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Abstract We provide a mathematical study of a model of energy metabolism and
hemodynamics of glioma allowing a better understanding of metabolic modifications
leading to anaplastic transformation from low grade glioma.
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1 Introduction

Because anaplastic transformation of low grade glioma is inescapable and occurs in
variable delay, their therapeutic management appears to be a major issue. Until now,
clinical and imaging data failed to promote predictive arguments. Only serial volu-
metric determination may give informations on further evolution, but with a timescale
of one year or more. On the other hand, metabolic changes linked to anaplastic
transformation occur with smaller timescale. Thus, metabolic glioma investigation
may provide informations on further histological and morphological modifications of
glioma. Finally, therapeutic management may be influenced by these issues. Multi-
nuclear magnetic resonance spectroscopy 1H/31P allows non invasive follow-up of
brain tumors metabolism. Metabolites concentrations measurements as creatine and
phosphocreatine, lactate, AT P, intracellular pH can be determined by this technique.
In addition, regional cerebral blood flow (rCBF) can be obtained during the same
time of examination. Robustness and relevance of these tools have been previously
established [4], [7]. However, metabolic and hemodynamic modifications underlying
glioma evolution did not receive attention before. With the aim of better understand-
ing pathophysiological mechanisms in this field, we built a mathematical model. In
a previous paper [5], we derived a system of ordinary differential equations. This
model was based on previously published physiological models [1], [2]. On the basis
of this model, we suggested that specific profiles of metabolic changes may constitute
an early indicator of further anaplastic transformation. This prompted us to further
study the mathematical properties of the model, and this is the aim of this paper. We
intent to determine whether non trivial mathematical properties of the model can give
useful pathophysiological indications for better management of glioma.

2 Derivation of the Model

The model is inspired by the analysis of brain lactate metabolism developed in [1],
[2]. For sake of simplicity, the molar concentration of species X, namely [X ], is noted
X ; units are mM. In this model the two state variables are the intracapillary lactate
concentration LACc and the intracellular lactate concentration LACi. We assume that
the total volume of neurons and normal glial cells is smaller than glioma volume
within the volume of interest, so that the subscript ”i” refers to the intracellular milieu
of glioma cells; similarly, ”cells” designate glioma cells. The model includes the
following elements (cf Fig. 1):

(i) intracellular lactate concentration LACi and pH(pHi =−logH+
i ), cell volume

being Vi;
(ii) cell lactate production J1;
(iii) flux of lactate diffusion from cells to capillaries J2;
(iv) flux J3, which is the sum of :
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- lactate consumption by the metabolism, taking into account both the conversion
lactate-pyruvate catalysed by lactate dehydrogenase and subsequent consumption of
pyruvate by mitochondria, and a possible consumption of lactate by remaining neu-
rons (astrocyte-neuron lactate shuttle, as proposed by [9],

- lactate diffusion towards neighbouring regions;
(v) capillary lactate concentration (LACc) and pH(pHc =−logH+

c ), capillary vol-
ume being Vc;

(vi) arterial lactate concentration LACa;
(vii) cerebral blood flow (CBF);
(viii) flux Jcap, which is the difference between lactate input to capillaries and

output from capillaries, namely Jcap = CBF.LACa−CBF.LACv, where LACv is the
venous lactate concentration.

Furthermore, volumes and blood flow values are expressed per unit tissue volume.
As a consequence, Vc and Vi are dimensionless parameters, and the capillary blood
flow CBF is expressed in s−1.

Thus the following mass balance equations can readily be obtained:

Vi
dLACi

dt
= J1− J2− J3, Vc

dLACc

dt
= Jcap + J2.

Constitutive equations were derived in the following way. First, transport of lac-
tate is always coupled to H+ transport via monocarboxylate transporters (MCT s).
One can simply take into account this passive co-transport by setting (Aubert et al.
2005):

J2 = T (
LACiH+

i

KH +LACiH+
i
− LACcH+

c

KH +LACcH+
c
),

where KH is a constant expressed in mM.M, T the maximum transport rate. This
formula is a simplified version of a more general equation for carrier-mediated sym-
port [6].

Furthermore, following a suggestion by [3] for oxygen balance, we set:

Jcap =CBF.LACa−CBF.LACv = 2CBF(LACa−LACc).

In previous papers, we showed that this simple formulation is nearly equivalent to
more complex ones, based on partial differential equations [11], and can be applied
to lactate, glucose, and oxygen in brain [1], [2]. Finally, since J1 and J3 respective
contributions are difficult to distinguish on the basis of clinical magnetic resonance
studies, we simply write J = J1− J3 .

Finally, we obtain the following system of two differential equations:

Vi
dLACi

dt
= J−T (

LACiH+
i

KH +LACiH+
i
− LACcH+

c

KH +LACcH+
c
),

Vc
dLACc

dt
= 2CBF.(LACa−LACc)+T (

LACiH+
i

KH +LACiH+
i
− LACcH+

c

KH +LACcH+
c
).

It must be noted that the capillary volume Vc is much smaller than the cell volume
Vi; typically, Vc/Vi is about 0.01. Setting ε =Vc/Vi and τ = t/Vi, we can write:
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Fig. 1 Please write your figure caption here
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dLACi

dτ
= J−T (

LACiH+
i

KH +LACiH+
i
− LACcH+

c

KH +LACcH+
c
),

ε
dLACc

dτ
= 2CBF.(LACa−LACc)+T (

LACiH+
i

KH +LACiH+
i
− LACcH+

c

KH +LACcH+
c
).

In the following mathematical study (paragraphs 3-5), we write t instead of τ ,
bearing in mind that a moderate change in time scale has been achieved by introduc-
ing τ since Vi value is about 0.5.

3 Phase-plane analysis of the system with J and T constant

We change to notations better adapted to the mathematical analysis. We set:

x = LACi,y = LACc,k = KH/H+
i ,k′ = KH/H+

c ,L = LACa,F = 2CBF.

We thus obtain the fast-slow system:

dx
dt

= J−T (
x

k+ x
− y

k′+ y
)

ε
dy
dt

= F(L− y)+T (
x

k+ x
− y

k′+ y
).

In this first paragraph, we consider F,L,k,k′ as fixed and J,T as parameters. We
discuss the existence and nature of the stationnary point as well as eventual existence
of periodic orbits. But we also decide that the system makes only sense in a fixed
rectangle that we call the viable phase space:

V = {(x,y),0≤ x≤M,0≤ y≤ N}

This is motivated by the fact that the variables x and y must be positive as they rep-
resent concentrations and cannot assume very large values. We say that if an orbit
leaves the domain V it is not viable. Our interpretation is that the biological viability
of the system is no longer ensured, e.g. cell necrosis occurs.

3.1 Stationary points

Solving the system:
0 = J−T (

x
k+ x

− y
k′+ y

)

0 = F(L− y)+T (
x

k+ x
− y

k′+ y
),

yields

y = L+
J
F

= y0,
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which is always positive. This displays:

x =
k( J

T + y0
k′+y0

)

1− ( J
T + y0

k′+y0
)
= x0.

There is, thus, a unique stationary point (x0,y0).

3.2 Nature of the stationary point

The nature of the stationary point (x0,y0) can be discussed on the Jacobian of the
system at this point. The eigenvalues λ± solve the equation:

(A+λ )(
B+F

ε
+λ )− AB

ε
= 0,

with

A =
kT

(k+ x)2 ,B =
k′T

(k′+ y)2 .

The eigenvalues are so that:

λ++λ− =−(A+
B+F

ε
)< 0,

λ+λ− = AF/ε > 0,

hence the stationary point is stable. Furthermore,

∆ = (A+
B+F

ε
)2−4

AF
ε

=

A2 +2A(
B+F

ε
)+(

B+F
ε

)2−4
AF
ε

>

A2−2A(
B+F

ε
)+(

B+F
ε

)2 ≥ 0,

hence this unique stationary point is a node.

4 Control of the position of the stationary point

We aim in this section to write explicitly the conditions on the control (J,T ) and the
parameters so that:

0≤ y0 ≤M,0≤ x0 ≤ N.

It was observed previously that y0 is always positive. But there is a condition so that
x0 > 0. This yields

1− (
J
T
+

y0

k′+ y0
)> 0,

with
y0 = L+

J
F
,



Mathematical modeling of metabolism and hemodynamics 7

this displays the condition

T > J[1+
1
k′
(L+

J
F
)].

This shows, in particular that the condition T > J is necessary.
The condition y0 ≤M displays:

J
F
≤ (M−L).

Note that the rectangle should be such that M ≥ L. The last condition

x0 ≤ N,

yields:
y0

k′+ y0
<

N
k+N

− J
T
,

and

L+
J
F

<
k′( N

k+N −
J
T )

k
k+N + J

T

.

5 The slow curve

The geometry of the slow curve is important as it allows to explain how the orbits
may eventually leave the viability domain.

The equation of the slow curve is:

f (x,y) = F(L− y)+T (
x

k+ x
− y

k′+ y
) = 0.

This slow curve is always attractive because:

f ′y(x,y) =−F− k′T
(k′+ y)2 < 0.

Note as well that it is a graph over the y-axis: f (x,y) = 0 if and only if x = φ(y), with:

x =
k(Fy−FL+ Ty

k′+y )

T − (Fy−FL+ Ty
k′+y )

.

The function φ is increasing. Generic orbits are almost parallel to the y-axis then
reach a neighborhood of the slow curve and follow inside this neighborhood untill
they tend to the stationary point.

Numerical computations using MATLAB software clearly confirm this point:
orbits in the (x,y) = (LACi,LACc) phase plane are displayed in Figure 2, where
ε =Vc/Vi = 0.006875. Moreover, even values of ε as high as 1 result in a somewhat
similar phase portrait (not shown).
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Fig. 2 Please write your figure caption here

6 Discussion and Conclusion

Whatever the parameters values, the model has a unique stationary point. Further-
more, the stationary point is asymptotically stable. This finding is consistent with a
clinically observed fact that, within a short time scale from minutes to days, metabo-
lite concentrations within the tumor appear nearly constant. Moreover, we derived
explicit and sufficient conditions which ensure that a stationary point is in a viability
domain in the first quadrant. These conditions can give useful pathophysiological in-
sights on tumor viability. For instance, “x(t) is positive” implies that T , the maximum
transport of lactate via MCT , must be sufficiently high. This strongly suggests mod-
ifications of density and /or kinetic properties of MCT during glioma evolution. In
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fact, both MCT in glioma cells and blood-brain barrier should have enhanced density
or individual maximal rate. This also suggests that MCT could be potential target for
glioma therapeutics [8]. Furthermore, the two variables of the system display distinct
time evolutions. Thus, the system could be studied using asymptotic and geometric
analysis of slow-fast systems. Quite interestingly, the model has an associated viabil-
ity domain, and generic orbits are almost parallel to the Y (LACc) axis, then remain
in neighborhood of the slow curve while tending to the stationary point. As a con-
sequence, generic orbits do not leave the viability domain. Thus, in the framework
of the slow-fast dynamics approximation, the problem of the viability of trajecto-
ries (solution curves) can fully be solved. This will allow using a larger study frame
where some parameters of the model can be replaced by control variables. There is
indeed the perspective to build a hierarchy of models for cerebral metabolism and
hemodynamics, in analogy with the SAPHIR model built for renal physiology [10]
by replacing successively each control variables by a compartmental adding of sup-
plementary models, on the basis of the Aubert-Costalat equations. As a conclusion,
the model provides pathophysiological mechanisms of glioma metabolism. Further
mathematical and clinical studies can provide a better understanding of the natural
history of glioma and then may allow improvement of therapeutic management.
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