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ABSTRACT
Given a graph G = (V,E) with |V | = n and |E| = m, we consider the metric cone MET(G) and the
metric polytope METP(G) defined on RE . These polyhedra are relaxations of several important problems
in combinatorial optimization such as the max-cut problem and the multicommodity flow problem. They are
known to have non-compact formulations via the cycle inequalities in the original space RE and compact (i.e.,
polynomial size) extended formulations via the triangle inequalities defined on the complete graph Kn. In
this paper, we show that one can reduce the number of triangle inequalities to O(nm) and still have extended
formulations for MET(G) and METP(G). This is particularly interesting for sparse graphs when m = O(n),
since formulations of size O(n2) variables and constraints are thus obtained. Moreover, the possibility of
achieving further reduction in size for special classes of sparse graphs is investigated; it is shown that for the
case of series-parallel graphs, for which the max-cut problem can be solved in linear time (Barahona (1986)),
one can refine the above reduction to obtain extended formulations for MET(G) and METP(G) fearturing
O(n) variables and constraints.

KEY WORDS: sparse graph, metric polyhedra, triangle inequalities, max-cut problem, extended formulation,
series-parallel graph.

1 Introduction

Let G = (V,E) be an undirected graph with n = |V |
and m = |E|. We denote by ij, the edge between the
two nodes i and j of V . A chordless cycle C in G is a
cycle whose induced subgraph is the cycle itself. Let
C be the set of the chordless cycles in G. Let RE be
the real space of dimension |E| indexed by the edges
in E. For a vector x ∈ RE , xe with e ∈ E denotes the
component of x associated with the edge e ∈ E and
for any subset F ⊆ E, let x(F ) =

∑
e∈E xe.

Let us recall the definition of the two polyhedra that
will be discussed in the paper. The first is the metric
polytope METP(G) associated with G in RE , which

can be defined as follows:

x(F )− x(C \ F ) ≤ |F | − 1,

∀C ∈ C and F ⊆ C with |F | odd,
(1)

xe ≥ 0 ∀e ∈ E s.t. e does not belong to any triangle
xe ≤ 1 ∀e ∈ E s.t. e does not belong to any triangle

(2)

Note that Inequalities (1) are called cycle inequalities.
Inequalities (2) are applied only for the edges in G
which do not belong to any triangle as those for the
other edges can be derived from the cycle inequali-
ties. These inequalities were introduced in the semi-
nal paper by Barahona and Mahjoub (1986) on the cut
polytope. The second polyhedron is the metric cone
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Figure 1: A cycle inequality with |F | = 3.

MET(G) which consists of the cycle inequalities with
sets F such that |F | = 1 , the nonnegativity inequali-
ties and the trivial inequalities (2). More precisely,
MET(G) = {x ∈ RE such that

xe − x(C \ {e}) ≤ 0, ∀C ∈ C and e ∈ C ,
(3)

xe ≥ 0 ∀e ∈ E s.t. e does not belong to any triangle,
xe ≤ 1 ∀e ∈ E

Note that MET(G) is a polytope, not a cone. How-
ever, we use here the standard terminology used by
Deza and Laurent (1994a) which was proposed in a
context where the basic space considered was the hy-
percube [0, 1]n.
The two polyhedra MET(G) and METP(G) are
strongly related to the maximum cut problem which is
one of the basic problems in combinatorial optimiza-
tion. Actually, the metric cone MET(G) is a relax-
ation of CUTB(G), the intersection of the unit hy-
percube with the cone generated by all the cut vectors
δ(S) for S ⊂ V (with abuse of notation, by δ(S) we
denote both the edge set of the cut defined by the node
set S and its incidence vector). Similarly, the metric
polytope is a relaxation of the cut polytope CUTP(G),
the convex hull of all the cut vectors δ(S) for S ⊂ V .
If we replace the trivial inequalities by the 0/1 con-
straints x ∈ {0, 1}E in the formulation of the two
polyhedra, we obtain respectively integer formulations
for CUTB(G) and CUTP(G).
Note that since there is a priori no known polynomial
upper bound (in terms of n and m) on the number of
chordless cycles and there may be also an exponen-
tial number of choices for the set F given a chord-
less cycle C, the above formulations of MET(G) and
METP(G) have a priori an exponential number of in-

equalities. Nevertheless, when G = Kn, the complete
graph of n nodes, MET(Kn) and METP(Kn) are of
polynomial size since in this case C reduces to the set
of the triples {i 6= j 6= k ∈ V } and F can have only
1 or 3 edges. Concretely, let T be the set of all the
(unordered) triples of distinct nodes i, j, k ∈ V , the
following system:

xij + xik + xjk ≤ 2 for all i, j, k ∈ T . (4)

xij − xik − xjk ≤ 0,

xik − xij − xjk ≤ 0,

xjk − xij − xik ≤ 0 for all i, j, k ∈ T .
(5)

defines METP(Kn). Inequalities (4) are called the
non-homogeneous triangle inequalities and the ones
in (5) are called the homogenous triangle inequalities.
They are all commonly called the triangle inequali-
ties. The cone MET(Kn) is defined only by the ho-
mogeneous inequalities (5) and the trivial inequalites
(2). The number of inequalities in MET(Kn) and in
METP(Kn) is clearly in O(n3), and thus polynomial
in terms of n. In fact, Barahona (1993) showed that the
projections of MET(Kn) and METP(Kn) on RE are
exactly MET(G) and METP(G). Hence, MET(Kn)
and METP(Kn) respectively represent compact ex-
tended formulations for MET(G) and METP(G).
The metric cone and metric polytope have several
important applications in combinatorial optimization,
e.g., the max-cut problem and the multicommodity
flow problem. An overview of these applications can
be found in Deza and Laurent (1994a,b) and Ben-
Ameur et al. (2013). In these applications, optimizing
a linear function over MET(G) and METP(G) usu-
ally appears as a subproblem and thus the latter has
to be solved repeatedly. In this situation, the compact
formulations MET(Kn) and METP(Kn) are usually
preferred to the non-compact ones for optimizing over
MET(G) and METP(G) since they can be directly
transmitted to a linear programming solver. However,
the number of triangle inequalities in MET(Kn) and
METP(Kn), which is in O(n3), can be huge even
for medium values of n making the optimization over
compact formulations computationally difficult (Fran-
gioni et al. (2005) is a typical reference reporting such
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computational problem).
In Section 2, we show that one can reduce the num-
ber of triangle inequalities to O(nm) while preserv-
ing equivalence with MET(G) and METP(G). This
result is of particular interest for the case of sparse
graphs, when m = O(n), since this yields much more
compact formulation of size O(n2) variables and con-
straints. Clearly such reduction in problem size can
be exploited computationally e.g. in the solution of
the max-cut problem, due to the induced reduction in
computational effort devoted to solving the linear re-
laxations in each node of the Branch-and-Bound tree.
However, beyond its computational interest, this re-
sult raises the natural and challenging new question of
whether it is possible to further reduce the size of a lin-
ear formulation for MET(G) and METP(G) in sparse
graphs, or at least some subclasses of sparse graphs.
And, since Ω(m) is a lower bound to the size (num-
ber of variables and constraints) of any linear formu-
lation (just considering the non negativity constraints,
assuming connectivity), it is possible to achieve linear
size O(m) = O(n), at least for some subclasses of
sparse graphs.
As a first step towards answering such polyhedral is-
sues, Section 3 provides a positive answer to this last
question by showing that for the subclass of series-
parallel graphs (for which the max-cut problem can
be solved in linear time, see Barahona (1986)), it is
possible to refine the reduced formulations obtained in
section 2 to come up with linear-size formulations for
MET(G) and METP(G). To the best of our knowl-
edge, this is the first nontrivial subclass of graphs en-
joying linear-size representations for the associated
metric polyhedra. Furthermore, as explained in the
concluding section (Section 4), this result raises sev-
eral important open research questions related to the
existence of other subclasses of sparse graphs with
similar polyhedral properties, and thus likely to lend
themselves to more efficient resolution of some ba-
sic combinatorial problems such as graph partitioning
(Nguyen et al. (2016)) or multicommodity flow feasi-
bility testing. The latter often arises, in many network
synthesis or discrete network optimization problems,
as a subproblem to be solved repeatedly (see e.g. Mi-
noux (1989), Gabrel et al. (1999)), and is most often
NP-hard (even in cases when the underlying graph is

series-parallel).

2 A O(nm) size formulation for
MET(G) and METP(G)

Let

T ′ = {(i, j, k) ∈ T | at least one of ij, ik or jk ∈ E}

Proposition 1 |T ′| ≤ m× (n− 2).

Proof: By definition of T ′, every triple (i, j, k) ∈ T ′
can be viewed as a triangle composed by, for example,
an edge ij ∈ E and a node k ∈ V . Hence, the number
of such triangles, which is equal to m× (n− 2), is an
upper bound of |T ′|. �
Let us define RMETP(Kn) as the polytope defined
by the following “reduced” system,

xij + xik + xjk ≤ 2 for all i, j, k ∈ T ′. (6)

xij − xik − xjk ≤ 0,

xik − xij − xjk ≤ 0,

xjk − xij − xik ≤ 0 for all i, j, k ∈ T ′.
(7)

together with the nonnegativity and trivial inequalities
(2) for the edges that do not belong to any triangle in
T ′. We define the reduced metric cone RMET(Kn) as
the one defined by inequalities (7) , the nonnegativity
for the edges that do not belong to any triangle in T ′
and the trivial inequalities (2) for all the edges in Kn.

Corollary 1 The number of non trivial inequalities
in RMETP(Kn) and RMET(Kn) are respectively
at most 4m(n − 2) and 3m(n − 2). The variables
in RMETP(Kn) and RMET(Kn) correspond to the
edges in Kn, their number is thus in O(n2).

Let RMETP(Kn)G and RMET(Kn)G be re-
spectively the projections of RMETP(Kn) and
RMET(Kn) on RE . Similarly, the METP(Kn)G
and MET(Kn)G are respectively the projections of
METP(Kn) and MET(Kn) on RE . We will prove
in this section the following theorem.
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Theorem 1 RMETP(Kn)G = METP(G) and
RMET(Kn)G = MET(G).

Note that we can obtain RMETP(Kn)G (respectively
RMET(Kn)G) by applying completely the Fourier-
Motzkin elimination procedure (see Balas (2001),
Conforti et al. (2013)) on RMETP(Kn) (respectively
RMET(Kn)) to eliminate successively the variables
in En \ E (here En denotes the edge set of Kn). Be-
fore proving Theorem 1, we will show the following
lemma.

Lemma 1 All the inequalities defining METP(G)
can be derived by (partial) application of the Fourier-
Motzkin elimination procedure on RMETP(Kn).
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Figure 2: An incomplete Fourier-Motzkin elimination
performed on the edges 1j (j = 3, . . . , k − 1).

Proof: Let us consider any chordless cycle C in G.
Let us suppose that the nodes in C are 1, 2, . . . , k
which are numbered clockwise from 1 (see Figure 2)
and its edges are i(i+ 1) for i = 1, . . . , k − 1 and k1.
Let us take any subset F = {f1, . . . , fp} ⊆ C with p
odd. The cycle inequality corresponding to C and F
reads:

x(F )− x(C \ F ) ≤ p− 1 (8)

We shall show that this inequality can be deduced from
triangle inequalities associated with triples in T ′. Con-
sider the triangulation θ of C obtained by adding k−2
distinct edges (chords) 1j for j = 3, . . . , k−1 (see the

dash/dot edges in Figure 2). Each triangle (1, i, i+ 1)
for i = 2, . . . , k−1 corresponds to a triple in T ′ (since
they all contain at least one edge in E) and the corre-
sponding triangle inequalities read:

x1i + x1(i+1) + xi(i+1) ≤ 2 for all i = 2, . . . , k − 1,
(a,i)

x1i − x1(i+1) − xi(i+1) ≤ 0 for all i = 2, . . . , k − 1,
(l,i)

x1(i+1) − x1i − xi(i+1) ≤ 0 for all i = 2, . . . , k − 1,
(r,i)

xi(i+1) − x1i − x1(i+1) ≤ 0 for all i = 2, . . . , k − 1.
(m,i)

For brevity, we will refer to the triangle (1, i, i+ 1) as
“triangle i“ with 2 ≤ i ≤ k−1. The edges 1i, i(i+1),
1(i + 1) will be respectively referred to as the left
edge, middle edge, right edge of triangle i (in the sys-
tem above, the notation ”a“ stands for ”all“, and (a,i)
refers to the inequality related to triangle i for which
all edges are involved with positive coefficients; l, r,
and m stand for ”left“, ”right“, and ”middle“ respec-
tively and the inequalties are labelled (l,i), (r,i) or (m,i)
depending on which edge is involved with positive co-
efficient). Now, for each triangle i with 2 ≤ i ≤ k−1,
let us choose one and exactly one of inequalities (a,i),
(l,i), (r,i) and (m,i) according to the following rule:

• if the middle edge i(i+1) is an edge fq ∈ F with
q odd, choose inequality (m,i),

• if the middle edge i(i+1) is an edge fq ∈ F with
q even, choose inequality (a,i),

• if the middle edge i(i+1) ∈ C \F , then by scan-
ing clockwise the edges of C from i(i + 1) until
reaching the node 1, we may or may not meet
edges in F . In the former case, let fq ∈ F be the
first edge in F that we meet.

– If fq exists and q is odd, choose inequality
(r,i),

– If fq does not exist or fq exists and q is even,
choose inequality (l,i).

We are going to show that the sum over i = 2, . . . , k−
1 of the inequalities chosen according to the above rule
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gives inequality (8). Let us consider first any edge 1j
(3 ≤ j ≤ k − 1) which is in En \ E and show that
x1j vanishes in the sum. Note that x1j appears only in
two chosen inequalities which correspond respectively
to the triangles j − 1 and j. There are four possible
cases:

• (j − 1)j and j(j + 1) /∈ F , hence the two chosen
inequalities for the triangles j − 1 and j are of
the same type: either (l,j-1) and (l,j) or (r,j-1) and
(r,j). In both cases, the signs of x1j in these two
inequalites are opposite.

• (j−1)j is an edge fq ∈ F and j(j+1) ∈ C\F . If
q is even, then the two chosen inequalities are (a,j-
1) and (r,j) in which the signs of x1j are opposite.
If q is odd, then the two chosen inequalities are
(m,j-1) and (l,j) in which the signs of x1j are also
opposite.

• (j−1)j ∈ C\F and j(j+1) is an edge fq ∈ F . If
q is even, then the two chosen inequalities are (l,j-
1) and (a,j) in which the signs of x1j are opposite.
If q is odd, then the two chosen inequalities are
(r,j-1) and (m,j) in which the sign of x1j are also
opposite.

• both (j−1)j and j(j+1) are in F . Let (j−1)j =
fq ∈ F . If q is even, then the two chosen inequal-
ities are (a,j-1) and (m,j) in which the signs of x1j
are opposite. Similarly, if q is odd, then the two
chosen inequalities are (m,j-1) and (a,j) in which
the signs of x1j are opposite.

In all cases, the signs of x1j in the two chosen inequal-
ities containing it are opposite, thus x1j vanishes in the
sum.
For any edge e ∈ C, xe appears only in one of the
chosen inequalities, the one which corresponds to the
triangle having e as the middle edge. It is clear that
by the choice of this inequality, the coefficient of xe in
the sum is 1 if e ∈ F and −1 if e ∈ C \ F .
It remains to show that the sum of the right hand sides
is p − 1. We can see that the only chosen inequali-
ties with non-zero right hand side are of type (a,i), i.e.,
the ones corresponding to the triangles having fq ∈ F
with q even as the middle edge. There are clearly p−1

2
such inequalities with 2 as the right hand side. Hence,

the sum of the right hand sides of the chosen inequali-
ties is p− 1.
Since the triangles created by the triangulation θ of
C are in T ′, the chosen triangle inequalities are all
in RMETP(Kn). The sum of these inequalities thus
in fact produces (8) as a result of a (partial) applica-
tion of the Fourier-Motzkin elimination procedure to
RMETP(Kn). �
Thanks to the above lemma, we are now in a position
to complete the proof of Theorem 1.

Proof: of Theorem 1. We will show the first part of
Theorem 1, i.e., RMETP(Kn)G = METP(G). We
will see that the second part will follow.
We prove first that METP(G) ⊆ RMETP(Kn)G.
This result simply follows the facts that
METP(Kn) ⊂ RMETP(Kn) and METP(Kn)G =
METP(G).
Now, we prove that RMETP(Kn)G ⊆ METP(G).
Note that we can obtain RMETP(Kn)G by applying
completely the Fourier-Motzkin elimination proce-
dure (see Balas (2001), Conforti et al. (2013)) on
RMETP(Kn) to eliminate successively the variables
in En \ E. Lemma 1 shows that we can obtain all the
inequalities of METP(G) by doing the projection of
RMETP(Kn) on RE by Fourier-Motzkin elimination
procedure. Hence, RMETP(Kn)G ⊆ METP(G).
For the second part of the theorem, i.e.,
RMET(Kn) = METP(G), we first see that
MET (G) ⊆ RMET(Kn). And we can show
similarly as above that RMET(Kn) ⊆ MET(G) by
remarking that the result of Lemma 1 can be applied
in particular for the cycle inequalities issued from C
and the sets F of cardinality equal to 1. �
Recently, in Lancia and Serafini (2011), the authors
express the separation problem of the cycle inequali-
ties as a linear program to form a mixed 0/1 program
with 2n2 + m variables and 4nm + 2n constraints
(trivial inequalities not included). They prove that
this program is equivalent to the integer formulation
of max-cut problem formed by METP(Kn) and
integrality constraints on the variables on the original
space RE . Note that the formulation in Lancia
and Serafini (2011) involves additional inequali-
ties other than triangle inequalities. The polytope
RMETP(Kn) offers similar results while featuring
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fewer variables (by a factor of 4 actually) than in
Lancia and Serafini (2011) and is based on the use
of triangle inequalities only. Note that, the max-cut
problem can be also formulated as a 0-1 quadratic
program and different linearization methods for the
latter can give linear relaxations which are more or
less strong than the relaxation given by the metric
polytope METP(Kn) (e.g., see Boros et al. (1992),
Gueye and Michelon (2009)). However, to obtain
a relaxation as strong as the metric polytope, these
methods have to use at least O(n3) constraints.

3 Linear size formulations for
MET(G) and METP(G) in
series-parallel graphs

Note that the extended formulations RMET(Kn) and
RMETP(Kn) described in Section 2 respectively for
MET(G) and METP(G) have O(nm) constraints
and O(n2) variables. Hence, even for special sparse
graphs such as planar graphs when m = O(n), there
are always O(n2) constraints and variables in these
formulations. In this section, we show that one can ob-
tain extended formulations of linear size, i.e., of O(n)
variables and constraints when G is series-parallel.
A series-parallel graph is a graph which can be ob-
tained from a single edge by applying repeatedly the
following operations:

• add a parallel edge to an existing edge (parallel
operation).

• or subdivide an existing edge, that is replace the
edge by a path of length two (series operation).

In this section, we will assume thatG is series-parallel.
Given an elementary path P in G, the set of nodes in
P is denoted by V (P ), and if u and v are two dis-
tinct nodes in V (P ), we denote by P (u− v), the sub-
path of P connecting u and v. An ear decomposition
of an undirected graph G is defined as a partition of
the edges of G into a sequence of ears P1, P2, . . . ,Pk.
Each ear is a path in the graph with the following prop-
erties:

• If two nodes in the path are the same, then they
should be the two end-nodes of the path.

• The two end-nodes of each ear Pi, i > 1, appear
in previous ears Pj and P ′j with j < i and j′ < i.

• No interior node (i.e., not an end-node) of Pi is in
Pj for any j < i.

An open ear decomposition is one in which each
ear is an elementary path. Suppose that ED =
{P1, P2, . . . , Pk} is an open ear decomposition of G,
we say that Pi is nested in Pj , denoted by Pi v Pj , if
j < i and the end-nodes of Pi both appear in Pj . For
such i and j, let the nested interval of Pi with respect
to Pj be the subpath of Pj between the two end-nodes
of Pi.
We recall below the notion of nested ear decomposi-
tion as defined in Eppstein (1992) while simultane-
ously introducing the concepts of precursor, of ”be-
ing covered” and of ”overlap each other” for two ears
having the same precursor.
We say that an open ear decomposition ED =
{P1, P2, . . . , Pk} is nested if the following conditions
hold:

• For each i > 1 there is some j < i such that Pi

is nested in Pj . Let j0 denote the minimum index
value in the set {j : Pi v Pj} then the ear Pj0

is called the precursor of Pi. Figure 3 gives an
example where P1 is the precursor of P2, P3, P4

and P6, P2 is the precursor of P5 and P6 is the
precursor of P7.

• If two ears Pi and Pi′ have the same precursor,
then exactly one of the following situations arises
for their nested intervals with respect to the com-
mon precursor:

(a) the nested intervals of Pi and Pi′ coincide.
We say that Pi and Pi′ overlap each other.
An example is illustrated in Figure 3 where
P3 and P4 overlap each other;

(b) the nested interval of Pi strictly contains the
one of Pi′ . We say that Pi′ is covered by
Pi which will be denoted by Pi′ ∝ Pi. For
example in Figure 3, P2, P3 and P4 are cov-
ered by P6;

(c) the nested interval of Pi′ strictly contains the
one of Pi, i.e., Pi ∝ Pi′ ;
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(d) the two nested intervals are disjoint. This is
the case for P2 and P3 in the example of
Figure 3.

Note that the relation ∝ is only defined for two ears in
ED having the same precursor.
A directed two terminal graph is a directed graph with

v15

s1 t2 s3 = s4

s7
t7
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P3

P4

P6
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t3 = t4 = t6
t1s2 = s6

P2 s5
t5

P5

v1 v2
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v12

v14
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v13

Figure 3: An open nested ear decomposition.

two specific vertices s and t such that there is a path
from s to any vertex and from any vertex to t. An
undirected graph is two terminal series parallel with
terminals s and t if for some orientation of its edges
it forms a directed two terminal series parallel graph
with respect to these terminals. Moreover, an undi-
rected graph is series parallel if for some two vertices
s and t it is two terminal series parallel with those ter-
minals. In Eppstein (1992), the author shows the fol-
lowing,

Theorem 2 Eppstein (1992) Any simple undirected
two terminal series parallel graph has an open nested
ear decomposition starting with a path between the
terminals. And any simple undirected graph with an
open nested ear decomposition is two terminal series
parallel with its terminals being the end-nodes of the
first ear.

A biconnected graph is either a 2-connected graph or a
single edge. If G is a biconnected simple series paral-
lel graph, one can find an open nested ear decomposi-
tion of G in logarithmic time (see Maon et al. (1986)).
If G is not biconnected, it is easy to determine two
nodes s and t in V such that the addition of the edge
st into G makes G biconnected simple series parallel
with s and t as the terminals (see Eppstein (1992)).
Let G be a simple biconnected series parallel graph

and let ED = {P1, . . . , Pk} be an open nested ear
decomposition of G found by using for example the
algorithm in Maon et al. (1986). As the definition of
an open ear decomposition imposes only conditions on
the indices of the ears regarding to the relation @ but
not to the relation∝, without loss of generality, we can
in addition impose an order on the indices of the ears
regarding to the relation ∝ as follows.

For any two ears Pi and Pi′ having the same
precursor Pj , if Pi′ ∝ Pi then i′ < i and
for all j′ such that Pj′ v Pi′ , we have also
j′ < i. As an example, in Figure 3, we can
take i = 6, i′ = 2, j = 1 and j′ = 5.

The labels si and ti for the end-nodes of Pi where
1 < i ≤ k are supposed to be assigned according to
the following rule: let Pj be the precursor of Pi, if one
follows the path Pj from sj then one should meet si
before ti (see Figure 3).
An ear Pi such that there is no Pj which overlaps Pi,
will be called distinct. When several ears mutually
overlap, only the ear with smallest index will be called
distinct. For instance, in Figure 3, P6 is distinct and as
P3 and P4 overlap each other, P3 is distinct while P4

is not.
For each ear Pi where 1 < i ≤ k and Pj the
(unique) precursor of Pi, we define the base of Pi as
B(Pi) = V (Pj(si− ti))\{si, ti}, that is the set of the
nodes in the nested interval of Pi with respect to Pj

except the two end-nodes si and ti. For exemple, let
us consider the ear P6 in Figure 3, its precursor is P1

and V (P1(s6 − t6)) = {s6, v1, v2, t2, v3, s3, v4, t6}.
Hence, B(P6) = {v1, v2, t2, v3, s3, v4}.

Remark 1 Given 1 < h < i ≤ k, if Ph is covered by
Pi, i.e., Ph ∝ Pi, then, B(Ph) ⊂ B(Pi).

We also define the unshared subbase of Pi,
USB(Pi) = B(Pi) \

⋃
Ph∝Pi

B(Ph) which is the
set of the nodes in B(Pi) which do not belong to any
other base B(Ph) of some ear Ph covered by Pi. For
example, in Figure 3, the unshared subbase of P6,
USB(P6) = {t2, v3, s3} as v1 and v2 also belong
to the base of P2 and v4 also belongs to the base of
P3. We can see that ears that overlap each other have
the same unshared subbase. For example in Figure 3,
USB(P3) = USB(P4) = {v4}. Given two nodes
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u and v belonging to USB(Pi), we say that they are
consecutive in USB(Pi) if when we follow the sub-
path Pj(si − ti) starting from si and count only the
nodes in USB(Pi), we meet u and v consecutively.
For example, in Figure 3, t2 and v3 are consecutive in
USB(P6).

Lemma 2 Given any 1 ≤ j < k and v ∈ V (Pj),
there is at most one unshared subbase USB(Pi) that
contains v, such that j < i ≤ k and Pi distinct.

Proof: Suppose that there are two ears Pi

and Ph with 1 ≤ j < i < h ≤ k that do
not overlap ( i.e., USB(Pi) 6= USB(Ph))
and v ∈ USB(Pi) ∩ USB(Ph). As
USB(Pi) ∩ USB(Ph) 6= ∅, we have
B(Pi) ∩ B(Ph) 6= ∅. This implies that the nested
intervals of Pi and Ph with respect to theirs precursors
are not disjoint. By the definition of nested ear
decomposition above, Pi should be covered by Ph and
consequently B(Pi) ⊂ B(Ph). By the definition of
unshared subbase, we haveUSB(Pi)∩USB(Ph) = ∅
which is a contradiction. �
Let us build the augmented graph G′ = (V,E′) of
G where E′ = E ∪ E0 contains the edges in E plus
some additional edges constructed as follows.
At initialization E0 ← ∅. For each ear Pi where
i > 1, for each v ∈ (V (Pi) \ {si}) , let us add siv to
E0. If Pi is distinct then for each v ∈ USB(Pi), let
us add siv to E0.
Set E′ = E ∪ E0.
Example 1. Let us consider the set E0 built for
the graph of Figure 3. For ear P2, the edges s2v5,
s2s5, s2v6, s2t5 and s2t2 are added to E0. As P2 is
distinct and USB(P2) = {v1, v2}, the edges s2v1
and s2v2 are added to E0. For ear P3, the edges
s3v7 and s3t3 are added to E0. AS P3 is distinct
and USB(P3) = {v4}, the edge s3v4 is added to
E0. For ear P4, the edges s4v8, s4v9 are added to
E0 (not s4t4 since it is the same edge as s3t3 added
previously to E0). As P4 is not dinstinct, no edge
s4v with v ∈ USB(P4) is added to E0. For ear P5,
the edges s5v10 and s5t5 are added to E0. As P5 is
distinct and USB(P5) = {v6}, the edge s5v6 is added
to E0. For ear P6, the edges s6v11, s6s7, s6v12, s6t7,
s6v13 and s6t6 are added to E0. As P6 is distinct and

USB(P6) = {t2, v3, s3}, the edges s6t2, s6v3 and
s6s3 are added to E0. For ear P7, the edges s7v14,
s7v15 and s7t7 are added to E0. As P7 is distinct and
USB(P7) = {v12}, the edge s7v12 is added to E0.
Notice that E and E0 are not disjoint sets.

Remark 2 The number of additional edges |E0| is at
most 2n and |E′| ∈ O(n).

Proof: The first part of the remark straightforwardly
follows from the fact that each node v ∈ V belong to
exactly one ear and to at most one unshared base as-
sociated with a distinct ear. The second part is derived
from the first part and the fact that |E′| = |E| + |E0|
and |E| ≤ 3n− 6 as G is planar. �

Remark 3 The augmented graph G′ remains series-
parallel.

Proof: For each Pi with 1 < i ≤ k and Pj its
precursor, one can consider the additional edges siv
where v ∈ V (Pi) or v ∈ V (Pi) ∪ USB(Pi) if Pi is
distinct as additional ears that one can easily insert in
ED. More precisely, if Pi is distinct, we insert before
Pi the edges siv for all v ∈ USB(Pi) with respect to
the order of increasing distance (in terms of number
of edges) from si to v in Pj . Then we insert after Pi

in the sequence ED the edges siv for all v ∈ V (Pi)
with respect to the order of increasing distance from
si to v in Pi . The final obtained sequence represents
an open nested ear decomposition for G′. Hence, by
Theorem 2, G′ is a series-parallel graph. �

Lemma 3 Given 1 < i ≤ k and two nodes v and w
belonging to USB(Pi) then there is an edge vw in E′

if and only if v and w are consecutive in USB(Pi).

Proof: ⇐ Suppose that v and w are consecutive in
USB(Pi) and let Pj be the precursor of Pi. By the
definition of USB(Pi), there are two possible cases.

• v and w are also consecutive when going from si
to ti through Pj(si − ti). This implies that the
edge vw belongs to E and also to E′.
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• v and w are not consecutive when going from si
to ti through Pj(si − ti). By the definition of
USB(Pi), v and w should be the end-nodes of
some Ph covered by Pi. We can see that in this
case there is an edge vw in E0. Thus there is an
edge vw in E′.

⇒ Suppose that there is an edge vw ∈ E′ and v and w
are not consecutive in USB(Pi). By the definition of
USB(Pi), v and w are not consecutive in B(Pi), i.e.,
there is no edge vw in E.
Suppose that there is an edge vw ∈ E0, then v should
be a node sh with 1 < h < i ≤ k of some ear Ph

covered by Pi. As w ∈ USB(Pi), by Lemma 2, we
have w /∈ USB(Ph). Hence, the only case for an
edge vw to exist in E0 is w = th. But in this case v
and w are consecutive in USB(Pi), contradicting the
assumption. �
Let T ′′ be the set of triples u, v, w ∈ V such that there
exists some 1 < i ≤ k such that u = si and the nodes
v and w satisfy one of the following conditions.

• vw is an edge of Pi (triple of Type 1).

• v and w are consecutive in USB(Pi) and Pi is
distinct (triple of Type 2). Note that by Lemma 3,
there exists an edge vw in E′.

• v is the end-node sj of some distinct ear Pj where
j > i such that sj ∈ V (Pi) and w ∈ V (Pi) ∩
USB(Pj) (triple Type 3).

Example 2. Let us consider the case i = 6 in Figure
3, then u = s6. If we set v = s7 and w = v12 then the
triple s6, s7, v12 is both of Type 1 and Type 3 in T ′′. If
we set v = t2 and w = v3 then the triple s6, t2, v3 is
of Type 2 in T ′′.

Lemma 4 The triples in T ′′ form all the triangles in
G′.

Proof: Given T = (u, v, w) any triangle in G′, by
construction, at least one node in T should be the node
si for some i > 1. Suppose that u = si. We have the
two following possible cases.

• u = si is the unique s-node in T (we call s-node,
a node si with 1 ≤ i ≤ k) . In this case, since

every edge in E0 should have at least one s-node
as end-node, vw should be an edge of E.

– If vw is an edge of Pi then, T is a triple of
Type 1 in T ′′.

– If vw is an edge of the precursor Pj of Pi

and v, w ∈ USB(Pi) then, v and w should
be consecutive in USB(Pi). As the edges
sv and sw exist, Pi should be distinct. Thus,
T is a triple of Type 2 in T ′′.

• There are at least two s-nodes in T , u = si and
v = sj . Suppose without loss of generality, that
1 ≤ i < j ≤ k. As the edge sisj exists in E′,
either sj ∈ V (Pi) or sj ∈ USB(Pi). But this is
impossible since j > i. Thus sj ∈ V (Pi).

– If w ∈ V (Pi), then as the edge sjw ex-
ists, w should be in USB(Pj) and Pj is
distinct. The node w indeed belongs to
V (Pi) ∩ USB(Pj). Hence T is a triple of
Type 3 in T ′′.

– If w ∈ USB(Pi), then as the edge sjw ex-
ists, we have

∗ either w ∈ USB(Pj) and from
Lemma 2, we obtain that USB(Pi) =
USB(Pj) and si = sj which contra-
dicts the fact that T is a triangle.

∗ or w ∈ V (Pj), which implies that Pj

is the precursor of Pi and j < i. But
this contradicts the fact that j > i.

�
Let us define SPMETP(G′) as the polytope defined
by the following system,

xuv + xuw + xvw ≤ 2 for all u, v, w ∈ T ′′,
xuv − xuw − xvw ≤ 0,

xuv − xuw − xvw ≤ 0,

xuv − xuw − xvw ≤ 0 for all u, v, w ∈ T ′′,

together with the nonnegativity and trivial inequalities
(2) for the edges that do not belong to any triangle in
T ′′. We define the cone SPMET(G′) as the one de-
fined by homogeneous inequalities in SPMETP(G′),
the nonnegativity for the edges that do not belong to
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any triangle in T ′′ and the trivial inequalities (2) for
all the edges in G′.

Remark 4 The number of variables and the num-
ber of inequalities in SPMETP(G′) (respectively
SPMET(G′)) is in O(n).

Proof: The number of variables in SPMETP(G′)
(respectively SPMET(G′)) is equal to |E′| and hence
by Remark 2, it is in O(n). The number of triples
of Type 1 in T ′′ is at most the number of edges in E
and hence, it is in O(n). As for each edge vw in E,
there is at most one distinct Pi such that v, w are con-
secutive in USB(Pi), the number of triples of Type
2 in T ′′ is also at most |E| and hence, it is in O(n).
As every node w ∈ V belongs to at most one un-
shared base associated with a distinct ear, the number
of triples of Type 3 in T ′′ is at most n. Hence the total
number of triples in T ′′ is in O(n). Consequently, the
number of inequalities in SPMETP(G′) (respectively
SPMET(G′)) is in O(n). �
Let SPMETP(G′)G, (respectively, SPMET(G′)G)
be the projection of SPMETP(G′), (respectively,
SPMET(G′)) on RE .

Theorem 3 Let G be a series-parallel graph and
G′ the corresponding augmented graph. Then
SPMETP(G′)G = METP(G), (respectively,
SPMET(G′)G = MET (G)).

Proof: Let METP(G′) be the metric polytope
defined on RE′

and METP(G′)G its projection on
RE .
Note that METP(G′)G = METP(G) fol-
lows from results in Barahona (1993). Hence
to prove the theorem, we need to show that
METP(G′) = SPMETP(G′).
We have obviously METP(G′) ⊆ SPMETP(G′).
To show SPMETP(G′) ⊆ METP(G′), given any
x′ ∈ SPMETP(G′), we shall show that the only
chordless elementary cycles in G′ are the triangles in
T ′′ which will imply that x′ ∈ METP(G′). We will
prove this by recurrence on the number k of the ears
of G.
Let us consider first the case when k = 2, i.e.,
ED = {P1, P2}. In this case, the only cycle in G is

the cycle C formed by P2 and the subpath P1(s2−t2).
The added edges in E0 make a pointed triangulation
of C at the node s2. Hence, we can see that the only
chordless cycles in G′ are the triangles in T ′′.
Now suppose that we have METP(G′) =
SPMETP(G′) for the graphs G having an open
nested ear decomposition of cardinality k − 1 with
k ≥ 3. Let us show that for the graphs G having an
open nested ear decomposition ED = {P1, . . . , Pk}
of cardinality k, the only chordless elementary cycles
in the augmented graph G′ are the triangles in T ′′.
Let us consider Pk. Let E0

k ⊂ E0 be the subset of the
edges in E0 added to G due to Pk. We can see that E0

k

contains the edges skv for all v ∈ V (Pk)∪USB(Pk).
Let Gk−1 denote the subgraph of G induced by the
first k − 1 ears P1, . . . , Pk−1. Obviously, Gk−1 is
a series-parallel graph having an open nested ear
decomposition of cardinality k − 1. Hence, any
elementary cycle C ′ /∈ T ′′ in G′ containing no edge
in E0

k ∪ Pk is a cycle in the augmented graph of Gk−1

(which is a subgraph of G′). By induction hypothesis,
C ′ has a chord.
Suppose now that C ′ /∈ T ′′ is any elementary cycle in
G′ that contains some edge in E0

k ∪ Pk. We will show
that C ′ has a chord. As C ′ /∈ T ′′ and by Lemma 4,
C ′ should be of length at least 4. As there is no ear Pi

having the base in Pk, if C ′ contains some edge in Pk

then C ′ should go through the node sk. Hence, in all
the cases, the cycle C ′ should contain sk.

• Suppose that C ′ contains some edge skv with
v ∈ V (Pk) \ {tk}. In this case, from a node
v ∈ V (Pk) \ {tk}, C ′ can only go to another
node w ∈ V (Pk) and C ′ has a chord which is the
edge skw.

• Suppose that C ′ contains no edge skv with v ∈
V (Pk) \ {tk}. In this case, Pk should be distinct
and

– either C ′ contains two edges skv and skw
with v and w both belong to USB(Pk) ∪
{tk}. Let Pj be the precursor of Pk, then
v, w ∈ V (Pj). As C ′ is of length at least 4,
C ′ does not contain the edge vw if the latter
exists. If C ′ contains some other node u ∈
(USB(Pk) \ {v, w}) ∪ {tk}, then C ′ has a
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chord which is the edge sku. Thus suppose
that C ′ contains no node u ∈ USB(Pk) \
{v, w}, we can see that the cycleC obtained
by replacing in C ′ the two edges skv and
skw by the subpath Pj(v−w) is an elemen-
tary cycle in the augmented graph of Gk−1.
Let Pv,w be the other half of C which forms
C with Pj(v−w). By induction hypothesis,
C should have a chord. If both v and w are
different from tk, by Lemma 3, this chord
cannot be a chord in Pj(v − w). If one of
these nodes is equal to tk, say w, it is easy
to see by the definition ofUSB(Pk) that the
subpath Pj(v − tk) = Pj(v −w) should be
chordless. Hence the chord in C should be
a chord in Pv,w. As C ′ is composed by the
two edges skv and skw and Pv,w, we con-
clude that C ′ has a chord.

– or C ′ contains exactly one edge skv such
that v ∈ USB(Pk) ∪ {tk}. This case can
be handled similarly to the previous case
by considering the sequence v1, . . . ,vh,v
of consecutive nodes in USB(Pk) counted
from sk and by remarking that the path
skv1 . . . vhv is a chordless path in the aug-
mented graph of Gk−1.

Thus the only chordless cycles in G′ are the triangles
in T ′′. Hence, METP(G′) = SPMETP(G′).
From METP(G′)G = METP(G) and
METP(G′) = SPMETP(G′), we conclude that
SPMETP(G′)G = METP(G). The proof for
SPMET(G′)G = MET (G) is similar. �

4 Conclusions
In this paper, improved compact formulations featur-
ing O(n2) variables and O(nm) constraints for met-
ric and cut polyhedra for general undirected graphs
of n nodes and m edges have been proposed. This
is particularly interesting in the case of sparse graphs
where m = O(n) leading to quadratic size formu-
lations with O(n2) variables and constraints in con-
trast with the O(n2) variables and O(n3) constraints

of standard compact formulations. Our technique of
proof has also been shown to open the way to further
possible improvements when considering special sub-
classes of sparse graphs. As a first step in this direc-
tion, we have investigated the case of series-parallel
graphs for which the max-cut problem is known to be
polynomial-time solvable. For the slightly more gen-
eral subclass of graphs exhibited in Barahona (1986)
for which max-cut is solvable in linear time, an in-
teresting open research question raised by our result
in Section 3 would be to investigate whether a linear-
size representation of the metric polyhedra is still pos-
sible. Moreover, since series-parallel graphs form a
subclass of planar graphs, our result in section 3 raises
the question of exhibiting more special cases of pla-
nar graphs admitting linear-size representable metric
polyedra. This is left for future research.
As we have mentioned in the Introduction section,
MET(G) can be used as relaxation for graph par-
titioning. In Nguyen et al. (2016), we have shown
that the reduction proposed in Section 2 is applied to
graph partitioning problems with some generic addi-
tional constraints. For the latter, it will be interesting
to see if we can have a reduction of linear size when G
is series-parallel, i.e., a similar result as in Section 3.
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