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Antagonism between β-catenin and Gata.a sequentially
segregates the germ layers of ascidian embryos
Kaoru S. Imai1,2,*, Clare Hudson3,*, Izumi Oda-Ishii2,*, Hitoyoshi Yasuo3,‡ and Yutaka Satou2,‡

ABSTRACT
Many animal embryos use nuclear β-catenin (nβ-catenin) during the
segregation of endomesoderm (or endoderm) from ectoderm. This
mechanism is thus likely to be evolutionarily ancient. In the ascidian
embryo, nβ-catenin reiteratively drives binary fate decisions between
ectoderm and endomesoderm at the 16-cell stage, and then between
endoderm and margin (mesoderm and caudal neural) at the 32-cell
stage. At the 16-cell stage, nβ-catenin activates endomesoderm
genes in the vegetal hemisphere. At the same time, nβ-catenin
suppresses the DNA-binding activity of a maternal transcription
factor, Gata.a, through a physical interaction, and Gata.a thereby
activates its target genes only in the ectodermal lineage. In the
present study, we found that this antagonism between nβ-catenin and
Gata.a also operates during the binary fate switch at the 32-cell stage.
Namely, in marginal cells where nβ-catenin is absent, Gata.a directly
activates its target, Zic-r.b (ZicL), to specify themarginal cell lineages.
Thus, the antagonistic action between nβ-catenin and Gata.a is
involved in two consecutive stages of germ layer segregation in
ascidian embryos.
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INTRODUCTION
In early embryos of many invertebrate animals, including
echinoderms, hemichordates, ascidians, nematodes and cnidarians,
nuclear localized β-catenin (nβ-catenin) is used for the specification
of endomesoderm (or endoderm) (Darras et al., 2011; Logan et al.,
1999;Maduro, 2009;McCauley et al., 2015; Momose and Houliston,
2007; Wikramanayake et al., 2003, 1998). This process is thus likely
to be an evolutionarily ancient mechanism.
In embryos of the chordate Ciona intestinalis, nβ-catenin is not

only involved in the segregation of endomesoderm from ectoderm
but also in the subsequent segregation of endoderm from mesoderm
(and some neural) lineages (Hudson et al., 2013; Imai et al., 2000).
Thus, germ layer segregation in Ciona embryos begins with two
temporally separable steps.
In the first step, which occurs at the 16-cell stage, nβ-catenin

activity promotes endomesoderm over ectoderm lineage-specific

gene expression. In vegetal cells, from which endomesoderm is
derived, Foxd and Fgf9/16/20 are directly activated by nβ-catenin
and its partner transcription factor Tcf7 (Imai et al., 2002a; Oda-
Ishii et al., 2016). Conversely, Efna.d [formerly called EphrinA-d,
and renamed according to the nomenclature guidelines for this
animal (Stolfi et al., 2015)] and Tfap2-r.b are activated by the Gata.a
transcription factor in animal cells, from which ectoderm is derived
(Bertrand et al., 2003; Horikawa et al., 2013; Oda-Ishii et al., 2016;
Rothbächer et al., 2007). Although Gata.a is present ubiquitously in
the embryo, its activity is inhibited in vegetal cells by a physical
interaction with β-catenin and Tcf7 (Oda-Ishii et al., 2016). This
interaction thus restricts Gata.a activity to the animal hemisphere.
Therefore, in vegetal cells, β-catenin/Tcf7 directly promotes the
transcriptional activation of endomesoderm genes, and indirectly
inhibits the expression of ectoderm genes. In the animal
hemisphere, Gata.a, free from β-catenin/Tcf7-mediated repression,
initiates the ectoderm-specific genetic program.

The second nβ-catenin binary fate decision takes place at the 32-
cell stage, following a cell division that segregates the endoderm
lineages (E cells) from the marginal (mesoderm and some neural)
lineages (the NN and MM cells) (Fig. 1A). During this step, nβ-
catenin promotes endoderm over marginal lineage specification,
such that Zic-r.b (formerly ZicL) is specifically activated in margin
cells, and Lhx3/4 (formerly Lhx3) is activated in E cells (Hudson
et al., 2013; Imai et al., 2002b; Satou et al., 2001). Zic-r.b is a key
specifier for the marginal lineages, required for the anterior
marginal cells (NN cells, A6.2 and A6.4) to give rise to
notochord and caudal neural tissue, and for each of the posterior
marginal cells [anterior MM (aMM) cells, B6.2; posterior MM
(pMM) cells, B6.4] to give rise to both muscle and mesenchyme
(Imai et al., 2006, 2002b; Satou and Imai, 2015; Yagi et al., 2004). It
appears that Zic-r.b is regulated differently between aMM and
pMM; when nβ-catenin is ectopically activated, Zic-r.b expression
is lost in NN and aMM cells but not in pMM (Hudson et al., 2013).
In the present study, we address how Zic-r.b is activated
differentially between NN/aMM cells and E cells, and examine
the possibility that the physical association of Gata.a and β-catenin/
Tcf7 might also be involved during the segregation of cell lineages
at the 32-cell stage.

RESULTS AND DISCUSSION
Gata.a is required for Zic-r.b expression
In order to test whether Gata.a is required for Zic-r.b expression in
marginal cells, we knocked down Gata.a using morpholino
oligonucleotides (MOs). As shown in Fig. 1B, Zic-r.b was
expressed normally in NN and MM cells in embryos injected
with a control MO against Escherichia coli lacZ. By contrast, in
embryos injected with Gata.a-MO, Zic-r.b expression was reduced
in NN and aMM cells, but not in pMM cells (Fig. 1C,D; Fig. S1).
Thus, Gata.a is required for Zic-r.b expression in NN and aMM
cells, but is dispensable for expression in pMM cells.Received 22 June 2016; Accepted 22 September 2016

1Department of Biological Sciences, Graduate School of Science, Osaka
University, Toyonaka, Osaka 560-0043, Japan. 2Department of Zoology, Graduate
School of Science, Kyoto University, Kyoto 606-8502, Japan. 3Sorbonne
Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du
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Gata.a directly activates Zic-r.b expression
Zic-r.b is a multi-copy gene (Dehal et al., 2002; Yamada et al.,
2003). By comparing the upstream regulatory regions of four
copies, we found that the region approximately 230 bp upstream
from the transcription start sites was highly conserved (Fig. S2A).
We identified four putative Gata-binding sites in this highly
conserved domain. Chromatin-immunoprecipitation (ChIP)
mapping of Gata.a binding, generated in our previous study (Oda-
Ishii et al., 2016), revealed a clear peak of Gata.a binding to the
conserved upstream regions of each copy of Zic-r.b (Fig. 2A; Fig.
S2B). A lacZ reporter construct containing this conserved upstream
region was indeed activated in NN, aMM and pMM cells (Fig. 2B,
C) (Anno et al., 2006).

In order to address whether the Gata sites were required for the
expression driven by this conserved region, we introducedmutations
in the Gata sites. We focused on the two proximal Gata sites for two
reasons. First, the distal Gata sites are present in a region of the Zic-r.
b upstream regulatory sequences specifically required for expression
inMMcells (Anno et al., 2006). Second, the two proximal Gata sites
were conserved in the upstream sequence of Zic-r.b of the closely
related Ciona savignyi. We introduced three different mutations into
both of the two proximal Gata sites. In each case, reporter gene
expression driven by these mutant constructs was greatly reduced in
both NN and MM lineages (Fig. 2B-E; Fig. S3). The second mutant
construct (μ2; Fig. 2B,E) reveals that not only the core sequence,
‘GATA’, but also its flanking nucleotides are important, consistent
with previous studies (Farley et al., 2015; Horikawa et al., 2013).
Furthermore, gel-shift assays showed that the upstream region of
Zic-r.b containing the proximal Gata sites (Fig. 2A; Fig. S2A) bound
Gata.a protein in vitro, and that this binding was dependent upon
intact Gata binding sites (Fig. 2F). Taken together, our results
suggest that Gata.a directly activates Zic-r.b expression.

Curiously, although theGata.a-MO analysis suggested that Gata.a
activity is required for Zic-r.b expression in NN and aMM, but not
pMM cells, our mutational analysis of the upstream regulatory
sequences of Zic-r.b suggests that the proximal Gata sites are required
for activation in all the marginal cells (NN, aMM and pMM)
(Fig. 2B-E). This suggests that Gata.a contributes to Zic-r.b
expression in pMM cells, but that transcription factors other than
Gata.a are sufficient to control endogenous Zic-r.b expression in
these cells. Regulatory elements that control this putative Gata.a-
independent expression did not appear to be present even in a reporter
construct containing longer upstream sequences (−682; Fig. S3).

β-catenin/Tcf7 reduces the DNA-binding activity of Gata.a
We next tested the possibility that β-catenin/Tcf7 prevents Gata.a
from binding to the upstream regulatory sequences of Zic-r.b, as it
does in the upstream regions of two ectoderm genes, Efna.d and
Tfap2-r.b (Oda-Ishii et al., 2016). Consistent with this idea, gel-shift
assays showed that Gata.a binding to the upstream sequences of
Zic-r.b was greatly reduced when Gata.a protein was co-incubated
with β-catenin and Tcf7 (Fig. 3A,B). Thus, the in vitro binding activity
of Gata.a protein to the Gata sites of the Zic-r.b upstream region was
negatively regulated by the presence of β-catenin and Tcf7.

We have previously shown that treatment of Ciona embryos with
a pharmacological inhibitor of Gsk3 (BIO, GSK-3 inhibitor IX)
stabilizes nβ-catenin and results in loss of Zic-r.b expression in NN
and aMM cells (Hudson et al., 2013) (Fig. 3C,D). Based on the
results presented so far, we predicted that in embryos treated with
BIO, Gata.a would exhibit reduced binding to the upstream
regulatory sequences of Zic-r.b. To test this, we performed a ChIP
experiment with anti-Gata.a antibodies followed by quantitative
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Fig. 1. Zic-r.b expression in the marginal cells is regulated by Gata.a.
(A) An illustration of the 32-cell embryo. Because the embryo is bilaterally
symmetrical, blastomere names are shown only in the left half. At this stage,
the developmental fate of the animal hemisphere cells (yellow) is restricted to
ectoderm, and the developmental fate of the vegetal-most cells (blue) is
restricted to mostly endoderm. The marginal cells, NN and MM cells, with
distinct lineage origins express Zic-r.b and give rise tomesodermal tissues and
posterior neural tube. White bars connecting two cells indicate their sister cell
relationship. (B-D) Zic-r.b expression in embryos injected with a lacZ control
MO (B) and a Gata.aMO (C). Unfertilized eggs were injected with either of the
MOs (1 mM), and inseminated 1 h after injection. Black arrowheads indicate
Zic-r.b expression and magenta arrowheads indicate loss of Zic-r.b
expression. We analyzed 40 lacZ morphants and 31 Gata.a morphants. We
also analyzed 16 embryos injected with a second MO against Gata.a. The
percentages of blastomeres that expressed Zic-r.b are shown in D.
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PCR (Fig. 3E). In all three independent experiments, Gata.a binding
to the upstream region of Zic-r.bwas reduced in embryos cultured in
BIO. We conclude that β-catenin/Tcf activity reduces in vivo
binding of Gata.a to the target sites in the Zic-r.b upstream region.

Conclusions
Our results show that antagonism between Gata.a and β-catenin/
Tcf7 are central to both rounds of β-catenin-dependent switches that
segregate the germ layers during early ascidian embryogenesis

(Fig. 4). This antagonistic relationship first segregates the
ectodermal lineages (Gata.a dependent) from the endomesodermal
lineages (nβ-catenin dependent) at the 16-cell stage, and then the
mesodermal/neural lineages (Gata.a dependent) from the
endodermal lineages (nβ-catenin dependent) at the 32-cell stage.
Thus, the two nβ-catenin/Gata.a switches at the 16- and 32-cell
stages subdivide the Ciona embryo into three broad domains that
correspond to the segregating germ layers. The second nβ-catenin/
Gata.a switch cooperates with the lineage-specific factors inherited
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Fig. 2. Gata.a directly regulates Zic-r.b expression. (A) Mapping of Gata.a ChIP data, which were published previously (Oda-Ishii et al., 2016), onto a genomic
region consisting of the exons and upstream region of Zic-r.b. The ChIP-chip data are shown in bars and the ChIP-seq data are shown as a green line. Each graph
shows the fold enrichment (y-axis) for the chromosomal region (x-axis). A double-headed arrow indicates the upstream region that is highly conserved among four
copies of Zic-r.b (Fig. S2A). This region contains four conserved Gata sites. The proximal Gata sites are shown by black boxes, and the distal Gata sites are
shown by white boxes. The second site is not conserved in this copy, and is indicated with a dashed line. Mapping data onto genomic regions containing the other
three copies are shown in Fig. S2B. (B-E) Analysis of a regulatory region of Zic-r.b. (B) The lacZ reporter constructs are depicted on the left with the two proximal
Gata sites indicated by the black boxes. The sequences of intact (wt) and mutated (μ1, μ2) Gata sites are shown below. The numbers indicate the relative
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and pMM cells that expressed lacZ mRNA at the 32-cell stage. Note that although there are four MM and four NN cells in a 32-cell stage embryo, not all cells or
embryos will express the reporter because of mosaic incorporation of the electroporated constructs. (C-E) Photographs showing expression of lacZ mRNA
(detected by in situ hybridization) in embryos electroporated with wt (C), μ1 (D) and μ2 (E) constructs. (F) Gel-shift analysis showing that the proximal Gata sites in
the upstream region of Zic-r.b bound Gata.a protein in vitro. The shifted band disappeared by incubation with a specific competitor (wt), but not the competitor with
mutant Gata.a-binding sites (μGATA). The mutated sequence is the same as the one shown in Fig. S3.
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from the endomesoderm precursors, during activation of the
mesoderm- and endoderm-specific target genes (Fig. 4). Foxd,
activated by the first nβ-catenin/Gata.a switch in the endomesoderm
precursors of the 16-cell embryo (Imai et al., 2002a), is inherited by
the both daughter cells of the 32-cell embryo (Hudson et al., 2013)
where it co-operates with the second nβ-catenin/Gata.a switch to
activate distinct gene expression. Consistent with this idea, previous
studies have shown that Foxd is required for activation of Zic-r.b
(Imai et al., 2002b), and can bind directly to its upstream sequences
(Kubo et al., 2010). Indeed, there are four putative Fox binding
sites in the upstream regions (Fig. S2A) (Anno et al., 2006), and

mutations introduced into these Fox sites abolished reporter gene
expression in NN and aMM cells (Fig. S4A-C), matching the
required role of Foxd for Zic-r.b expression (Fig. S4D). Similarly,
Foxa.a is activated in the endomesoderm precursors of the 16-cell
embryo (Imai et al., 2004), and is required for correct Zic-r.b
expression in NN and aMM cells (Fig. S4E) (Hudson et al., 2016).

The mechanism of nβ-catenin-mediated transcriptional repression
described in the present and previous (Oda-Ishii et al., 2016) studies is
different from other mechanisms described in Caenorhabditis
elegans and Drosophila melanogaster (Bertrand, 2016;
Blauwkamp et al., 2008; Murgan et al., 2015). Thus, nuclear
β-catenin-dependent transcriptional repression appears to be
mediated by diverse mechanisms.

MATERIALS AND METHODS
Animals
C. intestinalis adults were obtained from the National Bio-Resource Project for
Ciona in Japan or purchased from the Station Biologique de Roscoff in France.

In situ hybridization
Whole-mount in situ hybridization was performed as described previously
(Hudson et al., 2013; Imai et al., 2004). Identifiers for genes examined in the
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present study were as follows (Satou et al., 2008; Stolfi et al., 2015): CG.
KH2012.C8.396/CG.KH2012.C8.890 for Foxd, CG.KH2012.L20.1 for
Gata.a, CG.KH2012.C9.53 for β-catenin, CG.KH2012.C6.71 for Tcf7, and
CG.KH2012.L59.12/CG.KH2012.L59.1/CG.KH2012.S816.1/CG.
KH2012.S816.4 for Zic-r.b.

Knockdown studies
The MO (Gene Tools, LLC) against Gata.a, which blocks translation,
has been used previously (5′-GGGTTAGGCATATACATTCTTTGGA-3′)
(Bertrand et al., 2003; Oda-Ishii et al., 2016; Rothbächer et al., 2007). A
second MO that differs by two nucleotides was also used (5′-GGTTAGG-
CATATACATTCTTTGGAA-3′) and gave similar results (Fig. 1D). We also
used a MO against E. coli lacZ as a negative control (5′-TACGCTTCTTC-
TTTGGAGCAGTCAT-3′). These MOs were introduced by microinjection
under a stereo-microscope. The conserved upstream region present in each of
our reporter assay constructs is depicted in Fig. S2A. Reporter constructs were
introduced into fertilized eggs by electroporation (Corbo et al., 1997). All
knockdown experiments and reporter assays were performed at least twice
independently.

ChIP experiments
Mapping of our previously published ChIP-chip (GEO accession number:
GSE70902) and ChIP-seq (SRA accession number: DRA003742) data was
performed as described previously (Oda-Ishii et al., 2016). Gel-shift assays
were also performed as described previously (Oda-Ishii et al., 2016), using a
digoxigenin-labeled probe and Gata.a protein synthesized with a rabbit
reticulocyte lysate system (Promega). The sequence of the probe is shown in
Fig. S2A. Chromatin-immunoprecipitation followed by quantitative PCR
was performed as described previously (Oda-Ishii et al., 2016). The negative
control primer set was the same as that used in a previous study (Oda-Ishii
et al., 2016). The primer sequences to amplify the upstream sequence of Zic-
r.b are shown in Fig. S2A. BIO (Merck Millipore) was used at 2.5 μM.
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