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Abstract 

We present a new plugin for ImageJ called DiAna, for Distance Analysis, which comes with a user-

friendly interface. DiAna proposes robust and accurate 3D segmentation for object extraction. The 

plugin performs automated object-based co-localization and distance analysis. DiAna offers an in-

depth analysis of co-localization between objects and retrieves 3D measurements including co-

localizing volumes and surfaces of contact. It also computes the distribution of distances between 

objects in 3D. With DiAna, we furthermore introduce an original method, which allows for estimating 

the statistical significance of object co-localization. DiAna offers a complete and intuitive 3D image 

analysis tool for biologists. 
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1 Introduction 

 

Many biological and physiological studies depend on the analysis of the distribution and spatial 

relationship between biomarkers in a cell or tissue. Various methods, from immunodetection to 

transgene-driven expression of fluorescent proteins, allow to observe positive cells in whole specimen 

or tissue sections at the histological level, or to detect protein sub-cellular localization at the cellular 

level. The 3D-organization and relationship of these biomarkers can be investigated using 

fluorescence microscopy techniques that allow optical sectioning, such as confocal microscopy or 

multiphoton microscopy. These should be combined with appropriate image analysis methods. 

Biologists often investigate the spatial overlap of pairs of biomolecules in a cell or in a sub-cellular 

compartment by means of co-localization analysis, before inferring biological interaction and drawing 

functional conclusions.  

Co-localization analysis can be carried out using two different, complementary methods: a pixel based 

approach [1][2] or an object-based approach [3][4][5], as well as a combination of the two approaches 

[6]. These methods have been reviewed in detail [5][7][8].  

In the pixel-based approach, the linear relationship between a pair of biomolecules is calculated 

statistically between two fluorescent channels [2][9] without taking into account the positional 

information. Statistical significance of this correlation coefficient may be ensured by computing co-

localization after scrambling pixel coordinates [10] or by shifting images pixel wise [11]. Pixel-based 

approaches are included in most commercially available image analysis softwares because they are 

easy to implement. However, co-localization analysis by pixel-based approaches is affected by the 

inherent noise of fluorescent images and thus not always applicable [5][8]. Furthermore, pixel-based 

approaches do not give information about the spatial relationship between objects. 

In the object-based approach, spatial information is used to quantify the degree of co-localization 

between objects in the image. It is thus indispensable to perform segmentation prior to co-localization 

analysis in order to identify and delineate the objects of interest. Intensity thresholding is a simple 

method, but its easiness comes with limitations as the threshold is globally applied to the whole image. 

Recently, more sophisticated 3D, local segmentation methods have been developed [12][13], 

including spot segmentation and iterative thresholding, which we describe in this study. 
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The segmentation allows determining the volume that an object occupies in the 3D space as well as 

the localisation of the geometrical centroid or centre of mass of the object. The degree of co-

localization can then be calculated in different ways, depending on the optical resolution limit and the 

size of objects investigated. In one approach co-localization is detected if the distance between the 

centres of the objects in two fluorescent channels is lower than image resolution. In another approach, 

co-localization can be inferred if the centre of one object falls into the volume occupied by the other 

object. These two paradigms are used in the JACOP plugin from ImageJ [5]. More recently, a plugin 

for object-based co-localization analysis has been implemented in the software Icy [8][14], In this 

approach, a spherical region is computed around the object centre, and co-localization is deduced if 

the centre of another object falls into this spherical region. Several drawbacks are inherent to the 

aforementioned approaches. Indeed, the object position determined by its centroid or centre of mass 

is not sufficient to fully represent the object. Furthermore, no information, neither on the extent of co-

localization for each object, nor on the property of the co-localizing objects (such as intensity or 

volume) can be obtained. 

Here, we first summarize the critical steps for optimized image acquisition and present a new plugin, 

DiAna -for Distance Analysis. This plugin allows to segment the objects as well as to perform in-depth 

analysis of co-localization and distance between objects. The applicability of the various tools provided 

by DiAna is illustrated with images of neuronal synaptic markers, since they are objects with known 

co-localization patterns.  The analysis of those pre- and post-synaptic elements that form a synapse is 

representative of the sub-cellular co-localization analysis which can be performed with DiAna and can 

be transferred to any kind of biological structures. 

 

2 Material and methods 

 

2.1 Animal care 

Animal care was conducted in accordance with standard ethical guidelines (NIH publication no. 85-23, 

revised 1985 and European Committee Guidelines on the Care and Use of Laboratory Animals 

86/609/EEC), and the experiments were approved by the local ethic committee. Male mice weighing 

22-24 gm were housed 5 per cage and acclimatized to laboratory conditions (12hr light/dark cycle, 

21+/-1°C room temperature) with ad libitum access to food and water. VGLUT1-venus knock-in mice 
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express the Vesicular GLUtamate Transporter 1 (VGLUT1) fused to the fluorescent protein Venus 

under VGLUT1 endogenous promoter [15].  

 

2.2 Sample preparation 

Mice brains were fixed by intracardiac perfusion of 4% paraformaldehyde in 0.1 M 

NA2HPO4/NaH2/PO4 (phosphate buffer, PBS), pH 7.4.  Brains were dissected and post-fixed overnight 

at 4 °C. Coronal sections of 50 µm thickness were cut with a vibratome (Leica).  

  

2.3 Immunofluorescence 

Sections were permeabilized for 30 min in PBS containing 0.1% Triton X-100 and 3% bovine serum 

albumin (BSA). The sections were incubated with the primary antibody in PBS with 3% BSA overnight 

at 4°C. The antibodies used were mouse monoclonal directed against synaptophysin (1/1000, Sigma), 

mouse monoclonal directed against bassoon (1/1000, Stressgene), rabbit polyclonal directed against 

tyrosine hydroxylase (1/1000, Sigma). Following three washing steps of 15 minutes with PBS, 

secondary antibody conjugated with the fluorochrome alexa-561 or alexa-488 directed against either 

mouse or rabbit (1/500, Invitrogen) was incubated in PBS with 3% BSA for 2 hours at room 

temperature. After washing, sections were rinsed before mounting in Prolong Gold. 

 

2.4 Confocal image acquisition and deconvolution 

Images stacks were taken with a Confocal Laser Scanning Microscope (TCS SP5, Leica 

Microsystems, Germany) equipped with a 1.4 NA objective (oil immersion, Leica) with pinhole aperture 

set to 1 Airy Unit, pixel size of 60 nm and z-step of 200 nm. Excitation wavelength was 488, 514 or 

561, and emission range was 500-550, 525-540 or 570-620 nm, for detection of alexa-488, venus or 

alexa-561, respectively. Laser intensity and photomultiplier tube gain were set so the image occupies 

the full dynamic range of the detector. Deconvolution was performed using an experimental Point 

Spread Function obtained from fluorescent beads and Maximum Likelihood Estimation algorithm 

(Huygens software, Scientific Volume Imaging, Netherlands). 150 iterations were applied in classical 

mode, background intensity was averaged from the voxels with lowest intensity, and signal to noise 

ratio values were set to a value of 15. 
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2.5 Segmentation 

Three segmentation procedures are implemented in the plugin. The first one is global intensity 

thresholding of the image. The second one is based on spot segmentation [16]. Local maxima are 

computed in the image, and a user-defined threshold allows selecting the local maxima belonging to 

objects. Then the 3D radial distribution of the voxel intensities around each local maximum is 

computed and a threshold is estimated for the border of each object. When the border intensity 

threshold has been found, the voxels around the local maximum are examined and successively 

included in the segmented object through the following algorithm: each 3D neighbour voxel is 

examined and included in the object if 1: their intensity is above the threshold 2: if their intensity is 

lower than the voxel previously added to the object 3: if the other neighbours would be added to the 

object as well.  The third segmentation procedure is based on an iterative thresholding process, it is a 

simplified version of the algorithm published by Gul-Mohammed et al [17], and is based on the idea of 

max-trees and MSER technique [18][19]. An interval of volumes is fixed and the image will undergo 

thresholding at each possible threshold and segmented objects having a volume in the defined range 

will be extracted from the image. The extracted objects are then organized into a hierarchy. Since a 

same object can be extracted with different thresholds, the corresponding extracted objects will be 

stored in different branches of the hierarchy. In case an object will split into two objects at higher 

threshold, a branch division will be created. Then on all final branches, corresponding to higher 

thresholds, the thresholds yielding to most stable objects, in term of volume, will be computed and the 

corresponding object will be displayed as the best object on this branch, all other instances of this 

object will then be discarded. 

Unless stated differently, segmentation was performed in 3D using the spot segmentation procedure 

using the following parameters: Maxima detection: radius in xy-axis=4, in z-axis=3, noise parameter 

set to zero; Threshold for maxima selection was set to 5000; Parameters for Gaussian fit and 

threshold calculation were Radius maximum=10, S.D. value=1.5. 

The validation of the segmentation was estimated by calculation of F-measure. The accuracy was 

classically measured by F = 2 * (Precision * Recall) / (Precision + Recall). Precision and Recall are 

estimates of false positives and false negatives rate, respectively. 

 

2.6 Distance analysis 
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Distance analyses are based on classical euclidean distance computation. We implemented centre-to-

centre distances, centre-to-edge distances and edge-to-edge distances. In order to be computationally 

efficient the objects are defined as the list of the voxels comprising the object. For edge-to-edge 

distance analysis, the list of contour voxels are extracted and put into a KD-tree for efficient distance 

computation [20]. The edge-to-edge distance is hence the smallest distance between the two objects, 

and will be equal to 0 if the two objects intersect.  The closest objects are also computed using a KD-

tree approach for efficiency. 

 

2.7 Co-localization and contact surface analysis 

The computation of co-localized voxels is based on the analysis of the corresponding labeled images 

of the objects [21]. The object 1 is labeled with values 1 in the first image and the object 2 with values 

2 in the second image, the two images are then summed up. The number of voxels having a value 3 

will hence correspond to the number of co-localized voxels between the two objects. From two non-co-

localized objects we implemented a contact surface computation. We define a minimum distance 

between the borders of the two objects and compute the number of border voxels from one object 

having border voxels from the other object below the defined distance.  

 

2.8 Statistical computation  

In order to compute robust co-localization analysis, we need to assess the statistical significance of 

the co-localization. Based on the idea of the randomization of pixels described by Costes, we carry out 

a randomization of object’s positions. A new position is randomly assigned to the objects, while 

ensuring the objects remain in the surrounding structure and do not intersect with other objects. Based 

on this randomization we used the framework defined by Andrey et al [22] to define an index 

describing the statistical significance of the co-localization. We first compute the cumulated distribution 

function (cdf) of all distances between the centres of objects of the first channel to the centre of the 

closest object in the second channel for the observed data. We then compute the same cdf for n 

randomized data and rank the observed data among the n randomized data. For a 5% interval, if the 

observed data falls into the first or last 2.5% of the randomized data, we can then reject the hypothesis 

than the co-localization is only due to chance, as this may happen in high density objects populations. 
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3 Results and discussion 

 

3.1 Segmentation: Determination of the objects in the image 

Segmentation is a process that allows the identification of objects in digital images. Binarization 

assigns a value of either 0 or 1 to each pixel. Pixels belonging to objects have a value of 1, 

background pixels have a value of 0. In a second step, the objects are labelled, which means that all 

neighbouring pixels with a value of 1 are grouped to define an object. Segmentation is thus a process 

by which a gray-scale image becomes a space in which objects are located. In the most classical 

segmentation procedure, an intensity threshold is used to binarize the image. Before thresholding, 

smoothing of the image with an appropriate filter can be performed with the plugin DiAna, if the image 

has previously not been deconvolved and noise filtered. Indeed, proper image acquisition and pre-

processing facilitates subsequent object extraction by image segmentation for reliable analysis. The 

preparation of the sample and image acquisition have been extensively discussed elsewhere 

[5][23][24][25], and the benefits of deconvolution have been well demonstrated [23][26][27][28] Noise 

filtering and global thresholding are implemented in DiAna, so objects can be extracted before 

analysis. The major problem with intensity thresholding lies in the fact that this is a global approach. If 

the image contains bright and faint objects, the application of a single threshold to the image will end 

with the bright objects being too big or the faint objects being too small. Hence, a local approach for 

segmentation is often more useful. Therefore, we included two 3D segmentation procedures in the 

DiAna plugin, which allow for segmentation of image containing objects with different sizes and 

intensities (Fig. 1).  The “spot segmentation” procedure is based on detection of objects with local 

maxima and 3D analysis of the intensity distribution around the maxima [16] (Fig. 1A,B). This 

procedure brings the advantage that objects with different intensities will be properly segmented. It 

should, however, be noted that each local maximum is a seed that marks an object, it is thus advised 

to deconvolve or apply smoothing filters before maxima detection, and to carefully set the intensity 

threshold for maxima selection. The plugin DiAna offers visualization the local maxima so best 

parameters can be found before performing segmentation. Finally, it is noteworthy that the method is 

best suited for spot-like objects since in case of irregular objects several local maxima may be found 

within the same object which would then be split. Therefore, we introduced a tool in the ROI manager 

for manually selecting and merging pairs of objects when necessary. The “iterative segmentation” 
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procedure extracts each object by examining the output of thresholding at different intensity values 

[17] (Fig. 1C). A complete version of these segmentation procedures with more options can be found 

in the 3D Image Suite [29][30]. 

The segmentation procedures implemented in DiAna were validated for an image of neuronal 

presynaptic elements by immunofluorescence labelling of tyrosine hydroxylase, acquired with confocal 

microscopy (Supplementary Fig. S1). In comparison to the ground truth (positive objects eye counted 

by experimenter), both segmentation procedures extracted objects accurately (F-measure of 0.992 

and 0.987 for spot and iterative procedure, respectively). The output of segmentation was further 

tested on another dataset from similar objects to compare results from raw and deconvolved image. 

The segmentation was less precise on raw images but still efficient enough to apply co-localization 

analysis (F-measure for deconvolved images 0.966 and 1, and for raw images 0.934 and 0.966, for 

spot and iterative procedure, respectively). The algorithms in both spot and iterative segmentation 

procedures have been chosen so they are generally applicable to most biological images with good 

robustness. However, users are advised to test several values for the parameters and validate the 

segmentation by visual inspection of the segmentation result. It is a general rule that only the biologist 

can properly estimate whether the segmented objects correspond to what he/she considers as 

biological objects. Images of similar biological objects often contain variable intensities. This may be 

due to differences in the efficacy of fluorescent labelling from one experiment to another, or from lack 

of stability of the excitation and detection system of the microscope. Therefore, the values determined 

for the parameters of the segmentation may not be applicable to two different sets of images. A way to 

circumvent this problem is to normalize the mean intensity of the whole image [23] before defining the 

segmentation parameters and reliably applying them to all images of the study. 

 

3.2 Three-dimensional measurements for object analysis 

Following the application of the segmentation procedure described in section 3.1, DiAna offers precise 

3D measurements for co-localization and distance analysis. Of note, users can segment their images 

with any other method of their choice and directly use the analysis tools of DiAna. The plugin 

quantifies several parameters for pairs of objects (Fig. 2). It also introduces measurement of surface of 

contact for distant and co-localizing objects, which requires a user-defined edge-to-edge distance (Fig. 

2E). Those parameters are used for co-localization and distance analysis as described in sections 3.3 
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and 3.4. Moreover, DiAna performs measurements of several parameters such as volume, mean 

intensities, surface area, Feret’s diameter, coordinates of centers of mass and centroids for all objects 

of the image. 

 

3.3 Co-localization analysis with DiAna 

Co-localization is determined by the detection of overlapping objects. DiAna computes distances 

between co-localizing objects (Fig. 2A-C) as well as measurements of co-localizing object volumes for 

each pair of objects (Fig. 2D). Those measurements allow for precise quantification of the co-

localization. Figure 3 shows two biological examples where images of synaptic markers with known 

differences in co-localization where analysed with DiAna. Note that some spots are excluded from 

segmentation because they are not biologically relevant. VGLUT1 can sparsely be found in the axon 

in between the presynaptic elements which are the objects to be extracted [31] and 

immunofluorescence for synaptophysin and bassoon retrieves low intensity background besides 

relevant signal. The co-localization of the vesicular transporter VGLUT1 with synaptophysin (Fig. 3A) 

and with Bassoon (Fig. 3B) was analysed by determining centre-to-centre distances and the 

percentage of the co-localization volume (Fig. 3C,D). A perfect co-localization between VGLUT1 and 

synaptophysin was revealed with a centre-to-centre distance smaller than optical resolution, while the 

co-localization between VGLUT1 and bassoon is not complete, as shown by a longer centre-to-centre 

distance and lower percentage of co-localization for each pair of objects. Those results fit the 

measurements performed from electron microscopy and STED microscopy data [32][33], as VGLUT1 

and synaptophysin are found in the main vesicular pool while bassoon is restricted to the active zone 

next to the plasma membrane of the presynapse [34][35]. 

Interestingly, the percentage of the co-localizing object’s volume given by DiAna allows using a cut-off 

to discard false positives, which could appear because the blur in z-axis can lead to small overlap 

between objects (Fig. 3E). This loss of axial resolution can be reduced by refractive index matching 

[36] and by deconvolution [27][28]. It is noteworthy that it was measured that deconvolution improves 

co-localization analysis [37][38][39]. 

Finally, in addition to co-localization measurements, DiAna retrieves tables with quantifications such 

as volume and mean intensity for each object of both images. Each object is identified in the co-
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localization and measurement’s tables, ensuring that a correlation between chosen criteria can be 

drawn. 

 

3.4 Distance analysis with DiAna 

DiAna also offers a distance analysis for either co-localized objects or for all objects from the two 

images. For each object from one image, the centre to centre distances with all objects of the other 

image are computed in 3D. By default, the plugin identifies the closest, not co-localizing, object. The 

user can also select the rank of the objects to be included in the result table (first closest only, first and 

second closest, first to fifth etc.). Note that in this case the co-localizing objects will be included in the 

results as the first closest objects. The distances measured can be used to plot a histogram of 

distances between neighbouring objects for spatial distribution analysis, and correlation between 

quantified parameters from the object pair can be assessed. Figure 4 shows the spatial analysis in a 

biological example where the distances of two synaptic markers, the vesicular transporter VGLUT1 

and tyrosine hydroxylase where analysed with DiAna. The analysis of the distances to the first closest 

object shows that objects from the red channel are preferentially localized in the vicinity of objects from 

the green channel, since 50% of all red objects are found in a distance below 1 micron to a green 

object, which exactly fits with measurements performed on images obtained by electron microscopy 

[40]. 

The distance analysis can furthermore be used to assess co-localization in the case where objects are 

represented as single voxels. DiAna can be used to estimate co-localization from images of the centre 

of the objects. The centre-to-centre distance, given by the distance analysis, allows determination 

which objects do co-localize (Fig. 5). The measured distances can be ranked to set a threshold value, 

which will define which single-voxel objects do co-localize. Co-localization can be decided if the 

distance is smaller than the optical resolution. In this case the threshold distance can be either set to 

zero or more, depending on the resolution of the image (Fig. 5A-C). Alternatively, the co-localization 

can be decided if the distance value is lower than a threshold distance estimated on the basis of the 

knowledge of minimal size of the objects (Fig. 5A,D). It is noteworthy that this method can be applied 

for co-localization analysis in images of single particles, in which objects are represented as single 

voxels, often identified as the peak of the Gaussian distribution of objects intensity.  
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3.5 Assessing statistical robustness in object based co-localization analysis 

In pixel-based co-localization analysis, statistical significance of co-localization may be estimated by 

comparing co-localization measurements before and after randomization of pixels. Costes et al. [10] 

confronted the Pearson coefficient (PC) of an image pair with correlation coefficients obtained 

between the green channel and randomized images of the red channel. To do so, they shuffled pixel 

blocks of one fluorescent channel in a randomized manner and measured the PC after each 

randomization round. They obtained a Gaussian distribution of PC after randomization and deduced 

that the PC obtained for the original image pair would be statistically significant if it is not included in 

the area of the Gaussian curve. With the DiAna plugin, we introduce a similar method, originating from 

spatial statistics analysis and described in Andrey et al 2010 [22], applied to object-based co-

localization (Fig. 6). First, objects from one image are randomly redistributed. The shuffle function 

allows to either redistribute the objects in a uniform manner within the whole image, or to import a 

binary image which defines regions in which redistribution is constrained (Fig. 6A-C). Shuffled images 

are generated, and for each of these images the centre-to-centre distances between objects of the 

randomized channel to the closest object in the second channel from the original image are computed. 

The cumulative distribution of the distances is plotted, and represented as the mean (Fig. 6D, red 

curves) flanked by 95% confidence intervals of the results (Fig. 6D, green curves). In parallel, 

observed centre-to-centre distances between objects from the non-randomised original images are 

measured and plotted on the same graphic (Fig. 6D, blue curves). Statistical significance is assessed 

by the null hypothesis that the experimental data are due to randomness. If the distribution of the 

distances from experimental images falls outside the confidence interval of the distance distribution 

obtained for shuffled images in which object locations are random, one concludes that there is less 

than 5% chance (p<0.05) that the observed distribution is random and thus the co-localization is 

considered as statistically significant. In addition, the plugin calculates the rank of the observed 

distribution within n distributions obtained from shuffled images. A rank lower than 0.025 or higher than 

0.975 indicates that the probability that the observed distribution is random is inferior to 5 % and the 

co-localization is then considered significant. In the example of the figure 6, the co-localization of 

VGLUT1 and synaptophysin was assessed and the analysis shows that the co-localization is 

significant, which is expected as these two proteins are both found in the vesicles from the presynaptic 

element of neurons [35][41]. 
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Note that this methodology for assessing statistical robustness using a randomization procedure is 

quite generic and can be applied to other functions for co-localization analysis and generally to many 

other problems.  

 

4 Conclusion 

 

We have developed an ImageJ-based tool named DiAna, allowing for spatial analysis in the three 

dimensions. In this tool we implemented two methods of 3D-segmentation, which show faithful and 

robust object extraction despite high variability of object size and intensity within the image. 

Furthermore, the tool allows executing extended object-based co-localization and distance analysis 

between objects in 3D. After co-localization or distance analysis, quantifications for each object are 

possible. Finally, we introduce a new method for the estimation of statistical significance of object-

based co-localization. The algorithms we developed are implemented in a user-friendly plugin, which 

allows for complete but intuitive 3D image analysis, applicable to a large variety of biological objects. 

The plugin with instructions for use can be found at 

[http://imagejdocu.tudor.lu/doku.php?id=plugin:analysis:distance_analysis_diana_2d_3d_:start]. 
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Figure legends 

 

 

Figure 1. Principles of the segmentation procedures performed by the plugin DiAna 

A. Detection of local maxima for segmentation of the objects with the spot segmentation procedure. 

A1. In noisy images, the “noise” parameter allows the local maxima outside the objects to be 

discarded. For the radius parameter, a low radius (2x2) retrieves several maxima within the same 

object. A bigger radius (3x3) ensures minimal distance between local maxima and avoids this problem. 

An example is encircled in red. 

A2. The maxima detection is more robust in deconvolved or properly noise-filtered images. 

A3. Prior segmentation, a user-defined threshold intensity value allows selecting the maxima 

belonging to the objects. 

A4. Result of the spot segmentation further explained in B. 

B. Workflow of the spot segmentation procedure. B1. Maxima are detected as shown in A. B2. 3D 

radial distribution of the intensity centred to the maxima is computed. The user should define a 

maximum value in voxel for the radius of the largest sphere. It is advised that it is bigger than the 

largest object expected in the image.  B3. The distribution is plotted and fitted to a Gaussian curve. 

The user defines a factor applied to the standard deviation of the Gaussian curve, which sets the size 

of a horizontal line placed to cover the area defined by the Gaussian curve (i.e. the size of the object). 

Factors of 1.5 and 2 will cover 86.6 and 95.4% of the Gaussian curve, respectively. The corresponding 

intensity value on y-axis of the graphic is the threshold used for segmentation of the object. B4. The 

procedure allows finding a specific threshold for objects of different intensities. Voxels around the 

maxima are successively included in the segmented object through an algorithm with three criteria of 

acceptance: The first criterion is that the voxel intensity should be higher than the defined threshold. 

The second criterion is that their intensity should be lower than the intensity of the voxels previously 

included in the objects, which avoids merging of adjacent objects as shown in B5. The third criterion is 

that the voxel is included on the condition that neighbouring voxels are included as well, which avoids 

creation of filamentous structures extruding from the object as shown in B6. 



  

20 
 

C. Workflow of the iterative segmentation method. C1. The image is segmented with different intensity 

thresholds. From low to high intensity thresholds, the objects become isolated and decrease in size. 

The segmented objects which fall in the volume interval defined by the user are stored in a hierarchy. 

C2. The selected objects are classified in a hierarchy showing the object separation and decrease in 

size along increasing threshold values. When an object becomes isolated it is stored in a new branch 

in the hierarchy. The final branches contain most disconnected objects, still having their volume in the 

specified interval. The best thresholds within the last branches are found with the maximum stable 

volume algorithm. The difference in the object volume between each threshold is computed and the 

threshold corresponding to the minimum difference is retained. C3. The iterative method determines a 

threshold specific to each object and reconstructs the segmented image. 

 

Figure 2. Measurements performed in DiAna plugin 

A-C. Distance analysis measurements performed by DiAna are centre-to-centre (A), edge-to-edge (B), 

centre-to-edge (C). 

D. Percentage of co-localizing volumes normalized to the volume of either one or both objects are 

computed by DiAna. 

E. Contact surface measurements for overlapping and distant objects. The user-defined maximum 

distance between objects (blue arrows) set the extent of the object contour for which the contact is 

defined. 

 

Figure 3. Detailed co-localization measurements using the plugin DiAna 

A-B. Close-ups of single sections from deconvolved and segmented image stacks showing two 

fluorescent channels. Images were obtained from brain sections immunolabeled for synaptic proteins 

(green: vesicular transporter VGLUT1, red in A: bassoon, red in B: synaptophysin). 

C. Distance measurements between centres of co-localizing objects reveal that the co-localized 

objects from image B are closer to each other than the co-localized objects from image A. 

D. Measurements of the percentage of the co-localizing volume for each object’s pair reveal that the 

co-localizing volume is bigger for the objects from image B than for the objects from image A. 
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E. 3D volume rendering from image stack showing an example of co-localization artefact due to optical 

smear. The percentage co-localization volume is lower than 5% and a cut-off can be defined to avoid 

such false positives. 

Images were segmented using spot segmentation protocol. Co-localization analysis was performed on 

image stacks containing more than 5000 objects in each channel. Scale bars in A-B: 1 micron. Note 

that some spots are excluded from segmentation as they are not biologically relevant. 

 

 

Figure 4. Distance analysis of paired of non co-localizing objects with the plugin DiAna 

A. Close-up of a single slice from deconvolved and segmented image stack showing both channels. 

Images were obtained from brain sections immunolabeled for proteins expressed in different, hence 

not co-localizing, synaptic structures (green: vesicular transporter VGLUT1, red: tyrosine hydroxylase).  

B. Distance analysis retrieves centre-to-centre distance in between all objects from green channel and 

their closest neighbour in red channel. The histogram of distance distribution shows that 50% of the 

objects from the red channel are localized at less than 1 micron from objects of green channel. 

Distance analysis was performed on image stacks containing more than 3000 objects in each channel. 

Scale bars in A-B: 1 micron. Note that some spots are excluded from segmentation as they are not 

biologically relevant. 

 

 

Figure 5. Co-localization analysis based on localization of object’s centres with the plugin 

DiAna 

A. Distance measurements between all points from two images allows the analysis of the distance 

distribution of objects. The coloured bars in the histogram illustrate threshold values, which can be 

used to define co-localization according to criteria defined in B-D. 

B. Co-localization can be defined for either a zero distance or a distance equal to voxel size. 

C. Co-localization can be defined for distances which are lower than the resolution of the imaging 

system. 

D. In case the minimal size of the biological objects are known, co-localization can be defined for 

distances which are lower than the sum of the minimum radiuses of objects A and B. 
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Scale bars in B-D: 300 nm. Pixel size: 60 nm. 

 

Figure 6. Statistical significance of the object based co-localization 

A. DiAna can perform randomization of objects localization within a selected region in the image. 3D 

surfacing rendering of objects segmented within a mask. Each spot corresponds to an object and the 

mask volume appears in grey. 

B. View of the same objects as in A following the application of a shuffle procedure. The positions of 

the objects are randomly redistributed within the corresponding mask volume.  

C. 3D surface rendering of segmented objects from two images. Images were obtained from brain 

sections immunolabeled for synaptic proteins (green: vesicular transporter VGLUT1, red: 

synaptophysin). In the shuffled image, red objects are randomly redistributed. The co-localizing 

volumes appear in white. Note that their occurrence is lower after shuffling. Lower panels shows close-

ups from the regions of the upper panel. The objects have an average diameter of 600 nm. 

D. The DiAna plugin provides a graphic, which represents the cumulative distribution of the minimum 

centre-to-centre distances between objects from two images. The blue curve shows the distribution for 

the experimental images shown in B. The red curve shows the mean distribution of distances between 

objects from the experimental green images and from 100 red images obtained by the shuffle 

procedure. The green curve represents the 2.5 and 97.5% confidence intervals around the mean. The 

experimental curve (in blue) is localized outside the 95% confidence interval (in green) of the distance 

analysis done after randomization, the co-localization is thus considered as statistically significant. 

 

Supplementary figure S1. Validation of the segmentation procedures implemented in the plugin 

DiAna 

3D volume rendering of the original and segmented images are shown. In the original image, the 

dynamic range (intensity difference between the dimmer and the brighter object) is to too high to allow 

correct visualization of all objects. Images were acquired with confocal microscope on brain sections 

immunostained for tyrosine hydroxylase. The objects have an average diameter of 600 nm. 

A. Manual counting by experimenter concluded for the presence of 321 objects (ground truth number 

of objects). The segmentation yielded 316 and 311 objects for spot and iterative procedures, 

respectively. Careful inspection of the images showed that 5 and 2 objects were not detected (false 



  

23 
 

negative) in segmented images from the spot and iterative procedures, respectively. In addition, 7 

objects in the image segmented with iterative procedure corresponded to merged spots. 

B. The output of segmentation was further tested on a smaller dataset of 57 objects to compare results 

from raw and deconvolved image. The spot and iterative procedures retrieved 60 and 57 objects, 

respectively. The 3 additional objects observed with the spot procedure were due to 3 objects wrongly 

split. The outcome of the segmentation for raw images was correct, but less precise than what 

obtained from deconvolved images. The spot segmentation on raw image gave 2 false positive and 2 

false negatives. The spot segmentation gave 1 false positive, 2 false negative and 6 objects were 

found to be split. 

The spot segmentation was performed using the following criteria: Maxima detection: radius in xy-

axis=4, in z-axis=3, noise parameter set to zero (100 for raw image); Threshold for maxima selection 

was set to 5000 (14000 for raw image); Parameters for Gaussian fit and threshold calculation were 

Radius maximum=10, S.D. value=1. The iterative segmentation was performed using the following 

criteria: Minimal threshold value 3000 (9000 for raw image) and a threshold interval of 500. The 

volume interval considered was from 27 to 1000 voxels. 
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Highlights 

* A new freely available ImageJ-based plugin called DiAna is presented 

* DiAna proposes two 3D procedures for image segmentation 

* DiAna proposes 3D automated object-based co-localization analysis 

* We introduce a novel method for statistical significance of object-based co-localization 

* DiAna has extended functions for 3D distance analysis and 3D measurements 




