ mj , Λ n ), sup τ nj ∈Λn d(τ nj , Λ m ) , (3) 
where

d(τ mj , Λ n ) = inf τ nk ∈Λn (τ mj -τ nk ) 2 . (4) 
From these pairwise Hausdorff distances, a distance, or similarity, matrix,

S = [s ij ] N xN = [d H (m, n)] N xN
is then constructed for the protein from MD simulations. The similarity matrix is obviously symmetric and with only zeroes on the diagonal.

Clustering of residues

The partitioning of a protein structure into dynamically independent domains can be essentially treated as a problem of graph clustering. Indeed, one may in this context represent a protein structure as a graph G(N , E), comprising N nodes connected by E edges. Two nodes of the graph are connected by an edge when a certain degree of similarity can be defined between them. In the problem at hand, the nodes N represent selected atoms or residues that represent the structure of the protein.

The clustering of nodes (residues) is performed here by using the Affinity Propagation algorithm (AP). 13 The latter is recently applied to several diverse kinds of problems, and is shown to be faster and more accurate than other common clustering algorithms. In the authors' wording, "AP detects the most representative nodes by exchanging real-valued messages among all nodes in the graph". 13 Nodes are then grouped with their most representative exemplar, i.e., around which nodes will cluster. In the following we briefly present the main principles of its implementation.

Firstly, each node is "labelled" by a preference value P according to which this node should, or should not be chosen as an exemplar by the affinity propagation algorithm. If no prior hypothesis can be made as to which nodes should be favored as exemplars, all nodes are initially assigned the same P value. The magnitude of P can be used to control the granularity of clusters, e.g. the extent to which the algorithm can describe the graph/network in terms of discrete components. The preliminary search of the optimal value of P for the applications discussed in the present work is reported as Supplementary Material.

Secondly, AP performs an iterative search of the so-called "responsibility" r(i, k) and "availability" a(i, k) parameters, for each pair of nodes i and k in the graph G(N , E). The responsibility r(i, k) is a measure of how well suited node k is as an exemplar for node i; and the "availability" a(i, k) reflects the level of evidence that i should choose k as an exemplar. In the AP search, these quantities are iterated according to the following algorithm:

r(i, k) ← s(i, k) -max k ′ :k ′ =k {a(i, k ′ ) + s(i, k ′ )} (5) a(i, k) ← min    0, r(k, k) + i ′ :i ′ / ∈{i,k} max {0, r(i ′ , k)}    (6) 
In Eq. ( 5) s(i, k) = -s ik , where s ik is the element of the similarity matrix S for the two nodes i and k, and the diagonal element s(i, i) contains the preference for node i. The node k that maximizes a(i, k) + r(i, k) is the exemplar for node i or is itself the exemplar, if

k = i.
It is worth noting here that negative values for s(i, k) are used to enhance the quality of clustering, as prescribed in the original work by Frey et al. 13 Equations ( 5) and ( 6 Assessment of clustering robustness In order to assess the quality of the clustering protocol we calculated the silhouette, S(i), of each node (residue) which is defined as follows: 19

S(i) = B(i) -A(i) max(A(i), B(i)) . (7) 
Here A(i) is the 'within' dissimilarity, i.e. the average distance (in the Hausdorff metric)

between residue i and all other residues belonging to the same cluster as i; B(i) is the 'between' dissimilarity, i.e. the smallest average distance between residue i and all other residues belonging to other clusters. This definition implies that -1 ≤ S(i) ≤ 1, and it is seen that S(i) represents a practical and efficient way to classify clusters according to their extent and the definiteness of their boundaries: S(i) → 1 implies that A(i) is much smaller than B(i) and therefore means that residue i is well-clustered; on the contrary, if S(i) → -1, then A(i) is much larger than B(i). In this case, residue i is probably mis-classified, likely because it lies at a boundary between clusters. In addition, we also use in the following the silhouette overall score S = 1 N N S(i), which is just the average silhouette over the residues, to synthetically describe the overall quality of the clustering.

Through-Space Proximity The usual segmentation of protein structures in domains on the basis of knowledge of structural or dynamic properties raises the question as to whether the connectedness of domains should be assumed "a priori" or should emerge from the clustering algorithm. 20 From the viewpoint adopted in this work, there is no fundamental reason why residues sharing the same dynamical properties should also be contiguous in space or neighbours in the sequence. However, if decomposition is performed to provide a coarse-grained model, the space contiguity of residues that belong to the same domain may In this work we test the effects induced by introducing the penalty function:

f (n, m) = 1 + ǫ 1 - 1 2 (1 + tanh(R c -r nm )) (8) 
into equation ( 3). Here ǫ is strength factor, whose value is typically of the same order of magnitude than the largest dissimilarity in S and R c is the cut-off distance between atoms n and m.

Results and discussion

We applied our method to the analysis of the C-Terminal Headpiece subdomain of Human Villin (HP35). The internal dynamics of this protein has been extensively studied both experimentally [21][22][23][24][25] and by computational methods. 26,27 For the present study, we used a ∼ 1µs molecular dynamics simulation. The choice of these rather small proteins was motivated by the need to explore a wide range of motions while keeping the size of the data to be analysed to a reasonable value. This is the case in particular for HP35, where MD simulations shows the experimentally well-documented 28 large motions of the N-terminal α-helix (see Fig. S2 andS3 ) with respect to the rest of the molecule .

Moreover the relatively small size of the protein makes the existence of well defined structural domains a priori unlikely. Nevertheless, we show in the following the existence of clearly identified dynamical units or dynamical domains determined solely by the effective times of the associated inter-atomic distance correlation functions. In this section, the method is presented in its most straightforward implementation. Moreover, for sake of comparison with alternative, more conventional, approaches based on structural information, additional assumptions involving local interactions and space connectedness are also investigated. And a comparison with a protein clustering technique using a rigid-block decomposition will be discussed. The 35-residue polypeptide HP35 is composed of three short α-helices that has been often used as a model system for computational and theoretical methods since the pioneering work by Duan and Kollman. 29 It has been also extensively investigated experimentally, as it is a good candidate for folding studies, which in this case occurs in both fast (< 100 ns) and slower (< 1µs) regimes. 27 In this work, HP35 is used as a model system to assess if, and to what extent, macromolecules can be decomposed into structural fragments solely on the basis of, possibly lacunary, internal dynamics information. can be sampled with good enough statistics only for time lags shorter than approximately 0.1 × T md , 16 whilst more recent analyses 30 indicate that, on a model of rotational diffusion, a ratio T md /τ < 50 would make a correct estimate of τ difficult. Therefore, in our work, the convergence criterion, which ensures that a correlation function has reached a plateau value, implies that this plateau is actually reached for time lags smaller than ∼ 0.1 × T md . And of course, the computation of the effective correlation time requires such a convergence. For a decaying exponential with time constant τ , a plateau is reached at a time lag of approximately 5τ , which is verified for τ ≈ 30 ns in our simulations. Thus, the surprisingly small ratio of correlation functions admissible for our clustering analysis is nevertheless consistent with accepted statistical quality criteria.

The similarity (Hausdorff distance) matrix obtained from these correlation functions is shown in Fig. 2. It is seen that the motions of the residues located in the center of the primary sequence of HP35 (residues 12-27) form a uniform block of nodes of the protein graph that are characterized by relative motions taking place on similar time scales. This is indicated by the region in blue of the similarity matrix S. Alternatively, residues that belong to the N-terminus are (in the correlation time space of the protein) significantly distant from the latter, as the color scale (green to red) indicates. Interestingly, these observations are consistent the above analysis of the cross-correlation time map. Thus, the metric in the space of correlation times of the protein, in the form of the Hausdorff distance between residues, captures the information conveyed by the cross-correlation times, and therefore provides a sound mathematical tool for their analyses.

However, at this point, the similarity matrix (Eq.3) between points (atoms/residues), shown in Fig. 2, only provides a qualitative view of HP35 in terms of units of dynamics defined on the basis of similar time scale properties. The precise extent of these dynamical units must still be determined. This was achieved through application of the Affinity Propagation (AP) clustering algorithm presented in section 2 to the HP35 similarity matrix. The result of our clustering protocol on HP35 obtained with these settings are shown in Figure 3, and analysed as follows. HP35 is decomposed into two clusters. One of them (cluster A) encompasses the central part of the protein, while the second one (cluster B) is essentially localized near the N-and C-termini. The protein partition into this set of two clusters obtained here agrees with the fuzzy picture suggested by the correlation-time correlation maps. But beyond a simple qualitative representation, the approach developed in this work provides a sound methodology to perform such an analysis. The relevance and quality of the obtained dynamics cluster decomposition were assessed by the computation of the silhouette S(i) for each residue of the protein during the AP procedure. Interestingly, all the S(i) values are positive, and most of them are larger than 0.6, which indicates that residues are clearly well-clustered. Only a small number of relatively lower values (S(i) < 0.4) were observed. It is also worth noting that in two regions (Gln8-Ala9 and Lys24-Asn27) lower silhouette values correspond to discontinuities of both clusters. This may indeed occur and should not be surprising, as no additional continuity constraint with respect to the residue sequence was imposed on the clusters. However, for residues Gln8-Ala9 the uncertainty of cluster assignement, as indicated by values of S(i) that are very close to zero or slightly negative, which is not trivial to interpret, but may be at least in part ascribed to the lack of data. In fact, as seen in Fig. 2, only few cross-correlated functions could be found for these residues. Alternatively, in region Lys24-Asn27 clustering results exhibit a strong correlation with the local secondary structure of the protein. Indeed, in the α-helix encompassed by this region, the pairs of residues Pro21-Gln25 and Trp23-Asn27 are assigned to cluster A, while Gln26-Lys30 and Lys24-Leu28 are associated to cluster B. The resulting pattern is reminiscent of the α-helix {i, i + 4}-periodicity for the backbone hydrogen bonding network.

This indicates that in Lys24-Asn27 local non-covalent interactions have stronger effect than long-range interactions in determining the assignment to a specific domain. These observations are also consistent with root-mean-squared fluctuations found in our MD simulation (see Figure S3). More interesting is the fact that the short time scales are common to inter-cluster and to the intra-cluster A, suggesting that the fast time scale contribution to correlation functions between clusters mainly originates from residues in cluster A. This is of particular interest, as it shows that the connectivity of the atoms defined by time dependence properties, i.e., based on the effective correlation times of the cross-correlation functions, and provided by the AP clustering algorithm, may rely on some statistical decorrelation of the internal molecular motions, without actual time scale separation as a basis

for subdividing the molecule into independent parts. Therefore, in the perspective of a coarse-graining description of the internal protein dynamics, this implies that such dynamical properties as domain motions, for instance, could be studied in terms of the respective dynamics of the clusters as distinct protein units, and without reference to the structure of the protein. These results therefore suggest that it is possible to empirically characterize distinct motional units in proteins without invoking a priori assumptions on the motions' statistics. As already mentioned, most decomposition methods of proteins in terms of quasi-rigid domains are based on the analysis of the covariance matrix or on similarity matrices derived from it. 15,31,32 Although results from these methods may show local significant differences, In these structure-based methods, the simulation length may be a limiting factor to obtain stationary covariance matrices, hence impairing detailed comparison with our method. 11 In such cases, it may be useful to investigate alternative structure-based approaches. As an example, a rigid-block clustering of HP35 through the PiSQRD method 20,[START_REF] Aleksiev | [END_REF] The optimal decomposition corresponds to rmsf value that is 80% of that of the complete network. 20,[START_REF] Aleksiev | [END_REF] We first performed the analysis of HP35 using PiSQRD with this usual criterion, which led to a decomposition into four clusters. If instead one choses to retain five clusters, the result accounts for 86% of the protein mobility. This is illustrated in Fig. 6 PiSQRD belongs to a class of clustering methods based on the structure of the protein. 36 In order to elucidate possible connections between such commonly used approach and the method introduced in this work, we investigated the effect of structure-based information.

Complementarity with other approaches

Thus, we used the penalty function defined in equation ( 8) for the calculation of the similarity matrix S, where the Hausdorff distances between atoms m and n were multiplied by the weight f (n, m). The strength parameter ǫ was set to a value that was approximately one order of magnitude larger than the maximal dissimilarity found in S. Besides, the cut-off distance was assigned different values. Results of the effect of changing R c on the cluster decomposition of the protein are illustrated in Figure 6 (panel A) in the case of HP35.

When the penalty function is introduced into the distance calculation, the number of clusters is consistently increased with respect to results shown in Figure 3. For values lower than R c = 0.6 nm, the quality of the clusters deteriorated, as attested by a low S. However, when R c = 0.7 nm, the silhouette score increases and the dispersion over the S(i) is slightly reduced. As R c increases beyond 0.7 nm, the number of clusters slowly decreases, whilst S does not significantly vary.

It is useful to note that R c = 0.7 nm is the typical distance between neighbouring C α in proteins, and for this reason has been used in various structure-based, coarse-grained analyses of protein dynamics. 7,9,10,[37][38][39][40] We therefore performed our correlation time clustering method using this kind of spatial constraint, by introducing the penalty function of Eq. 8

with the value R c = 0.7 nm. In this case S(i) values are quite large (S(i) ≥ 0.5) except for four residues (Thr13, Pro14, Leu20, Leu28), for which S(i) ∼ 0.2 and three residues This represents a clear information loss as far as mutual atom dynamics is concerned.

These results show that using a "generic" structural information, such as the cut-off radius R c = 0.7 nm, which is related to the typical number of atom neighbours in a protein, drives the predictions of our approach towards those of structure-based models. However, the persistent differences between our and the PiSQRD model highlights the fact that the threedimensional structure of the protein is an important, not the only element of its dynamics.

Also, it shows that mixing these two different and independent kinds of information seems to impair the specificity of the perspective of our correlation-time based, and "structure-free" model of dynamic clustering.

Therefore, these findings suggest that the introduction of a penalty function to favour through-space proximity of atoms that belongs to the same domain/cluster should be avoided to obtaina domain decomposition that is based on relaxation dynamics.

Conclusion

In this paper we proposed a new computational approach, based on time domain properties of interatomic correlation functions, in contrast with usual methods based on configurational characteristics. To our knowledge, this is the first computational approach that performs atom clustering of proteins in terms of cross-correlation time scales only, without any structural information.

Interatomic distance correlation functions calculated from state-of-the-art molecular dynamics simulations were used to estimate the effective cross-correlation times between pairs of atoms. Despite the relatively sparse data obtained from these calculations, our clustering approach performed well, and possibly misassigned atoms were identified through a low silouhette score.

The proposed method of atom clustering in proteins on the basis of the time scales of the motions should provide the basis for an adaptive strategy to achieve coarse-graining of proteins where the identified atom clusters are considered as subunits of the protein, the dynamics of which are independent of one another. Such clustering could therefore be used in the derivation of coarse-grained stochastic models for flexible macromolecules, and this approach may serve as a basis for the development of a unified framework for the derivation of dynamic models allowing to extend the range of time scales accessed by MD simulations. Thus, in the perspective of protein dynamics studies, the introduction of timescale dependent domain decomposition of proteins seems advantageous as compared with methods based on rigid block approximations. 
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 430 could be the backbone C α or amide N atoms. In the present work, backbone motions of Paragon Plus Environment Journal of Chemical Theory and Computation different proteins are based on C α as reference atoms.

  Paragon Plus Environment Journal of Chemical Theory and Computation procedure, we find that the values {ǫ α = 0.2, ǫ σ = 5. • 10 -5 , ǫ ρ = 1. • 10 -6 } which give the highest consensus. This set is used for the analyses shown in this work.
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 11 be taken into account to increase the efficiency of theoretical models. The introduction of a penalty function assigns larger weights to short range interactions and therefore emphasizes the effects of local dissimilarities in the resulting clustering procedure.
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 2133021430 Figure 2: Distance cross-correlation map of the protein HP35. Top left: the binary map of cross-correlation times shows in black the existence of a well-converged correlation function, as determined according to the criteria discussed in Materals and Methods; top right: the time-correlation map of interatomic distances is color-coded as indicated on the scale (in units of ps); bottom left: histogram of cross-correlation effective times; bottom right : the similarity matrix as defined by the distance in Eq. (3) in the text.
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 16 the other hand, histograms where the correlation times involving nodes of different clusters were excluded; and the histogram of correlation times involving nodes of different clusters only, were computed. These histograms of correlation times within and between clusters A and B, are depicted in Figure 4. Inspection of Fig. 4(a) shows that the distributions of correlation times scales τ i in clusters A and B are rather different. Cluster B shows a largest contribution at faster (≤ 5 ns) time scales, whereas cluster A presents a more scattered distribution in the 10 -20 ns range. In addition, only cluster A has very long correlation times, extending over ∼ 30 ns. Alternatively, it is seen from Fig.4(b) that, when intra-and inter-cluster correlation times are distinguished, the histograms of both clusters become similar on faster time-scales.

18 nanoseconds.

 18 figure 5 also suggests a strong relation between the blank areas in CCTM and the negatively correlated areas in DCCM. This may indicate that the anti-correlated motions in these regions of the protein have larger time-scale of those spanned by our MD simulation and for this they cannot be correctly sampled and yield well-converged cross-correlation functions.

a

  general consensus among them can often be outlined. The results obtained for HP35 from three such methods are shown in the lower panel of Figure 5. The comparison with our method shows a clear consensus between the two approaches : HP35 can be decomposed into two domains, a fast-relaxing one localised in the central part of the protein and a slow-relaxing domain which encompasses the two termini of the molecule. Overall, these observations illustrate the complementarity of the structure-based and the dynamic-based approaches.

was performed (Figure 6 21 Page 21 of 30 ACS

 62130 panel c)). The latter is a most widespread method for the detection of rigid domains based on structural information and Gaussian network models. Network models rely on (harmonic) pair potentials that are defined through the three-dimensional structure of the protein. Therefore, such an approach explicitly favors the clustering of the protein in terms of regions of the molecule that are contiguous in space, through the use of a penalty function that truncates the range of interactions. The quality of the clustering obtained by Paragon Plus EnvironmentJournal of Chemical Theory and Computationthis method is usually assessed by comparing the root mean squared fluctuation (rmsf) of the coarse-grained protein model to the one obtained from the complete network of atoms.

Figure 7 :

 7 Figure 7: Effects of the through-space proximity: Global distributions of correlation time in each of the four cluster found in HP35.
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  follows. The numerical correlation functions (CF) presented in the previous paragraph approximate the corresponding ideal correlation functions (T md = ∞). The analyses of numerical CF are thus restricted to time lags shorter than a maximum value t max with

4

  Compute the integrals Γ CF and Γ tail of the CF in the ranges [0 : t max ] and [t maxt tail : The integral of CF is computed at N check different time lags in the interval [0.5t max :t max ] and convergence is considered to be reached only if ∆ k+1 ≤ ∆ k for all k = 1...N check , where ∆ k

	t max ], respectively (Here and in the following, integrals are numerically calculated as
	the area under the curve using the Simpson's rule). Then, if Γ CF ≤ 4Γ tail , the integral
	Γ CF is assumed to be dominated by noise and CF has not reached convergence. Else,
	if Γ CF ≥ 4Γ tail , a supplementary verification at the next and final step.
	5
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Material and Methods

All the findings discussed in this manuscript are based on the analysis of correlation functions. The latter were calculated numerically from all-atom molecular dynamics trajectories. The MD simulations analyzed in this work were performed with the GROMACS software. 41 The atomic interactions in the protein were modeled by the AMBER99SB-ILDN force field, 42 while water molecules were modeled by the TIP3P forcefield. 43 The initial configuration of HP35 was taken from the solution NMR structure (PDB: 1UNC 25 ). The simulated system was built by adding 3547 water molecules in a cubic box of 4.83 nm of edge and neutralized with 2 Cl -ions. The system was minimized in order to remove possible clashes, then was equilibrated in an NPT ensemble using Berendsen barostat with 2 ps time constant and the modified Berendsen thermostat at 1 bar of pressure and 300 K of temperature. We used a 9 Å cutoff radius for range-limited non bonded interactions. Electrostatics was evaluated by the Particle Mesh Ewald method every time-step using a cubic spline interpolation. The following scheme was used (1ns of overall time-length): an initial position restraint of 1000 kJ/mol on backbone atoms was progressively decreased by 200 kJ/mol every 200 ps. Finally, a 1.2µs long simulation was performed using a 2 fs timestep and atomic coordinates were saved every 1ps.