M. Weigt, R. A. White, H. Szurmant, J. A. Hoch, and T. Hwa, Identification of direct residue contacts in protein-protein interaction by message passing, Proceedings of the National Academy of Sciences, vol.106, issue.1, pp.67-72, 2009.
DOI : 10.1073/pnas.0805923106

T. Mora, A. M. Walczak, W. Bialek, and C. G. Callan, Maximum entropy models for antibody diversity, Proceedings of the National Academy of Sciences, vol.107, issue.12, pp.5405-5410, 2010.
DOI : 10.1073/pnas.1001705107

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2851784

A. L. Ferguson, Translating HIV Sequences into Quantitative Fitness Landscapes Predicts Viral Vulnerabilities for Rational Immunogen Design, Immunity, vol.38, issue.3, pp.606-617, 2013.
DOI : 10.1016/j.immuni.2012.11.022

T. R. Lezon, J. R. Banavar, M. Cieplak, A. Maritan, and N. Fedoroff, Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns, Proceedings of the National Academy of Sciences, vol.103, issue.50, pp.19033-19038, 2006.
DOI : 10.1073/pnas.0609152103

E. Schneidman, M. J. Berry, R. Segev, and W. Bialek, Weak pairwise correlations imply strongly correlated network states in a neural population, Nature, vol.37, issue.7087, pp.1007-1012, 2006.
DOI : 10.1038/nature04701

S. Cocco, S. Leibler, and R. Monasson, Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods, Proceedings of the National Academy of Sciences, vol.106, issue.33, pp.14058-14062, 2009.
DOI : 10.1073/pnas.0906705106

W. Bialek, Statistical mechanics for natural flocks of birds, Proceedings of the National Academy of Sciences, vol.109, issue.13, pp.4786-4791, 2012.
DOI : 10.1073/pnas.1118633109

E. Jaynes, Information Theory and Statistical Mechanics, Physical Review, vol.106, issue.4, 1957.
DOI : 10.1103/PhysRev.106.620

Y. Roudi, J. Tyrcha, and J. Hertz, Ising model for neural data: Model quality and approximate methods for extracting functional connectivity, Physical Review E, vol.79, issue.5, p.51915, 2009.
DOI : 10.1103/PhysRevE.79.051915

V. Sessak and R. Monasson, Small-correlation expansions for the inverse Ising problem, Journal of Physics A: Mathematical and Theoretical, vol.42, issue.5, p.55001, 2009.
DOI : 10.1088/1751-8113/42/5/055001

URL : https://hal.archives-ouvertes.fr/hal-00340939

T. Mora, 37812 | DOI: 10.1038/srep37812 11 Constraint satisfaction problems and neural networks: A statistical physics perspective, Scientific RepoRts | Journal of Physiology- Paris, vol.6, issue.103, pp.107-113, 2009.

S. Cocco, R. Monasson, and V. Sessak, High-dimensional inference with the generalized Hopfield model: Principal component analysis and corrections, Physical Review E, vol.83, issue.5, p.51123, 2011.
DOI : 10.1103/PhysRevE.83.051123

URL : https://hal.archives-ouvertes.fr/hal-00586950

S. Cocco and R. Monasson, Adaptive Cluster Expansion for Inferring Boltzmann Machines with Noisy Data, Physical Review Letters, vol.106, issue.9, p.90601, 2011.
DOI : 10.1103/PhysRevLett.106.090601

URL : https://hal.archives-ouvertes.fr/hal-00566281

H. C. Nguyen and J. Berg, Mean-Field Theory for the Inverse Ising Problem at Low Temperatures, Physical Review Letters, vol.109, issue.5, p.50602, 2012.
DOI : 10.1103/PhysRevLett.109.050602

E. Aurell and M. Ekeberg, Inverse Ising Inference Using All the Data, Physical Review Letters, vol.108, issue.9, p.90201, 2012.
DOI : 10.1103/PhysRevLett.108.090201

URL : http://arxiv.org/abs/1107.3536

H. C. Nguyen and J. Berg, Bethe???Peierls approximation and the inverse Ising problem, Journal of Statistical Mechanics: Theory and Experiment, vol.2012, issue.03, p.3004, 2012.
DOI : 10.1088/1742-5468/2012/03/P03004

A. Decelle and F. Ricci-tersenghi, Pseudolikelihood Decimation Algorithm Improving the Inference of the Interaction Network in a General Class of Ising Models, Physical Review Letters, vol.112, issue.7, p.70603, 2014.
DOI : 10.1103/PhysRevLett.112.070603

M. Figliuzzi, H. Jacquier, A. Schug, O. Tenaillon, and M. Weigt, Coevolutionary inference of mutational landscape and the context dependence of mutations in beta-lactamase tem-1, Molecular Biology and Evolution, 2016.

L. Asti, G. Uguzzoni, P. Marcatili, and A. Pagnani, Maximum-Entropy Models of Sequenced Immune Repertoires Predict Antigen-Antibody Affinity, PLOS Computational Biology, vol.347, issue.6220, p.1004870, 2016.
DOI : 10.1371/journal.pcbi.1004870.s001

URL : https://hal.archives-ouvertes.fr/hal-01333986

F. Morcos, N. P. Schafer, R. R. Cheng, J. N. Onuchic, and P. G. Wolynes, Coevolutionary information, protein folding landscapes, and the thermodynamics of natural selection, Proceedings of the National Academy of Sciences, vol.111, issue.34, pp.12408-12413, 2014.
DOI : 10.1073/pnas.1413575111

J. K. Mann, The Fitness Landscape of HIV-1 Gag: Advanced Modeling Approaches and Validation of Model Predictions by In Vitro Testing, PLoS Computational Biology, vol.86, issue.8, p.1003776, 2014.
DOI : 10.1371/journal.pcbi.1003776.s002

R. N. Mclaughlin, . Jr, F. J. Poelwijk, A. Raman, W. S. Gosal et al., The spatial architecture of protein function and adaptation, Nature, vol.13, issue.7422, pp.138-142, 2012.
DOI : 10.1038/nature11500

H. Jacquier, Capturing the mutational landscape of the beta-lactamase TEM-1, Proceedings of the National Academy of Sciences, vol.110, issue.32, pp.13067-13072, 2013.
DOI : 10.1073/pnas.1215206110

URL : https://hal.archives-ouvertes.fr/hal-00984680

D. Melamed, D. L. Young, C. E. Gamble, C. R. Miller, and S. Fields, Deep mutational scanning of an RRM domain of the Saccharomyces cerevisiae poly(A)-binding protein, RNA, vol.19, issue.11, pp.1537-1551, 2013.
DOI : 10.1261/rna.040709.113

T. Hinkley, A systems analysis of mutational effects in HIV-1 protease and reverse transcriptase, Nature Genetics, vol.32, issue.5, pp.487-489, 2011.
DOI : 10.1016/j.epidem.2010.03.003

J. A. De-visser and J. Krug, Empirical fitness landscapes and the predictability of evolution, Nature Reviews Genetics, vol.1, issue.7, pp.480-490, 2014.
DOI : 10.1111/j.0014-3820.2005.tb00907.x

J. Otwinowski and J. B. Plotkin, Inferring fitness landscapes by regression produces biased estimates of epistasis, Proceedings of the National Academy of Sciences, vol.111, issue.22, pp.2301-2309, 2014.
DOI : 10.1073/pnas.1400849111

D. H. Ackley, G. E. Hinton, and T. J. Sejnowski, A Learning Algorithm for Boltzmann Machines*, Cognitive Science, vol.85, issue.1, pp.147-169, 1985.
DOI : 10.1207/s15516709cog0901_7

J. Mistry, R. D. Finn, S. R. Eddy, A. Bateman, and M. Punta, Challenges in homology search: HMMER3 and convergent evolution of coiled-coil regions, Nucleic Acids Research, vol.41, issue.12, p.121, 2013.
DOI : 10.1093/nar/gkt263

R. D. Finn, Pfam: the protein families database, Nucleic Acids Research, vol.42, issue.D1, pp.222-230, 2014.
DOI : 10.1093/nar/gkt1223

URL : https://hal.archives-ouvertes.fr/hal-01294685

Y. Dehouck, J. M. Kwasigroch, D. Gilis, and M. Rooman, PoPMuSiC 2.1: a web server for the estimation of protein stability changes upon mutation and sequence optimality, BMC Bioinformatics, vol.12, issue.1, p.151, 2011.
DOI : 10.1186/1471-2105-8-65

F. Morcos, Direct-coupling analysis of residue coevolution captures native contacts across many protein families, Proceedings of the National Academy of Sciences, vol.108, issue.49, pp.1293-1301, 2011.
DOI : 10.1073/pnas.1111471108

L. Sutto, S. Marsili, A. Valencia, and F. L. Gervasio, From residue coevolution to protein conformational ensembles and functional dynamics, Proceedings of the National Academy of Sciences, vol.112, issue.44, pp.13567-13572, 2015.
DOI : 10.1073/pnas.1508584112

A. Haldane, W. F. Flynn, P. He, R. S. Vijayan, and R. M. Levy, Structural propensities of kinase family proteins from a Potts model of residue co-variation, Protein Science, vol.41, issue.8, pp.1378-1384, 2016.
DOI : 10.1002/pro.2954

T. Plefka, Convergence condition of the TAP equation for the infinite-ranged Ising spin glass model, Journal of Physics A: Mathematical and General, vol.15, issue.6, p.1971, 1982.
DOI : 10.1088/0305-4470/15/6/035