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Lifestyle correlates of overweight in adults:
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project)
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Helga Bárdos6, Harry Rutter5, Martin McKee5, Johannes Brug3, Ilse De Bourdeaudhuij4, Jeroen Lakerveld3

and Jean-Michel Oppert1,7*

Abstract

Background: Obesity-related lifestyle behaviors usually co-exist but few studies have examined their simultaneous
relation with body weight. This study aimed to identify the hierarchy of lifestyle-related behaviors associated with
being overweight in adults, and to examine subgroups so identified.

Methods: Data were obtained from a cross-sectional survey conducted across 60 urban neighborhoods in 5
European urban regions between February and September 2014. Data on socio-demographics, physical activity,
sedentary behaviors, eating habits, smoking, alcohol consumption, and sleep duration were collected by
questionnaire. Participants also reported their weight and height. A recursive partitioning tree approach (CART) was
applied to identify both main correlates of overweight and lifestyle subgroups.

Results: In 5295 adults, mean (SD) body mass index (BMI) was 25.2 (4.5) kg/m2, and 46.0 % were overweight (BMI
≥25 kg/m2). CART analysis showed that among all lifestyle-related behaviors examined, the first identified correlate
was sitting time while watching television, followed by smoking status. Different combinations of lifestyle-related
behaviors (prolonged daily television viewing, former smoking, short sleep, lower vegetable consumption, and
lower physical activity) were associated with a higher likelihood of being overweight, revealing 10 subgroups.
Members of four subgroups with overweight prevalence >50 % were mainly males, older adults, with lower
education, and living in greener neighborhoods with low residential density.

Conclusion: Sedentary behavior while watching television was identified as the most important correlate of being
overweight. Delineating the hierarchy of correlates provides a better understanding of lifestyle-related behavior
combinations which may assist in targeting preventative strategies aimed at tackling obesity.

Keywords: CART, Eating habits, Lifestyle-related behaviors, Obesity, Physical activity, Sedentary behavior, Sleep,
Smoking status, Television viewing
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Background
Excess body weight is determined by multiple factors
acting in combination, including genetic, metabolic and
behavioral factors, as well as more upstream socio-
economic influences and built environment characteris-
tics [1]. Those that are modifiable provide important
potential targets for preventive interventions [2]. Diet
and physical activity are recognized as the most prox-
imal determinants of energy balance [3] but there is
growing recognition of the role of sedentary behaviors
(e.g., sitting time), independent of physical activity [4–7].
The influences of smoking and alcohol intake on body
weight are also well documented [8–10]. More recently, a
role has also been suggested for sleep duration [11–13].
The inter-relationship of these obesity-related lifestyle

behaviors has stimulated interest in co-occurrence pat-
terns [14, 15]. Several studies have used explorative
data-driven methods, such as cluster analysis or latent
class analysis to examine the relations between diet,
physical activity, and sedentary behaviors, independently
of the health outcome of interest [6, 16, 17]. Smoking
status and alcohol consumption have been included in
some analyses [18–20]. The variety of methodologies
used make it difficult to ascertain how these factors cor-
relate with each other and what this means for body
weight and health. Additionally, previous studies have
not considered contextual factors such as socio-
economic characteristics and the built environment, in-
creasingly recognized as major upstream determinants
of overweight [21].
A recursive partitioning method—the classification

and regression tree (CART) approach [22]—makes it
possible to examine how a set of risk factors jointly in-
fluence the risk of an outcome such as overweight. This
approach has previously been used to assess the risk of
overweight in children [23, 24] and the risk of reduced
mobility in older obese adults [25].
This study sought to identify the hierarchy of lifestyle-

related behaviors associated with overweight in Euro-
pean adults, and to examine how subgroups identified
differed by socio-demographic and built environment
characteristics.

Methods
Study design and sampling
This study, part of the EU-funded SPOTLIGHT project
[26], was conducted in five European urban regions:
Ghent and suburbs (Belgium), Paris and inner suburbs
(France), Budapest and suburbs (Hungary), the Randstad
(a conurbation including Amsterdam, Rotterdam, the
Hague and Utrecht in the Netherlands) and Greater
London (United Kingdom). Sampling of neighborhoods
and recruitment of participants have been described in
detail elsewhere [27]. Briefly, neighborhood sampling

was based on a combination of residential density and
socio-economic status (SES) data at the neighborhood
level. This resulted in four pre-specified neighborhood
types: low SES/low residential density, low SES/high
residential density, high SES/low residential density and
high SES/high residential density. In each country, three
neighborhoods of each neighborhood type were ran-
domly sampled (i.e. 12 neighborhoods per country, 60
neighborhoods in total). Subsequently, adult inhabitants
(≥18 years) were invited to participate in a survey. A
total of 6037 individuals participated in the study be-
tween February and September 2014. The study was ap-
proved by the corresponding local ethics committees of
participating countries and all participants in the survey
provided informed consent.

Measures
Body mass index
Body mass index (BMI) was calculated by dividing self-
reported weight (kg) by the square of the self-reported
height (m2). Adults were categorized as overweight if
their BMI was ≥25 kg/m2 [1].

Socio-demographic data
Socio-demographic variables included age, gender and
educational level (defined as ‘lower’ [from less than pri-
mary to higher secondary education] and ‘higher’ [col-
lege or university level] to allow comparison between
country-specific education systems).

Physical activity
Physical activity during the last 7 days was documented
using questions from the long version of the validated
International Physical Activity Questionnaire (IPAQ)
[28]. Good reliability (Spearman correlation coefficients
ranged from 0.46 to 0.96) and acceptable criterion valid-
ity (median ρ of about 0.30) have been found for this
questionnaire in a 12 country study [28]. Transport-
related and leisure time physical activity were estimated
(in minutes per day −min/d) by multiplying the fre-
quency (number of days in the last 7 days) and duration
(average time/d).

Sedentary behavior
The validated Marshall questionnaire was used to collect
sedentary behavior data during the last 7 days [29].
Acceptable criterion validity (Spearman correlation
coefficient greater than or equal to 0.50 for watching
TV, and using a computer at home during weekdays)
has been demonstrated. Lowest validity coefficients were
found for other leisure-time activities and transport-
related sedentary behaviors during weekend days (correl-
ation coefficients ranged from 0.15 to 0.42) [29]. Time
spent (min/d) sedentary for travel, television (TV),
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computer and other leisure time activities (e.g., socializ-
ing, movies but not including TV and computer use)
was averaged over a week.

Eating habits
Current eating habits were assessed using common food
frequency questions on consumption of fruit, vegetables,
fish, sweets, fast-food, sugar-sweetened beverages, and
alcohol. Response options were ‘once a week or less’, ‘2
times a week’, ‘3 times a week’, ‘4 times a week’, ‘5 times a
week’, ‘6 times a week’, ‘7 times a week’, ‘twice a day’, and
‘more than twice a day’.

Smoking status
Participants reported their smoking status: current,
former or never.

Sleep duration
Participants provided information on their hours of sleep
during an average night. The response options ranged
from 4 to 16 h/night (in half-hour intervals).

Neighborhood clusters
Four neighborhood clusters were previously identified
based on data related to food and physical activity fea-
tures of the built environment collected by a Google
Street View-based virtual audit performed in 59 study
neighborhoods [30]. The clusters were labeled: cluster 1
(n = 33) ‘green neighborhoods with low residential dens-
ity’, cluster 2 (n = 16) ‘neighborhoods supportive of active
mobility’, cluster 3 (n = 7) ‘high residential density neigh-
borhoods with food and recreational facilities’, and clus-
ter 4 (n = 3) ‘high residential density neighborhoods with
low level of aesthetics’.

Data analysis
CART approach
Recursive partitioning was used to identify the hierarchy
and combinations of all lifestyle-related behaviors de-
scribed in the Measures section that best differentiated
overweight (≥25 kg/m2) vs. non-overweight (<25 kg/m2)
participants.
Recursive partitioning is an algorithm of the CART

nonparametric statistical method [22]. This approach
has been used in different research fields, such as genetic
epidemiology [31], and produced greater homogeneity in
subgroups than has been achieved with other ap-
proaches, such as regression models [32]. Recursive par-
titioning is a step-by-step process by which a decision
tree is built by either splitting or not splitting each node
of the tree into two daughter nodes. Each possible split
among all variables present at each node is considered.
The tree is constructed by the algorithm asking a se-
quence of hierarchical Boolean (yes/no) questions (e.g.,

is Xi ≤ θj ?, where Xi is a candidate variable, and θj is a
cut-off ) generating descendant nodes [33]. The cut-off
in the candidate variable that produced the maximal dif-
ferentiation between individuals is retained, and used to
split the sample into two subgroups (i.e. two daughter
nodes). This process is repeated for each new subgroup
found. Every variable is a potential candidate at each
stage in growing the tree, so some variables may appear
several times, using different cut-offs. The best way to
split the data is determined by the Gini impurity index.
This index ranges from 0 (pure node, i.e. all observations
within the node assigned to a single target class—e.g., a
node with a class distribution [0;1]) to 1 (impure node,
i.e. mixed target classes—e.g., a node with a class distri-
bution [0.5;0.5]). The complete tree is pruned by a se-
quential node-splitting process to avoid over-fitting the
data; a sequence of sub-trees is generated and compared.
The optimum tree is obtained using both cross-
validation and cost-complexity pruning method. The
cost-complexity pruning method assesses the balance
between misclassification costs and complexity of the
sub-tree. Additionally, each terminal node was set to re-
quire a minimum of 200 subjects.

Lifestyle subgroups
Characteristics of the subgroups identified through the
CART analysis were compared. All variables included in
the CART analysis were considered, in addition to socio-
demographic and built environment characteristics (i.e.
urban region, neighborhood type—pre-specified neigh-
borhood type, and residential density and SES levels ex-
amined separately—and neighborhood cluster).
Chi-squared tests, and Kruskal-Wallis tests with post-

hoc Bonferroni-Dunn test were used to examine differ-
ences between subgroups.

Multilevel regression analyses
Because participants were nested within neighborhoods,
the likelihood of being overweight for each partitioning
variable was estimated by a multilevel logistic regression
model (neighborhood identifier included as a random ef-
fect) adjusted for potential confounders (gender, age,
education level, and neighborhood type).
Statistical analyses were performed using R version 3.2

[34] (‘R-part’ package [35]), and STATA software (release
13.0; Stata Corporation, College Station, TX, USA).

Results
Characteristics of the study population
Results are given for 5295 individuals for whom BMI
was available. The study population comprised 55.8 %
females, with a mean (standard deviation-SD) age of
51.7 (16.4) years; 54 % were highly educated. Mean BMI
was 25.2 (4.5) kg/m2, and 46.0 % adults were overweight.
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Compared to non-overweight subjects, overweight
adults were more likely to be male, older, less educated,
former smokers, short sleepers, less physically active,
eating less fruit and vegetables, and spending more time
sitting, especially when viewing TV. The prevalence of
overweight ranged from 38.3 % in Greater Paris to
53.2 % in Greater Budapest (Table 1).

CART analysis
The final tree contained 10 nodes (i.e. 10 subgroups)
and had a classification error of 35.4 %. The 6 variables
that were retained as the most important for discrimin-
ating overweight status were in the following order: sed-
entary time while watching TV, smoking status, sleep
duration, leisure time physical activity, and vegetable in-
take (Fig. 1).
The odds of being overweight were 61 % (41–85 %)

higher for those reporting longer time watching TV
(≥142 min/d) than others.
Longer time spent watching TV (≥142 min/d) and be-

ing a former smoker were important correlates of over-
weight. Current or non-smokers who spent a long time
watching TV and were less physically active during leis-
ure time were also at risk of being overweight.
Among adults watching less TV (<142 min/d) and be-

ing former smokers, those who were short sleepers
(<7 h/night) were more likely to be overweight com-
pared to long sleepers. Protective factors against being
overweight among current and non-smokers included:
short time watching TV, being physically active during
leisure time, and eating vegetables every day.

Lifestyle subgroups
Table 2 shows the characteristics of the subgroups identi-
fied by CART. The proportion of overweight subjects
ranged from 20 % (Subgroup 1) to 65.4 % (Subgroup 10).
Overall, participants from the various subgroups differed
in terms of lifestyle-related behaviors as well as socio-
demographic and built environment characteristics.
Subgroup 1 (n = 315, mean [SD] BMI: 22.7 [3.4] kg/m2)

consisted of the youngest (40.8 [13.6] years-old), and
highly educated participants (78.4 %). This subgroup re-
ported the lowest time spent watching TV (mean [SD]:
5.2 [7.9] min/day, median: 0 min/day), the highest mean
frequency of eating fruits and vegetables. The highest per-
centage of participants living in neighborhoods that were
characterized by high SES and high residential density was
observed in this subgroup, as was the lowest percentage of
participants living in ‘green neighborhoods with low resi-
dential density’.
In 4 subgroups (7, 8, 9, and 10), overweight prevalence

was >50 %. Members lived mainly in low SES neighbor-
hoods. Subgroup 7 grouped less physically active individ-
uals, who ate fruits, vegetables, and fish less frequently.

Subgroup 8 members were short sleepers. The greatest
percentage of individuals living in low residential neigh-
borhoods was reported in this subgroup. Subgroup 9 in-
cluded the greatest percentage of current smokers,
individuals who reported long mean time watching TV
(mean [SD]: 306.0 [131.3] min/day, median: 257 min/
day), and high mean consumption of sugar-sweetened
beverages (4.9 [5.7] times/week, median: 3.0 times/week).
Subgroup 10 (n = 676, mean [SD] BMI = 27.2 [5.0]

kg/m2) included mainly males, older (59.6 [14.4]
years-old) and low educated adults (64.5 %), who re-
ported high alcohol consumption and living in ‘green
neighborhoods with low residential density’.

Discussion
This study investigated the hierarchy and combination
of lifestyle-related behaviors in relation to the prevalence
of overweight in European adults. Prolonged sitting
while watching TV, being a former smoker, short sleep,
lower levels of physical activity and lower vegetable con-
sumption were the lifestyle-behaviors that identified the
subgroups with highest likelihood of being overweight.
High-risk subgroups included mainly males, older and
less well educated adults living in greener neighborhoods
with low residential density.
Although it is well recognized that overweight and

obesity are multifactorial in origin [1, 2], few studies
have examined the joint relation of lifestyle-related
behaviors with overweight in adults. In this study, a hier-
archy of lifestyle-related behaviors in identifying sub-
groups at risk was established through a visual chart
showing how risk factors are inter-related. The tree indi-
cated that the most important factor was sitting while
watching TV. This variable appeared several times at dif-
ferent levels of the tree, underlying its importance. The
variable that followed was smoking status, in both tree
branches, and no additional variable appeared to explain
the risk for overweight in former smokers (among those
with longer duration of watching TV), suggesting its
very high impact. Sleep duration, leisure time physical
activity and vegetable intake appeared at later stages in
the tree, suggesting they would have less importance
compared to sedentary behavior and smoking status. Re-
lations between the lifestyle-related behaviors and over-
weight status were confirmed in multilevel regression
analyses taking into account potential confounding fac-
tors. The findings also suggested nonlinear relations be-
tween lifestyle-related behaviors and overweight. Indeed,
subgroups who watched TV a lot (>180 min/d) had
lower odds of being overweight than subgroups who
watched less TV (between 24 min/d and 142 min/d).
Although it has been suggested that a combination of

several sedentary behavior variables is appropriate to
capture sedentary lifestyle [36], only TV viewing was
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Table 1 Characteristics of the overall study population and according to weight status in the SPOTLIGHT study

n (%) or median (IQR) Overall
N = 5295
100 %

Non-overweighta

n = 2862
54.0 %

Overweightb

n = 2433
46.0 %

p†

Socio-demographic characteristics

Gender, (n = 5246)

Male 2316 (44.2) 1059 (37.3) 1257 (52.2) <0.001

Female 2930 (55.8) 1780 (62.7) 1150 (47.8)

Age (in years), (n = 5256) 52.0 (26.0) 47.0 (27.0) 57.0 (23.0) <0.001

Education, (n = 5191)

High level 2804 (54.0) 1756 (62.4) 1048 (44.1) <0.001

Low level 2387 (46.0) 1058 (37.6) 1329 (55.9)

BMI (kg/m2), (n = 5295) 24.6 (5.5) 22.3 (2.9) 27.8 (4.2) <0.001

Lifestyle-related behaviors

Smoking status, (n = 5247)

Never 3049 (58.1) 1783 (62.8) 1266 (52.6) <0.001

Former 1464 (27.9) 637 (22.5) 827 (34.3)

Current 734 (14.0) 418 (14.7) 316 (13.1)

Physical activity

Transport-related physical activity (min/d), (n = 5274) 26.0 (59.0) 27.0 (57.0) 26.0 (61.0) 0.012

Leisure-time physical activity (min/d), (n = 5274) 26.0 (44.0) 26.0 (44.0) 21.0 (47.0) <0.001

Sedentary behaviors

Television time (min/d), (n = 4481) 137.0 (120.0) 120.0 (120.0) 154.0 (146.0) <0.001

Computer time (min/d), (n = 4358) 77.0 (103.0) 77.0 (98.0) 91.0 (108.0) <0.001

Other leisure sitting time (min/d), (n = 3942) 64.0 (112.0) 69.0 (112.0) 60.0 (129.0) 0.064

Transport-related sitting time (min/d), (n = 4100) 60.0 (73.0) 60.0 (71.0) 60.0 (74.0) <0.001

Eating habits

Fruit intake (times per week), (n = 5198) 7.0 (3.0) 7.0 (3.0) 7.0 (3.0) <0.001

Vegetables intake (times per week), (n = 5253) 7.0 (2.0) 7.0 (1.0) 7.0 (2.0) <0.001

Fish intake (times per week), (n = 5187) 0.5 (1.5) 0.5 (1.5) 0.5 (1.5) 0.116

Fast-food intake (times per week), (n = 4803) 0.5 (0) 0.5 (0) 0.5 (0) 0.213

Sweets intake (times per week), (n = 5149) 3.0 (5.5) 3.0 (5.5) 3.0 (4.5) 0.004

Sugar-sweetened beverages consumption (times per week), (n = 5073) 2.0 (5.5) 2.0 (5.5) 2.0 (6.5) 0.349

Alcohol consumption (times per week), (n = 5011) 2.0 (5.5) 3.0 (5.5) 2.0 (5.5) 0.487

Sleep duration (hours/night), (n = 5269) 7.0 (1.5) 7.0 (1.5) 7.0 (2.0) <0.001

Environmental factors

Urban region, (n = 5295)

Ghent region 1651 (31.2) 850 (29.7) 801 (32.9) <0.001

Greater Paris 737 (13.9) 455 (15.9) 282 (11.6)

Greater Budapest 824 (15.5) 386 (13.5) 438 (18.0)

Randstad 1412 (26.7) 804 (28.1) 608 (25.0)

Greater London 671 (12.7) 367 (12.8) 304 (12.5)

Neighborhood type, (n = 5223)

HSES/HRD 1269 (24.3) 725 (25.7) 544 (22.5) <0.001

LSES/HRD 1230 (23.5) 635 (22.5) 595 (24.8)

HSES/LRD 1325 (25.4) 764 (27.1) 561 (23.5)

LSES/LRD 1399 (26.8) 699 (24.7) 700 (29.2)
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retained among several variables related to sedentary
time. The greater importance of TV viewing has been
previously suggested in cross-sectional studies [37–39].
Given the lack of evidence from prospective studies, the
issue of bidirectional or reverse causality has been raised
[40]. In the Nurses’ Health study, each 2 h/d increment
in TV watching was associated with a 23 % [17–30 %]
increased risk of obesity. However, the risk of developing
obesity was attenuated after adjustment for baseline

BMI [5]. These findings may suggest that, even at base-
line, women who watched more TV were already on a
trajectory to become obese [5]. Heavier individuals at
baseline could have a preference for sedentary habits
due to their higher body weight. TV viewing is not
only an indicator of sedentary behavior but may
represent a potential surrogate of other behaviors
affecting the energy balance e.g., via increased snack-
ing behavior [7, 41].

Table 1 Characteristics of the overall study population and according to weight status in the SPOTLIGHT study (Continued)

Neighborhood cluster, (n = 4618)

Green neighborhood with LRD 3022 (65.6) 1588 (63.2) 1434 (68.1) 0.001

Neighborhood supportive of active mobility 1150 (24.9) 648 (25.8) 502 (23.9)

HRD neighborhood with food and recreational facilities 265 (5.7) 162 (6.4) 103 (4.9)

HRD neighborhood with low level of aesthetics 181 (3.9) 115 (4.6) 66 (3.1)

Abbreviations: BMI body mass index, H- high-, IQR interquartile range, L- low-, RD residential density, SD standard deviation, SES socio-economic status
aNon-overweight: BMI <25 kg/m2

bOverweight: BMI ≥25 kg/m2

†p-value from Chi-squared or Kruskal-Wallis test comparing overweight and non-overweight subjects
Boldface indicates statistical significance

Fig. 1 Recursive partitioning analysis (CART) of lifestyle-related behaviors for overweight status in SPOTLIGHT study (N = 5295). In dark grey are
the identified subgroups with overweight prevalence above 50 %, and in light grey, those with overweight prevalence below 50 %. OR [95 %],
odds ratios and confidence intervals at 95 % for each partitioning variable obtained by multilevel logistic regression model (dependent variable:
overweight [yes/no], independent variables: partitioning variable identified by CART, gender, age, education, neighborhood type, and neighbor-
hood identifier included as a random effect) are also provided. Abbreviations: h/n hours per night, min/d minutes per day, t/w times per week
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Table 2 Profiles of the subgroups identified by recursive partitioning analysis (CART) in the SPOTLIGHT study

N = 5295, n (%) or median (IQR) Subgroup 1
n = 315
(5.9)

Subgroup 2
n = 1400
(26.4)

Subgroup 3
n = 353
(6.7)

Subgroup 4
n = 497
(9.4)

Subgroup 5
n = 545
(10.3)

Subgroup 6
n = 360 (6.8)

Subgroup 7
n = 268
(5.1)

Subgroup 8
n = 243 (4.6)

Subgroup 9
n = 638 (12.0)

Subgroup 10
n = 676 (12.8)

p†

Socio-demographic characteristics

Gender

Male 133 (42.5) 550 (39.5) 122 (34.8) 201 (40.5) 251 (46.5) 165 (46.3) 121 (45.3) 136 (57.1) 242 (38.7) 395 (59.2) <0.001

Female 180 (57.5) 842 (60.5) 229 (65.2) 295 (59.5) 289 (53.5) 191 (53.7) 146 (54.7) 102 (42.9) 384 (61.3) 272 (40.8)

Age (in years) 38.0 (20.0)a 47.0
(24.0)a,b

49.0
(25.5)a,c

52.0
(27.0)a,b,d

51.5
(25.0)a,b,e

60.5
(22.0)a,b,c,d,e,f

45.0
(21.0)a,d,e,f,g

53.0
(24.0)a,b,g,h

57.0
(24.0)a,b,c,d,g,i

63.0
(18.0)a,b,c,d,e,g,h,i

<0.001

Education

High level 243 (78.4) 893 (65.3) 209 (60.6) 251 (51.3) 344 (63.9) 134 (37.6) 128 (50.2) 139 (58.4) 228 (36.1) 235 (35.5) <0.001

Low level 67 (21.6) 474 (34.7) 136 (39.4) 238 (48.7) 194 (36.1) 222 (62.4) 127 (49.8) 99 (41.6) 403 (63.9) 427 (64.5)

Overweight 63 (20.0) 482 (34.4) 148 (41.9) 220 (44.3) 243 (44.6) 170 (47.2) 146 (54.5) 142 (58.4) 377 (59.1) 442 (65.4) <0.001

BMI (kg/m2) 22.3 (4.0)a 23.5 (4.9)a,b 24.0 (5.1)a,c 24.5
(5.4)a,b,d

24.6
(4.9)a,b,e

24.7 (5.3)a,b,f 25.3
(5.2)a,b,c,e,g

25.5
(6.0)a,b,c,d,e

25.8
(6.1)a,b,c,d,e,f,g,h

26.7
(5.5)a,b,c,d,e,f,g,h

<0.001

Lifestyle-related behaviors

Tobacco smoke status

No smoker 262 (83.4) 1 189 (85.7) 279 (79.7) 403 (81.9) 0 263 (74.7) 194 (74.3) 0 459 (73.2) 0 <0.001

Former 0 0 0 0 545 (100) 0 0 243 (100) 0 676 (100)

Current 52 (16.6) 198 (14.3) 71 (20.3) 89 (18.1) 0 89 (25.3) 67 (25.7) 0 168 (26.8) 0

Physical activity

Transport-related physical activity (min/d) 26.0 (53.0)a 29.0 (52.0)b 13.0
(40.0)a,b,c

26.0
(53.0)c,d

26.0
(55.0)c,e

77.0
(94.0)a,b,c,d,e,f

9.0
(30.0)a,b,d,e,f,g

20.0
(51.0)c,f,g,h

19.0 (51.0)b,c,f,g,i 36.0
(93.0)b,c,e,f,g,h,i

<0.001

Leisure-time physical activity (min/d) 26.0 (40.0)a 36.0
(39.0)a,b

0 (4.0)a,b,c 26.0
(45.0)b,c,d

26.0
(42.0)b,c,e

86.0
(60.0)a,b,c,d,e,f

0
(4.0)a,b,d,e,f,g

17.0
(53.0)b,c,f,g,h

9.0
(20.0)a,b,c,d,e,f,g,h,i

26.0
(54.0)b,c,d,f,g,i

<0.001

Domain-specific sedentary behaviors

Television time (min/d) 0 (13.0)a 94.0
(60.0)a,b

90.0
(60.0)a,c

167.0
(26.0)a,b,c,d

94.0
(60.0)a,d,e

257.0
(120.0)a,b,c,d,e,f

94.0
(60.0)a,d,f,g

86.5
(64.0)a,d,f,h

257.0
(120.0)a,b,c,d,e,g,h,i

219.0
(120.0)a,b,c,d,e,f,g,i

<0.001

Computer time (min/d) 77.0
(136.5)a

91.2
(89.3)a,b

60.0
(90.0)a,c

77.0
(94.0)b,c,d

60.0
(81.0)a,e

129.0
(14.6)a,b,c,d,e,f

77.0 (98.0)
b,c,e,f,g

77.0
(73.5)b,c,e,f,h

120.0
(146.0)a,b,c,d,e,g,h

103.0
(120.0)a,b,c,d,e,f,g,h

<0.001

Other leisure sitting time (min/d) 77.0
(106.0)a

69.0 (93.0)a 51.0
(90.0)a,b,c

60.0
(129.0)c,d

69.0
(94.10)c,d,e

94.0
(158.5)a,b,c,d,e,f

51.0
(120.0)a,b,e,f

60.0 (107.0)f 63.0 (146.0)c,f 60.0 (146.0)b,c,f <0.001

Transport-related sitting time (min/d) 60.0 (76.0)a 60.0 (68.0)b 50.0
(60.0)b,c

60.0 (67.0)c 53.0 (62.0)e 77.0
(103.0)a,b,c,d,e

60.0 (59.0)e,f 60.0 (73.0)c 61.0 (90.0)c,d 93.8 (102.1)b,c,d,f <0.001
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Table 2 Profiles of the subgroups identified by recursive partitioning analysis (CART) in the SPOTLIGHT study (Continued)

Eating habits

Fruit intake (times per week) 7.0 (10.0)a 7.0 (3.0)b 7.0 (3.0)c 7.0 (3.0)b,d 7.0 (3.0)e 7.0 (3.0)f 4.0
(5.0)a,b,c,d,e,f,g

7.0 (3.0)g,h 6.0
(4.0)a,b,c,e,f,g,h,i

7.0 (3.0)g,i <0.001

Vegetable intake (times per week) 7.0 (2.0)a 7.0 (1.0)b 7.0 (0)a,b,c 7.0 (2.0)a,c,d 7.0 (1.0)c,e 7.0 (2.0)a,b,c,e,f 5.0
(3.0)a,b,c,d,e,f,g

7.0 (2.0)c,g,h 7.0 (2.0)a,b,c,e,g,h,i 7.0 (2.0)a,b,c,g,i <0.001

Fish intake (times per week) 0.5 (1.5)a 0.5 (1.5)b 0.5 (1.5)c 0.5 (1.5)d 0.5 (1.5)e 0.5 (1.5)f 0.5
(0)a,b,c,d,e,f,g

0.5 (1.5)g 0.5 (1.5)b,f,g 0.5 (1.5)g <0.001

Fast-food intake (times per week) 0.5 (0) 0.5 (0)a 0.5 (0)b 0.5 (0)c 0.5 (0)d 0.5 (0) 0.5 (0)a,b,c,d 0.5 (0)e 0.5 (0) 0.5 (0)e 0.001

Sweets intake (times per week) 3.0 (5.5) 3.0 (5.5) 3.0 (6.5) 3.0 (4.5) 3.0 (4.5)a 3.0 (5.5) 3.0 (4.5) 3.0 (5.5) 3.0 (4.5)a,b 3.0 (5.5)b 0.038

Sugar-sweetened beverages
consumption (times per week)

0.5 (4.5)a 2.0 (4.5)b 2.0 (6.5)c 2.0 (6.5)a,d 0.5 (3.5)c,d,e 2.0 (6.5)e 2.0 (6.5)a,e,f 2.0 (4.5)f,g 3.0 (6.5)a,b,
d,e,g,h

2.0 (6.5)h <0.001

Alcohol consumption (times per week) 2.0 (4.5)a 2.0 (4.5)b 2.0 (4.5)c 2.0 (4.5)d 4.0
(6.5)a,b,c,d,e

2.5 (5.5)d 0.5 (4.5)e,f 4.0 (6.5)a,b,c,d 2.0 (5.5)e,g 3.0 (6.5)a,b,c,d,f <0.001

Sleep (hours/night) 7.0 (1.0)a 7.0 (1.5)b 7.0 (1.5)c 7.0 (1.5)d 7.5
(1.0)a,b,c,d,e

7.0 (2.0)e,f 7.0 (1.5)e,g 6.0
(0.5)a,b,c,d,e,f,g,h

7.0 (2.0)e,h 7.0 (2.0)e,h <0.001

Environmental factors

Urban region

Ghent region 62 (19.7) 364 (26.0) 170 (48.2) 150 (30.2) 148 (27.2) 137 (38.1) 71 (26.5) 57 (23.4) 256 (40.1) 236 (34.9) <0.001

Greater Paris 67 (21.3) 231 (16.5) 59 (16.7) 64 (12.9) 86 (15.8) 25 (6.9) 40 (14.9) 42 (17.3) 63 (9.9) 60 (8.9)

Greater Budapest 90 (28.6) 219 (15.6) 27 (7.6) 77 (15.5) 95 (17.4) 44 (12.2) 66 (24.6) 50 (20.6) 65 (10.2) 91 (13.4)

Randstad 62 (19.6) 393 (28.1) 70 (19.8) 137 (27.5) 153 (28.1) 115 (31.9) 66 (24.6) 62 (25.5) 162 (25.4) 192 (28.4)

Greater London 34 (10.8) 193 (13.8) 27 (7.7) 69 (13.9) 63 (11.5) 39 (10.9) 25 (9.4) 32 (13.2) 92 (14.4) 97 (14.4)

Neighborhood type

HSES/HRD 92 (29.5) 378 (27.3) 86 (24.9) 109 (22.2) 127 (23.4) 86 (24.8) 47 (17.7) 54 (22.3) 142 (22.9) 148 (22.0) <0.001

LSES/HRD 69 (22.1) 305 (22.1) 64 (18.4) 133 (27.0) 114 (21.0) 96 (27.6) 75 (28.3) 50 (20.7) 165 (26.7) 159 (23.6)

HSES/LRD 72 (23.1) 381 (27.5) 100 (28.8) 118 (24.0) 154 (28.4) 77 (22.2) 54 (20.4) 71 (29.3) 129 (20.8) 169 (25.1)

LSES/LRD 79 (25.3) 319 (23.1) 97 (28.0) 132 (26.8) 148 (27.2) 88 (25.4) 89 (33.6) 67 (27.7) 183 (29.6) 197 (29.3)

Residential density neighborhood

Low 151 (48.4) 700 (50.6) 197 (56.8) 250 (50.8) 302 (55.6) 165 (47.5) 143 (54.0) 138 (57.0) 312 (50.4) 366 (54.4) 0.054

High 161 (51.6) 683 (49.4) 150 (43.2) 242 (49.2) 241 (44.4) 182 (52.5) 122 (46.0) 104 (43.0) 307 (49.6) 307 (45.6)

SES neighborhood

Low 148 (47.4) 624 (45.1) 161 (46.4) 265 (53.9) 262 (48.2) 184 (53.0) 164 (61.9) 117 (48.3) 348 (56.2) 356 (52.9) <0.001

High 164 (52.6) 759 (54.9) 186 (53.6) 227 (46.1) 281 (51.8) 163 (47.0) 101 (38.1) 125 (51.7) 271 (43.8) 317 (47.1)

Neighborhood cluster

Green neighb. with LRD 147 (53.1) 752 (62.1) 224 (70.2) 295 (68.6) 307 (63.7) 215 (68.5) 160 (68.7) 128 (62.5) 374 (68.4) 420 (70.1) <0.001
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Table 2 Profiles of the subgroups identified by recursive partitioning analysis (CART) in the SPOTLIGHT study (Continued)

Neighb. supportive of active mobility 80 (28.8) 325 (26.8) 66 (20.7) 94 (21.9) 127 (26.4) 76 (24.2) 52 (22.3) 55 (26.8) 135 (24.7) 140 (23.4)

HRD neighb. with food and
recreational facilities

29 (10.5) 86 (7.1) 9 (2.8) 23 (5.3) 29 (6.0) 17 (5.4) 6 (2.6) 15 (7.3) 26 (4.7) 25 (4.2)

HRD neighb. with low level of aesthetics 21 (7.6) 49 (4.0) 20 (6.3) 18 (4.2) 19 (3.9) 6 (1.9) 15 (6.4) 7 (3.4) 12 (2.2) 14 (2.3)

Abbreviations: BMI body mass index, H- high-, IQR interquartile range, L- low-, neighb. neighborhood, RD residential density, SES socio-economic status
†p-value from Chi-square test or Kruskal-Wallis
a-i: refer to pairwise comparisons (p-value of Dunn’s test with Bonferroni adjustment < 0.05)
Boldface indicates statistical significance
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Former smokers were more likely to be overweight
than both current and never smokers. These results are
consistent with previous findings [10, 42–44]. Weight
gain after quitting smoking has been related to the fact
that nicotine acts as an appetite suppressant and quitting
may be associated with increased energy intake [45, 46].
The average weight gain is about 4.5 kg, 1 year after
quitting [46]. In the NHANES survey, weight gained
over 10-years was significantly higher in former smokers
compared to current smokers (8.4 kg vs. 3.5 kg, after ad-
justment for age, gender, ethnicity, education level) [44].
A recent study has estimated that smoking cessation
leads to an average increase of 1.5–1.7 BMI units and
that the drop in smoking may explain up to 14 % of
the rise in obesity prevalence in recent decades [47].
Weight gain after smoking cessation was less pro-
nounced when number of years since smoking cessa-
tion increased [43], and negatively associated with
socio-economic status [48].
Short sleep duration was found to be associated

with an increased risk of overweight. The hypothe-
sized underlying mechanisms include thermoregula-
tion, hunger hormone regulation changes, and/or an
impact on physical activity and sedentary behaviors
[49–52]. Short sleep duration was associated with
other lifestyle-related behaviors, such as TV or com-
puter use [52, 53], a correlation between time spent
sleeping, physical activity and sedentary behavior was
documented [54]. High leisure time physical activity
and intake of vegetables were associated with lower
prevalence of overweight. These behaviors—which
tend to co-occur—are both well recognized as healthy
lifestyle behaviors [55, 56]. Interestingly, some cut-offs
found are close to thresholds previously reported
and/or recommended guidelines (e.g., 2 h/d watching
TV [5, 38], 7–9 h of sleep [57]). In addition, at least
one variable from each component of lifestyle (phys-
ical activity, sedentary behavior, sleep duration, eating
habits, and smoking status) was identified as a correl-
ate of overweight. Moreover, subgroups at high-risk of
overweight were characterized by at least one un-
healthy lifestyle behavior. These findings emphasize
how all components of lifestyle are important to con-
sider and a combination of unfavorable lifestyle fac-
tors may predict overweight in adults.
Lifestyle subgroups identified by CART differed in

terms of socio-demographic factors. The subgroup with
the highest prevalence of overweight comprised mainly
males, older adults and lower educated adults. These
findings are in line with previous studies [58, 59]. Indi-
viduals with higher educational background may be
more informed about the health consequences of their
lifestyles and have the resources to take action, leading
to healthier lifestyle behaviors [60]. The subgroups

identified also varied across urban regions: 72.2 % of
French respondents were in the subgroups with lower
overweight prevalence (subgroups 1–6). Looking at
differences at neighborhood level, as previously docu-
mented [61], some neighborhoods seem more obeso-
genic than others, especially low SES and low residential
density neighborhoods. Socio-spatial disparities in obes-
ity prevalence at census-tract level have been previously
documented with lower prevalence in neighborhoods
with high median home values [61]. Low SES neighbor-
hoods have been shown to have less supportive environ-
mental conditions for active transportation [21].
Moreover, a greater percentage of ‘green neighborhoods
with low residential density’ was observed in subgroups
with high overweight prevalence. Greener neighbor-
hoods with low residential density may be less support-
ive of active transport and more oriented towards
motorized transport. Use of motorized transportation
may be linked to weight gain [62]. Conversely, in high
residential density neighborhoods, many destinations are
easily accessed since located at shorter distance, and
parking a car may be more difficult therefore encour-
aging active transportation (e.g., walking, cycling, public
transport) [21]. Thus, adults living in neighborhoods
unsupportive of physical activity and far away from des-
tinations may be more likely to remain indoors and
watch TV.
This study has several strengths: a relatively large

sample size, assessment of a number of lifestyle-
related variables using standardized procedures, a sur-
vey performed in different geographical areas across
Europe, and the use of a nonparametric method
(CART) providing a visual representation of lifestyle-
related behavior inter-relationships. This study has
some limitations, caution is thus needed when inter-
preting and generalizing the results. Due to its cross-
sectional nature, temporal relations between over-
weight and lifestyle behaviors cannot be assessed. As
data were self-reported, potential (recall) bias, and
possible underestimation or overestimation of vari-
ables (e.g., weight/height [63], sedentary behaviors
[29, 64], physical activity [64–66]) cannot be ex-
cluded. Although behaviors such as eating habits were
not recorded in enough detail to assess the role of
more detailed dietary aspects, such as macronutrient
intake, many aspects of lifestyle currently thought to
be associated with body weight were covered (seden-
tary behavior, physical activity, eating habits, alcohol
consumption, smoking status, and sleep duration).
The CART method is data-driven, and the misclassifi-
cation error was about 35 %. In the literature, it is
not uncommon to report a misclassification error
around 30 % and this might be higher for health
promotion-based intervention strategies [67].
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Conclusions
Low levels of TV viewing, non-smoking, high leisure
time physical activity, high vegetable consumption, and
longer sleep duration were identified as components of a
healthy lifestyle associated with decreased risk of excess
weight in adults. The results specifically point to the im-
portance of sedentary habits as a key component to
focus on when addressing the multiple factors associated
with excess weight in preventive interventions.
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