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We investigate the properties of a phononic crystal plate with hollow pillars and introduce the existence
of whispering-gallery modes (WGMs). We show that by tuning the inner radius of the hollow pillar, these
modes can merge inside both Bragg and low frequency band gaps, deserving phononic crystal and acoustic
metamaterial applications. These modes can be used as narrow pass bands for which the quality factor can be
greatly enhanced by the introduction of an additional cylinder between the hollow cylinder and the plate. We
discuss some functionalities of these confined WGM in both Bragg and low frequency gaps for wavelength
division in multiplexer devices using heteroradii pillars introduced into waveguide and cavity structures.
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I. INTRODUCTION

Phononic crystals (PCs) [1–4], or acoustic band gap
materials, constituted of a periodic arrangement of inclusions
embedded in a matrix are receiving increasing attention
for elastic/acoustic wave control and have found several
fields of applications such as waveguiding [5,6], filtering [7],
acoustic lensing [8–11], and fluid sensing [12]. Besides the
two-dimensional (2D) infinite crystal and the control of bulk
elastic waves, the interest of the phononic community has
turned to the control of waves confined on the surface of a
half-infinite PC [13,14] or propagating in finite PC plates.
The latter geometry has been studied by considering either
periodic inclusions [15,16] in particular holes, in a slab, or a
periodic array of pillars on top of the plate [17,18]. It has
been shown that the pillar structure exhibits two types of
band gaps resulting either from Bragg scattering when the
wavelength is in the order of the lattice parameter or from
local resonances of the pillars at large wavelength [17,18]. It
can then be described, respectively, as a PC or as an acoustic
metamaterial. Because of this dual aspect, a great deal of work
has been devoted to these structures, and different objectives
have been pursued. Playing with the nature of the constitutive
material, Oudich et al. [19] have shown the opening of very low
resonant absolute band gaps in a plate covered with one or two
layers of stubs made of soft rubber. Changing the geometry of
the pillar, Hsu [20] investigated numerically the propagation
of Lamb waves through an array of stepped resonators on a
thin slab. Experimentally, Achaoui et al. [21] reported on the
propagation of surface guided waves in a periodic arrangement
of pillars on a semi-infinite medium. The negative properties
of the low frequency modes have also been considered [22,23]
for focalization applications. El Hassouani et al. [24] studied
theoretically the simultaneous existence of phononic and
photonic band gaps in a periodic array of silicon pillars
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deposited on a homogeneous thin silica plate for potential
optomechanical applications. Finally, Davis and Hussein [25]
introduced the concept of a locally resonant nanophononic
metamaterial for thermoelectric energy conversion. Therefore,
since the early papers in this topic [17,18], pillar structures
have become a useful platform for many fundamental and
applied investigations in the frame of PCs and acoustic
metamaterials [6,26].

In this paper, we theoretically explore the existence and
some functionalities of the pillar structure when the latter are
constituted by hollow cylinders. Indeed, the hollow cylinders
can display whispering-gallery modes (WGMs) whose quality
factors can be greatly enhanced when the slab is separated from
the hollow pillar by a second thin cylinder. Thus, the pillar
is constituted by two layers, and the WGM confined in the
upper layer interacts very weakly with the modes propagating
in the slab. Let us mention that WGMs date back to the
works of Rayleigh [27] in the field of acoustics, following
the observation in St. Paul’s Cathedral. The recent interest in
the literature is about high Q optical WGM resonators, which
can play a very significant role in photonics for applications
in sensing [28] or photovoltaic [29]. Recent studies report the
potentiality of these modes in the field of PC. Li et al. [30]
immersed an isolated tube in liquid medium and showed
that WGMs can exhibit a narrow periodic transmission dip
with a high quality factor, while Kaproulias and Sigalas [31]
considered the disk geometry for sensing application. The
main recent interest in WGMs is related to the excitation
of acoustic modes in optical WGM resonators via backward
stimulated Brillouin scattering (SBS) [32,33]. In this context,
acoustic WGMs have been recently investigated in spherical
and cylindrical resonators within the theory of elasticity [34].
The displacement fields of the modes studied in this paper have
similar shapes as the ones reported in those previous papers;
hence the denomination of WGMs will be adopted here. As
mentioned above, the novelty of the modes proposed here is
their strong degree of confinement inside the pillars and a high
quality factor hence allowing for several applications related
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to the manipulation of the acoustic waves such as guiding and
filtering, both in the range of the Bragg and low frequency gaps.

In the first part of this paper, we present an analysis of
the existence and behavior of the WGM in pillar structures.
Then, the second part is devoted to discussing practical
functionalities of these structures for filtering and multiplexing
applications when waveguides and cavities with different
hollow cylinders radii are inserted into the slab PC. We
investigate the case of a homogeneous silicon plate with a
square array of hollow pillars deposited on one side. The paper
is organized as follows. In Sec. I, we calculate the dispersion of
the elastic waves and their transmission through the structure,
and we show the existence of WGMs and their tunability by
modifying the inner radius of the hollow pillars. In Sec. II,
we discuss the conception of a high resolved filter, tuning
the WGM and improving the quality factor of the filter by
introducing an additional thin cylinder at the basis of the
hollow cylinder. Finally, in Secs. III and IV, we investigate
waveguide and cavity capabilities and propose some designs
of compact multiplexers with an appropriate distribution of
inner radii in both Bragg and subwavelength ranges.

II. WHISPERING-GALLERY MODES

We consider a structure made of a square lattice of
hollow pillars deposited on a thin homogeneous plate with
a periodicity in the (x,y) plane. The z axis direction is
chosen perpendicular to the plate. The elementary unit cell
is presented Fig. 1 in which the geometrical parameters are the
lattice constant a, the height h of the hollow pillars, and the
thickness e of the plate. r and ri correspond, respectively, to
the outer and inner radius of the hollow pillar. The complete
structure is made of silicon, assuming a cubic symmetry
with the crystallographic axes oriented along the coordinate
axes x, y, and z. The elastic constants are C11 = 166 GPa,
C12 = 64 GPa, and C44 = 79.6 GPa, and the mass density is
ρ = 2330 kg m−3.

All dispersion and transmission curves have been computed
using the finite element code COMSOL Multiphysics R©.
Periodic boundary conditions are applied on each side of the
unit cell in the (x, y) plane. The dispersion and transmission

FIG. 1. (a) 3D-schematic view of the elementary unit cell con-
stituting the PC made of finite hollow pillars deposited on a thin
homogeneous plate. The lattice constant is a, and the thickness of
the plate is e. The hollow pillar has a height h and an inner and
outer radius, respectively, denoted ri and r . (b) Periodic boundary
conditions are applied in the (x, y) plane on each side of the unit
cell, constituting a periodic crystal with a square array symmetry for
which the first Brillouin zone and its irreducible part is presented.

curves will be presented as a function of the reduced frequency,
� = ωa/(2πvt ), where vt = 5844 m s−1 is the transverse bulk
velocity of silicon along x.

Before presenting the results for the hollow pillars on plate,
we have calculated as a reference the band structure of the
native PC containing filled cylinders of silicon (ri = 0). The
choice of the geometrical parameters is done in order to obtain
two wide absolute band gaps, one at the Bragg frequency
regime and the second in the low frequency range [17]. In
Fig. 2(a), we present the dispersion curves calculated along
the direction �X of the Brillouin zone with e/a = 0.1, h/a =
0.55, and r/a = 0.42. With this set of parameters, we obtain
two wide absolute band gaps around the respective reduced
frequency 0.2 (red area) and 0.6 (blue area). The low frequency
band gap is due to the local resonances of the pillars [17] at
a wavelength almost 10 times larger than the lattice constant
a. The Bragg gap comes from the periodicity of the crystal
and the collective scattering effects between the pillars. These
reduced geometrical parameters (e/a, h/a, and r/a) will be
kept fixed in the rest of the paper.

Figure 2 shows the evolution of the dispersion curves as a
function of the inner radius. The introduction of the hollow
cylinders gives rise to two new dispersion branches labeled 1
and 2 that do not exist in the native PC. By increasing ri/a

from 0 to 0.35, they move towards lower frequencies.
At ri/a = 0.145 [Fig. 2(b)], the two branches appear inside

the Bragg gap, while the gap boundaries and the branches
below are almost unaffected. When increasing ri/a to 0.25
[Fig. 2(c)], the two branches cross the lower edge of the
Bragg gap, and the branch labeled 1 interacts with the Lamb
waves situated just below the reduced frequency 0.40. For
higher values of ri/a, the two branches still move downward
while new modes progressively appear at higher frequencies.
At higher ri/a (not shown), the Bragg gap gets closed. For
ri/a = 0.30 to 0.35, the frequencies of the two branches
continue decreasing and cross the low frequency gap. However,
at these low frequencies, the modes interact with the Lamb
waves of the plate and do not give rise to isolated branches, as
was the case in the Bragg gap. We see in the next section how
to make them flat by a better confinement of the modes and
therefore make the structure useful for both PC and acoustic
metamaterial applications.

Despite the fact that these branches are slightly dispersive
due to their interaction with the Lamb waves in the plate,
they still remain nearly flat (i.e., with a small group velocity),
and one can recognize that they are essentially WGMs of the
hollow cylinders, as shown in the displacement field maps of
Fig. 3(a) corresponding to ri/a = 0.145. For such modes, the
acoustic path around the hollow pillar should be a multiple
integer of the wavelength, here equal to 2 for both modes.
Figure 3(b) represents a top view of the component Uz of
the displacement field. It brings to light the main difference
between the two modes that explain the existence of two
separates frequencies. While mode 2 is almost totally confined
inside the hollow pillar, mode 1 strongly interacts with the four
first neighbors hollow cylinders of the unit cell via the plate.

Although the modes studied here have a quadrupolar
shape, we have also identified higher frequency modes with
hexapolar or octopolar symmetries that fall outside the band
gap. Let us mention that modes with dipolar or quadrupolar
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FIG. 2. Dispersion curves of the hollow pillars on a thin silicon plate in the �X direction of the first irreducible Brillouin zone in two
reduced frequency ranges ([0; 0.9] for (a), (b), (c) and [0; 0.4] for (d), (e), (f)) with different inner radii (a) ri/a = 0, (b) ri/a = 0.145,
(c) ri/a = 0.25, (d) ri/a = 0.30, (e) ri/a = 0.32, (f) ri/a = 0.35. The thickness of the plate is e/a = 0.1, the outer radius r/a = 0.4, and
the height h/a = 0.45. The hatched areas correspond to the low (red) and Bragg (blue) absolute band gaps of the native crystal. The 1 and 2
branches come from the hollow pillar structure.

symmetries have also been studied in other context of acoustic
metamaterials [35]. We have also compared the frequencies
and shapes of the WGMs with those obtained when the pillars
are almost isolated from each other, namely by assuming a
period 10 times higher than it is in the above calculations. It is
found that the results are insensitive to the pillar separation, not
only for quadrupolar but also for higher hexapolar or octopolar
modes. Of course, the resonance frequencies will change if
the membrane at the bottom of the pillar is removed because,
depending on the WGM, its displacement field is more or less
affected by the presence of the membrane.

Figure 3(c) summarizes the behavior of the two WGMs as
a function of the inner radius of the hollow pillar. Both of the
WGMs’ frequencies decrease as the inner radius increases.
This behavior can be understood when noticing that higher
values of the average radius 〈r〉 = (r + ri)/2 increases the
acoustic path along the perimeter 2π〈r〉 of the cylinder.
As a result, when ri/a = 0.145 (resp. 0.35), the whispering

eigenmodes 1 and 2 fall in the middle of the Bragg (resp. low
frequency) gap.

In order to show the filtering capacity of the structure based
on WGMs, we calculate the transmission spectrum through a
finite PC plate containing five rows of hollow pillars. Perfect
matching layers (PMLs) are applied at the entrance and the exit
of the slab to avoid any reflections from the external edges.
Periodic boundaries conditions are applied along y direction
on each side of the unit cell. The incident wave is the A0 Lamb
wave of the plate, propagating along the x axis, and launched
by applying a harmonic displacement Uz in the (y, z) plane in
front of the crystal. To determine the transmission coefficient,
the displacement field is recorded in the far field behind the
PC and then normalized to the displacement field propagating
in the homogeneous plate.

As stated above, the choice of ri/a = 0.145 appears as
the best because of the frequencies of the WGMs being in
the center of the Bragg gap. We represent in Fig. 4 the
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FIG. 3. (a) Representation of the displacement field distribution
and the deformation of the unit cell at the frequency of WGMs 1
and 2 at the � point for ri/a = 0.145. (b) Top view representation
of the component Uz of the displacement field for the two modes.
(c) Evolution of the frequency of mode 1 and 2 as a function of the
inner radius ri of the hollow pillar. The blue (resp. red) dashed lines
represent the boundaries limits of the Bragg (resp. low frequency)
band gap.

transmission coefficient as a function of frequency, together
with the dispersion curves. One can notice a relatively narrow
transmission peak associated with WGM 1, while WGM 2
does not transmit. This result can be understood on the basis
of symmetry consideration. Indeed, the incident wave A0 is
symmetric with respect to the symmetry plane �(x, z). Thus,
it can only excite WGM 1, which has the same symmetry,
and not WGM 2, which is antisymmetric with respect to this
plane. Then, the latter appears as a deaf band [36,37] in the
transmission spectrum.

III. WGMS WITH HIGH QUALITY FACTOR AND
NARROW BAND FILTERING

In the previous section, we have shown that WGMs can be
used as a tunable band filter in the Bragg and low frequency
band gaps of the PC. In this section, we shall show how the
quality factor of the WGM-based transmitted wave can be
significantly increased. Indeed, the width of the transmission

FIG. 4. Dispersion curve (left) and transmission spectrum of the
antisymmetric Lamb wave (right) through the hollow cylinder PC
with inner radius ri/a = 0.145. The blue dashed lines represent the
boundaries of the Bragg gap.

peak, or accordingly the width of the narrow band associated
with WGM 1 in Fig. 4, are related to its interaction with
the Lamb waves of the plate, as can be seen from the maps of
the displacement field (Fig. 3). To enhance the confinement of
the WGM without changing significantly the associated field,
we insert a silicon solid cylinder of height l at the basis of the
hollow pillar [see the red block in the inset of Fig. 5(a)].

We show in Fig. 5(b) the dispersion curves in the range
[0.4; 0.8] as a function of the reduced height l/h of the
added cylinder when h/a = 0.45. We can observe that the two
branches associated to the WGMs become more and more flat
as l/h increases, which is the signature of a better confinement
of the modes inside the unit cell. To quantify the role of the
added cylinder on the pass band, we have calculated the quality
factor Q = f/�f , where f is the central frequency of the
pass band and �f the full width at half maximum of the
transmission peak. Figure 5(a) shows a significant increase in
the quality factor with increasing the reduced height l/h. For
l/h = 0.64, the quality factor reaches Q = 280, i.e. more than
10 times the value obtained without the additional cylinder,
paving the way to a high resolved narrow pass band device for
filtering applications.

Increasing now the inner radius to ri/a = 0.35, we shift the
two WGMs in the vicinity of the low frequency band gap. As
previously, we insert the silicon solid cylinder of height l at the
basis of the hollow pillar. Figure 5(c) represents the dispersion
curve in the low frequency regime for l/a = 0, 0.22, and 0.44.
One can see that when l/h increases, the interaction of the
branches 1 and 2 with the Lamb modes decreases, reaching
finally to a localization of the two WGMs in the middle of the
narrow low frequency band gap when l/h = 0.54.

IV. MULTIPLEXING DEVICES BASED ON TUNABLE
WAVEGUIDES AND CAVITIES

As reported in Fig. 3(c), the position of the narrow pass
band is very sensitive to the inner radius of the hollow pillar.
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FIG. 5. (a) (Inset) Schematic cross section of the unit cell with the added full silicon cylinder of height l (red block) with h/a = 0.45, e/a =
0.1, and r/a = 0.4. (Graph) Evolution of the quality factor of the narrow pass band based on the WGM 1 as a function of l/h, (ri/a = 0.145).
(b) Dispersion curves magnified in the Bragg gap range ([0.4; 0.8]) for different value of l/h. (c) Dispersion curves magnified in the low
frequency gap range ([0; 0.4]) for different value of l/h.

Actually, the narrow pass band can cover the full Bragg gap
(i.e., the reduced frequency range [0.55, 0.7]) when ri/a is
varied from 0.145 to 0.155. For a mixed system composed
of different inner radii, different narrow pass bands inside the
Bragg gap are expected. We propose to use this property for the
design of a new kind of mono- and multichannel wavelength
division multiplexers by inserting appropriate waveguides and
cavities in a PC slab. A similar property was earlier proposed
in a 2D PC constituted by hollow cylinders filled with different
liquids [38]. For the sake of computational convenience, the
height of the added cylinder is fixed to l/a = 0.2 (l/h = 0.36)
in the following calculations, leading to a Q factor of 100.

A. Multichannel wavelength multiplexer

We first consider [inset of Fig. 6(a)] a (5 × 5) supercell with
periodic conditions along y axis and PML in the direction
of propagation x. The phononic plate contains two linear
waveguides separated from each other by one row of filled
cylinders to prevent significant leakage between the guides.
The waveguides are constituted by two rows of hollow pillars
with the radius ri

(a)/a = 0.145 and ri
(b)/a = 0.160 for the

waveguides a and b, respectively. We probe the transmission
of the waveguides by launching the A0 Lamb wave in front of
the PC. The transmission spectrum, displayed in Fig. 6(a),
features two narrow pass bands occurring at the reduced
frequencies 0.543 and 0.581, inside the band gap. These
values significantly differ from those obtained with the perfect

hollow pillar phononic plate [Fig. 3(c)]. This means that the
effect of confinement inside the waveguide on the transmission
peak is far from being negligible while the narrowness of

FIG. 6. (a) (Inset) Schematic representation of the multichannel
wavelength multiplexer. (Graph) Transmission spectrum of the
antisymmetric Lamb wave when the radius of the hollow pillars
inside waveguide a and b are ri

(a)/a = 0.145 and ri
(b)/a = 0.160. (b)

Displacement field distributions at the frequency of the two narrow
pass bands a and b.
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FIG. 7. (a) (Inset) Schematic representation of the monochannel
wavelength multiplexer. (Graph) Transmission spectrum of the
antisymmetric Lamb wave when consecutive hollow pillars inside
the waveguide have radii of ri

(c)/a = 0.145 and ri
(d)/a = 0.140. (b)

Displacement field distributions at the frequency of the two narrow
pass bands c and d .

the pass bands is preserved. As seen in the displacement
field distributions of Fig. 6(b), the two narrow pass bands
correspond respectively to the transmitted wave through the
waveguide a and b. We then have created a multichannel
wavelength multiplexer.

B. Monochannel wavelength multiplexer

Next, we consider the propagation at the frequencies of two
narrow passbands through one single waveguide composed
of alternating hollow cylinders with two different radii [see
inset in Fig. 7(a)] of ri

(c)/a = 0.145 and ri
(d)/a = 0.140. The

transmission spectrum is presented Fig. 7(a) in which one can
see the occurrence of two narrow passbands at the reduced
frequencies f (c) = 0.571 and f (d) = 0.590. This means that
it becomes possible to transport two different wavelengths
through the same channel. The elastic wave transmission
comes from evanescent waves inside the slab, which in turn
allows for the overlapping of the elastic fields between two
next nearest neighbors hollow pillars with identical radii. The
waveguide then allows for the tunneling and, therefore, to
the propagation of the elastic wave. Figure 7(b) sketches the
displacement field at the frequencies f (c) and f (d), where the
enhancement of the fields inside the hollow pillars is clearly
observable for both radii.

C. Compact multiplexer based on linear cavity

Another way to obtain high-Q resonators is to create an
infinite linear cavity oriented perpendicularly to the direction
of propagation [39]. The inset of Fig. 8(a) shows the unit cell
of a periodic structure that contains two lines of hollow pillars
surrounded from each side by one line of solid cylinders. The
unit cell has a finite size along the x axis and is periodic in the
y direction. The cavity is constituted by two different hollow

FIG. 8. (a) (Inset) Schematic representation of the compact
wavelength cavity multiplexer. (Graph) Transmission spectrum of the
antisymmetric Lamb wave when the radius of the hollow pillars inside
waveguide are ri

(e)/a = 0.145 and r
(f )
i /a = 0.140. (b) Displacement

field distributions at the frequency of the two narrow pass bands e

and f .

pillars with respective radii ri/a
(e) = 0.145 and ri/a

(f ) =
0.140. The transmission of the antisymmetric Lamb wave
launched in the x direction and presented in Fig. 8(a) shows that
the structure supports two narrow pass bands at f (e) = 0.561
and f (f ) = 0.578, respectively [Fig. 8(b)]. Note that the
confinement of the elastic energy is achieved by using only
one PC layer embedding the cavity region and leading to an
extremely compact multiplexer filter with high Q factor.

V. SUBWAVELENGTH WAVEGUIDE

This last section deals with an application of the WGMs
inside the low frequency band gap. As established previously,
the two modes can be localized inside the narrow low
frequency band gap as far as we chose a large inner radius
(ri/a = 0.35). The second condition is to add a solid silicon

FIG. 9. (a) Dispersion curve in the low frequency range [0; 0.4]
corresponding to the perfect PC made of hollow pillars on plate
with the set of geometrical parameters ri/a = 0.35, l/h = 0.49,
h/a = 0.45, r/a = 0.4, and e/a = 0.1. (b) Transmission spectrum
of the antisymmetric Lamb wave through the waveguide of hollow
pillars inserted inside a full silicon pillar crystal. (c) Displacement
field distributions at the reduced frequency 0.19 corresponding to the
narrow pass bands g.
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cylinder of thickness l/h = 0.49 between the hollow pillar
and the plate to get the dispersion branches almost flat. Under
these conditions and the set of other geometrical parameters
h/a = 0.45, r/a = 0.4, and e/a = 0.1, we have obtained the
dispersion curve of the perfect PC made of hollow pillars
on plate presented Fig. 9(a). We then built the design of the
subwavelength waveguide by replacing one row of the perfect
PC with hollow pillars. The transmission spectrum of the
antisymmetric Lamb wave depicted in Fig. 9(b) shows the
transmission of a very narrow peak at the reduced frequency
0.19. As seen in Fig. 9(c), the transmission comes from the
excitation of the WGM 1 on top of the hollow cylinders.

VI. CONCLUSIONS

We theoretically investigated the vibration properties of a
PC plate with hollow pillars on top. The computed dispersion
curves show the occurrence of two new branches of dispersion
that do not appear in the native PC. These branches originate
from the excitation of WGMs circulating around the upper
boundary of the hollow pillar. By changing the inner radius of
the hollow cylinder, we have been able to tune the frequencies
of the WGMs inside the Bragg band gap. Through the com-
putation of the transmission coefficient of an antisymmetric
Lamb wave, we have shown that one of the WGMs gives
rise to a transmitted pass band that can be used as a filter.

The quality factor of the filter has been further improved by
inserting a solid cylinder in between the plate and the hollow
pillar. We then applied the high resolved filter to different
kind of multiplexers, based on multichannel or monochannel
waveguides or cavity. We also showed that the WGMs can
reach the low frequency range, adding a new type of elastic
field localization inside the resonators, with the opportunity to
perform interactions with the existing low frequency band gap.
The demonstration of an efficient subwavelength waveguide
with high quality factor has been done. We believe that this
structure will pave the way to future new physical behaviors
for PC and acoustic metamaterials by changing the nature of
the constitutive elements or filling the hollow cylinders with
liquids, rubber, or other core-shell elements. The investigations
and achievements of these PC resonator structures will show
the possibility to build acoustic sensors, filters, and acoustic
resonators working with improved performances that makes
them excellent candidates for wireless communication and
sensing applications.
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