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Abstract:
One major limitation of the motion estimation methods that are available in the literature concerns
the availability of the uncertainty on the result. This is however assessed by a number of filtering
methods, such as the ensemble Kalman filter (EnKF). The paper consequently discusses the use of a
description of the displayed structures in an ensemble Kalman filter, which is applied for estimating
motion on image acquisitions. An example of such structure is a cloud on meteorological satellite
acquisitions. Compared to the Kalman filter, EnKF does not require propagating in time the error
covariance matrix associated to the estimation, resulting in reduced computational requirements.
However, EnKF is also known for exhibiting a shrinking effect when taking into account the
observations on the studied system at the analysis step. Methods are available in the literature
for correcting this shrinking effect, but they do not involve the spatial content of images and
more specifically the structures that are displayed on the images. Two solutions are described and
compared in the paper, which are first a dedicated localization function and second an adaptive
domain decomposition. Both methods proved being well suited for fluid flows images, but only the
domain decomposition is suitable for an operational setting. In the paper, the two methods are
applied on synthetic data and on satellite images of the atmosphere, and the results are displayed
and evaluated.

1 Introduction

The paper describes the use of filtering meth-
ods for an online estimation of motion, associated
with its uncertainty measure, on image sequences.

Dense motion estimation approaches originate
from the classic optical flow algorithm (Horn and
Schunk, 1981): the velocity field is computed as
the minimum of an energy function, whose main
assumption is the conservation of image bright-
ness on each point trajectory. This method has
been intensively studied and improved over time
and gave birth to a huge number of papers in the
literature. It still faces the issue of the uncer-
tainty on the result.

Approaches such as the Kalman fil-
ter (Kalman, 1960) were introduced in this
context for estimating the uncertainty on the
motion result. The Kalman filter uses an an-
alytical description of the Probability Density
Function associated to the error. It improves

the estimation at each measurement (image ac-
quisition) as it updates simultaneously the state
vector and its associated covariance matrix. This
filter is directly used in (Elad and Feuer, 1998)
on the image brightness values, but with images
on size 50× 50. The Kalman filter is also applied
by (Franke and Rabe, 2005) and (Franke et al.,
2005) on the KLT-tracker features described
in (Tomasi and Kanade, 1991). As the result
is a sparse motion field, an extension is defined
in (Rabe et al., 2010), where a Kalman filter
is defined for each pixel of the image domain,
resulting in a dense motion estimation. However,
as each filter is defined on a single point, and
not on the whole domain, it does not include
the correlations between two different pixels of
the domain. Defining a global filter, whose state
vector includes a number of variables for each
pixel, is not directly usable for large size images,
due to the huge dimension of the corresponding
covariance matrix (squared number of pixels of



the image) that must be propagated in time.

For operational use, the solution for estimat-
ing the uncertainty on large size systems comes
from the ensemble Kalman filter (EnKF) de-
scribed in (Evensen, 2003). The approach relies
on a sample of the Probability Density Function
associated to the error from an ensemble of state
vectors describing the system.

In case of motion estimation from an image se-
quence, an ensemble of motion and image fields is
designed at initial time, integrated in time and se-
quentially improved from the observational image
acquisitions. We proposed and described in (Lep-
oittevin et al., 2015) the construction of the ini-
tial ensemble. A set of state-of-the-art optical
flow algorithms (around 50 methods, described in
the surveys (Sun et al., 2010) and (Baker et al.,
2011)) are used to design the initial ensemble of
motion fields. The HS-brightness method (Sun
et al., 2010) is one of these algorithms and it
provides the best performance, when used alone,
on our synthetic data. HS-brightness is a spe-
cific implementation of the Horn-Schunk algo-
rithm (Horn and Schunk, 1981), which includes
a multi-resolution scheme and a median filter-
ing (Sun et al., 2010). Each member of the en-
semble is then integrated in time with the model
and an estimate of motion is computed, at each
time, as the average of the motion members. The
uncertainty is described by the spread of that en-
semble. As in (Lepoittevin et al., 2015) the paper
concerns the application of EnKF for estimating
a dense motion field, based on the structures dis-
played by images. As the application domain con-
cern fluid flows images, we do not rely on object
characteristics, such as the SIFT features (Lowe,
1999) and variants, since they are not significant
on these data. The innovation of the paper, com-
pared to (Lepoittevin et al., 2015), concerns the
use of a segmentation of images by EnKF. More-
over, we will stress, from the experiments, that
merging a number of optical flow algorithms gives
better results than the best one alone (the HS-
brightness method): all methods take part to the
result of EnKF.

Two different alternatives for characterizing
the structures, which are displayed on fluid flows
images, such as fronts and vortices on ocean satel-
lite data, are compared in the context of EnKF.
Comparison concerns two criteria: quality of re-
sults and computational performances.

The first approach, introduced in (Lepoittevin
et al., 2015), concerns the design of a localiza-
tion function that includes information on the

displayed structures, as it has been discussed for
instance in (Anderson, J. L., 2001), (Houtekamer
and Mitchell, 1998), (Hamill et al., 2001), (Oke
et al., 2007) and (Anderson, 2007).

The second approach applies a domain decom-
position technique, as in (Nerger et al., 2006)
and (Hunt et al., 2007), which depends on the
image brightness values. This domain decompo-
sition is equivalent to a segmentation of the image
acquisitions.

Both techniques make the estimation depend-
ing on the structures and on their evolution in
time.

As the Kalman filter itself is well-known in
the image processing community, Section 2 will
shortly summarize that point and only discuss the
mathematical equations of the ensemble Kalman
filter, as initially given in (Evensen, 2003). Sec-
tion 3 reminds about the design of the localization
function from image brightness values and its use
in the EnKF formalism. The resulting method is
named Explicit Structures Localization in the re-
maining of the paper. Section 4 explains the use
of domain decomposition in the context of EnKF
and describes the domain decomposition associ-
ated to a segmentation process. Results are given
in Section 5, which compares the two approaches.
The paper ends with some conclusions and hints
on future research work.

2 EnKF and explicit localization

Let us first provide the notations that are fur-
ther required in the paper.

Images are acquired on the spatial domain Ω.
A pixel is denoted p.

A sequence of (NO + 1) acquisitions At,
{t ∈ [0,NO]} is processed. An observation vec-
tor Yt is computed on each acquisition At. This
vector is either a representation, line by line, of
the image or a description of quantities that are
computing on this image.

A state vector X of size NX is defined, whose
value at time t is Xt = (wt, It)

T . wt is the vector
describing the motion field and It is the vector as-
sociated with a synthetic image. The assumption
is that the synthetic image sequence correspond-
ing to It satisfies the optical flow equation: the
image brightness is advected by the motion field.

The objective is to get an estimate X
(a)
t of the

true state vector (and consequently of the true

motion field), from its background value X
(b)
t and

from the observation vector Yt, so that It is as



close as possible to Yt. The background value

X
(b)
t is obtained from time integration of the es-

timation X
(a)
t−1 at previous time.

Ensemble methods rely on a number Nm of
members. Xi

t denotes the state vector at time t
of the ith member of the ensemble. The average
Xt of the state vectors Xi

t is defined by:

Xt =
1

Nm

Nm∑
i=1

Xi
t = Xi

t (1)

Error terms are discussed in the paper according
to the following notation: ER is a centered Gaus-
sian noise associated to the covariance matrix R
and denoted:

ER ∼ N (0, R) (2)

The equations of the Kalman filter (Kalman,
1960) are the following:

1. Let IM be the numerical model describing the
state vector dynamics. Readers should re-
mind that the studied dynamics is non linear
when studying fluid flows, as advection and
convection processes are involved in the evo-

lution. The background value X
(b)
t is obtained

from the integration with IM of the estimation

X
(a)
t−1, computed at (t− 1):

X
(b)
t = IMX

(a)
t−1 (3)

The propagation in time of the uncertainty
covariance matrix satisfies:

B
(b)
t = IMB

(a)
t−1IMT (4)

2. If no observation is available at t, the estima-

tion X
(a)
t and the matrix B

(a)
t are taken equal

to those of the background.

3. If an observation vector Yt is available at t,
the estimation is computed by:

X
(a)
t = X

(b)
t +K

(
Yt − IHX

(b)
t

)
(5)

IH is the operator that projects the state vec-
tor Xt in the vector space of Yt. K is the
Kalman gain, defined by:

K = B
(b)
t IHT

(
IHB

(b)
t IHT +Rt

)−1
(6)

where Rt is the covariance matrix associated
to the observation vector. The covariance ma-
trix of the estimation error is equal to:

B
(a)
t = B

(b)
t −KIHB

(b)
t (7)

The use of EnKF to replace the Kalman filter
comes from an analysis of the computational re-
quirements. The Kalman filter requires to store

the whole analytical matrix B
(b)
t , whose size N2

X
is usually huge when processing images: almost
107 for a 512 × 512 pixels image with 3 values
at each pixel (2 for motion and 1 for brightness).
Moreover, the propagation in time of this matrix
relies on Equation (4), with a cost N3

X. When ap-

plying EnKF, an ensemble of state vectors X
(b),i
t

is defined at each time t and an approximation of
the covariance matrix is obtained as:

B
(b)
t ≈ (X

(b),i
t −X

(b)
t )(X

(b),i
t −X

(b)
t )T (8)

with X
(b)
t = X

(b),i
t the average of the ensemble

members. The whole knowledge available on the
system is then included in the NmNX matrix con-
taining all members. The number of members,
Nm, being usually less than one hundred, the stor-
age cost is drastically reduced.

Initialized at time 0, the ensemble is inte-
grated in time by the model IM in Equation (3).
If no observation is available at time t, the estima-

tion X
(a),i
t is equal to X

(b),i
t and the uncertainty is

approximated with Equation (8). If an observa-

tion Yt is available, X
(a),i
t is computed according

to Equations (5) and (6). The estimation pro-
vided by the ensemble at time t is calculated as
the average of members:

X
(a)
t = X

(a),i
t =

1

Nm

Nm∑
i=1

X
(a),i
t (9)

Its uncertainty is approximated by replacing (b)

by (a) in Equation (8).
One important remark on the implementation

of EnKF is that all members are involved in the
computation of B

(b)
t , in Equation (8). Therefore,

all members are included in the computation of
the Kalman gain in Equation (6). Consequently,
all members impact the estimation of member i,

which is X
(a),i
t in Equation (5). The members

are consequently depending one from the others,
when evolving in time. We will come back to that
issue when analyzing results.

EnKF is attractive for both its reduced com-
putational requirements and its ability to describe
the uncertainty of the result by the members.
However, it also suffers from limitations. One
major weakness of this filter is the approximate
knowledge of the background covariance matrix

B
(b)
t obtained with Equation (8). This approx-

imation leads to the appearance of spurious co-
variance values in the matrix, which impact the



quality of the estimation. The next two sections
describe solutions to this limitation, which both
rely on the structures displayed on the fluid flows
images.

3 Structured Explicit Localization

In this section, we remind the method intro-
duced in (Lepoittevin et al., 2015). This method
is an explicit localization method. It corrects the

background error covariance matrix B
(b)
t , in or-

der to recover most of its analytical properties.

For that purpose, the matrix B
(b)
t is multiplied

by a localization matrix ρ before being used in
Equation (6):

L
(b)
t = ρ ◦B(b)

t (10)

with ◦ the point-wise matrix product.

The matrix L
(b)
t is then included in place of

B
(b)
t in the equations that compute the analysis

X
(a),i
t for the member i at time t:

X
(a),i
t = X

(b),i
t +KL

(
Y(k)− IHX

(b),i
t

)
(11)

with:

KL = L
(b)
t IHT

(
IHL

(b)
t IHT +Rt

)−1

(12)

The values of the matrix ρ are chosen for sup-
pressing the spurious covariances that link pixels,
which should be uncorrelated otherwise. These
spurious covariances appear when sampling the
error covariance matrix and their values decrease
if making use of large size ensembles (but this
increases the computing requirements).

Let p1 and p2 denote two pixels of the domain.
The value of their correlation ρ(p1,p2) depends
first on their distance d12 = ‖p1 − p2‖ (Hamill
et al., 2001). A matrix ρd (the subscript d is the
first letter of distance) is defined with values:

ρd(p1,p2) =

(
1 +

d12

ad

)
exp

(
−d12

ad

)
(13)

ad is a parameter which defines the decorrela-
tion distance: pixels apart of more than ad are
no more correlated.

The value of ρ(p1,p2) should also nullify the
correlation between the two pixels p1 and p2 if
they belong to different structures. Let I1 and
I2 denote their two brightness values and s12 be
equal to |I1 − I2|. A second matrix ρs is defined:

ρs(p1,p2) =

(
1 +

s12

as

)
exp

(
−s12

as

)
(14)

where as is the decorrelation parameter according
to the brightness similarity between pixels.

The localization function ρ, used in Equa-
tion (10), is then defined as the product of ρd and
ρs. Consequently, the correlation values between
pixels that are far apart or belong to different
structures are almost null, as they should have
been with the analytical matrix.

The ensemble Kalman filter that is associated
to the localization function ρ is named Explicit
Structures Localization method, or ESL. This fil-
ter allows estimating both a dense motion field
(averaging the members) and its uncertainty, and
it relies on the image structures through the ma-
trix ρ. Results obtained with that filter will be
discussed in Section 5 for a direct comparison
with those of the method defined in the next sec-
tion.

4 Domain Decomposition

The second approach for limiting the spurious

covariances, created by the approximation of B
(b)
t

through the sampling by an ensemble, is based
on a decomposition of the domain Ω. The de-
composition domain technique is, for instance,
described in (Nerger et al., 2006), (Hunt et al.,
2007) and (Janjić et al., 2011). The innovation
of the paper concerns the use of the domain de-
composition approach for defining a segmentation
of the image acquisitions. A subdomain is corre-
sponding to a region of the image. A dense mo-
tion field is then estimated on each subdomain
with a separate ensemble Kalman filter and the
results are merged on the whole image domain.
As the filters are defined independently on each
subdomain, the approach imposes that the only
non null covariances are those between pixels of
the same region (which should correspond to the
displayed structures). The spurious covariances
are consequently eliminated without any numeri-
cal process.

We first define the new notations that are re-
quired for describing the method. For simplify-
ing the equations, the subscript t is suppressed in
the following. The discrete image domain, which
includes NΩ pixels, is decomposed in nD subdo-
mains, denoted Dj for j = 1, . . . ,nD. The num-
ber of pixels in Dj is written NDj . We assume
no overlapping between these subdomains. Con-



sequently:

ND =

nD∑
j=1

NDj = NΩ (15)

Let us introduce the restriction operator RDj
:

it restricts any function defined on the image do-
main as a function defined on the subdomain Dj .
This allows defining one EnKF on each subdo-
main without additional notation. The merging
of the results requires to define a fusion operator
RD, which transforms any function defined on the
whole acquisition domain as a vector composed
of the restrictions onto all subdomains. Apply-
ing RD on any function f , defined on the image
domain leads to the vector fD:

RDf =

RD1
f

...
RDjf

 =

fD1

...
fDj

 (16)

In the same way, the error covariance matrices
B(b) and R are respectively replaced by the merg-

ing, denoted B
(b)
D and RD, of their restrictions on

the subdomains indexed by j, denoted B
(b)
Dj

and

RDj :

B
(b)
D = RDB

(b)R T
D (17)

RD = RDRR T
D (18)

An additional domain decomposition E is de-
signed for the observations. The subdomains of
E are written Ej , with size NEj . We make use
of the same subscript j as each observation sub-
domain Ej is associated to one estimation subdo-
main Dj . The number of observation subdomains
is consequently the same than the number nD of
estimation subdomains. In order to allow a con-
tinuous (smooth) estimation of motion, the sub-
domains Ej usually overlap, so that the analysis
computed on one pixel p of Dj uses observations
from all its neighboring pixels, even if p is lo-
cated at the boundary of the subdomain Dj . Ej

is defined by extending the subdomain Dj with
a given number of pixels in every direction. The
total number of overlapping pixels NOv is equal
to:

NOv = NE −NΩ (19)

with NE =
nD∑
j=1

NEj . Let RE denote the merging

of the restrictions associated to the observation
domain decomposition E, which is defined simi-
larly to RD.

In the following paragraph, we illustrate these
complex notations and we define the quantities

B
(b)
D and B

(b)
E on a simple example: the image

domain is decomposed into four subdomains, dis-
played on Figure 1.

D1 D2

D3 D4

Figure 1: Decomposition of Ω into four subdomains.

The background error covariance matrix B(b)

is first rewritten for expressing the covariances
between pixels belonging to the subdomains Di

and Dj :

B(b) =
[
B

(b)
Di,j

]
(20)

Applying the merging of restriction operators, as
explained in Equation(17), gives:

B
(b)
D =



B
(b)
D1,1

0 0 0

0 B
(b)
D2,2

0 0

0 0 B
(b)
D3,3

0

0 0 0 B
(b)
D4,4


(21)

The same applies for the observation domain
decomposition by replacing D by E in Equa-
tion (21).

Coming back to the general case, an ensemble
Kalman filter is designed on each subdomain Dj

and makes use of the values of pixels belonging to
Ej . The filter is based on the following equations:

X(a),i = X(b),i +RDKERE [Y(k)− IHX(b),i] (22)

KE = B
(b)
E IHT

(
IHB

(b)
E IHT + RERR T

E

)−1
(23)

Having defined the equations of the Domain
Decomposition method, we would like to under-
stand the links between this method and the Ex-
plicit Structures Localization method, ESL.

Going back to the illustration of Fig 1 and
assuming no intersection between the observa-
tion subdomains, we define the observation sub-
domains by Ej = Dj for each value j. We define
the localization function ρ:

ρ(p1,p2) =

{
1 if ∃j such as p1 and p2 ∈ Dj

0 otherwise
(24)

The analysis computed by ESL is written for each
member i:

X(a),i = X(b),i +KL[Y(k)− IHX(b),i] (25)



KL = L(b)IHT
(
IHL(b)IHT +R

)−1
(26)

with
L(b) = ρ ◦B(b) (27)

It must be compared with the analysis of DD
computed from Equations (22) and (23). As
E = D, these two last equations are simplified:

X(a),i = X(b),i+RDKDRD[Y(k)−IHX(b),i] (28)

KD = B
(b)
D IHT

(
IHB

(b)
D IHT + RDRR T

D

)−1
(29)

If R is additionally supposed diagonal, Equa-
tion (29) is rewritten as:

KD = B
(b)
D IHT

(
IHB

(b)
D IHT +R

)−1
(30)

The multiplication, in Equation (27), of B(b)

by the function ρ, defined in Equation (24), re-
sults in a block diagonal matrix. Each block is
associated to a subdomain Dj . L

(b) is then equal

to B
(b)
D of Equation (21). Therefore, the two

Kalman gains, KD from Equation (30) and KL

from Equation (26), are equal and the two anal-
ysis values, defined by Equations (28) and (25),
are the same. DD and ESL are equivalent in this
simple setting.

The Domain Decomposition approach shows
however major computational advantages com-
pared to the Explicit Structures Localization.

The Reader should first notice that B
(b)
D is a block

diagonal matrix and we remind that R is taken as
diagonal in most applications. Therefore, the ma-
trix to be inverted when computing the Kalman
gain in Equation (23) is block diagonal. Its in-
verse is composed of the inverses of each block,
which may be computed by independent proces-
sors in a parallel implementation. The computa-
tional cost of the matrix inversion, required when
computing the Explicit Structures Localization
method, is equal to NΩ

3, while the Domain De-
composition only requires (

∑nD

j=1 ND
3
j ) computa-

tions, with the property:

NΩ
3 =

 nD∑
j=1

NDj

3

� (

nD∑
j=1

ND
3
j ) (31)

The overlapping of the observation subdo-
mains is mandatory for avoiding discontinuities
in the result. Otherwise, two pixels p1 and p2,
located on both sides of the boundary between
neighboring subdomains, would be totally uncor-
related. This is illustrated by Figure 2, which
is the result of motion estimation obtained with-
out overlapping the observation subdomains. The
zoom displayed on the right image illustrates the

Figure 2: Left to right: Motion background w(b); Mo-
tion estimation w(a); Highlight on discontinuities be-
tween subdomains.

discontinuity at the boundary between two sub-
domains.

If the observation subdomains are overlap-
ping, the Kalman gain, in Equation (23), is com-
puted for each subdomain Ej . But the value of

the estimation X(a),i is only updated for pixels
belonging to the estimation subdomain Dj . Two
neighboring pixels p1 and p2, located on both
sides of the two neighboring domains Dj1 and
Dj2 , are updated by computations performed, re-
spectively, on the two observation domains Ej1

and Ej2 . If Ej1 and Ej2 overlap, p2 belongs to
Ej1 . When the Kalman gain is computed for pixel
p1, it includes the covariance between p1 and pix-
els of Ej1 , and consequently pixel p2. This makes
the result smoother and more significant at the
boundary between the subdomains.

Unfortunately, the overlapping of observation
subdomains also results in additional computa-
tions, as the Kalman gain is computed several
times for the pixels belonging to the intersec-
tion between subdomains. Let NDMax denote the
number of pixels of the largest subdomain DMax

and NEMax the number of pixels in the corre-
sponding observation subdomain EMax. The ad-
ditional computation cost for each subdomain is
bounded by the number of pixels included in the
region EMax−DMax, which is supposed to be low
compared to NDMax. As nD processors compute
simultaneously the Kalman gain in the nD obser-
vation subdomains, the total cost of computing
the Kalman gain is a function of NE

3
Max, which is

approximately equal to ND
3
Max, according to the

previous assumption. This value has to be com-
pared with the complexity O(NΩ

3) of the Explicit
Structures Localization, with NΩ � NDMax. The
Domain Decomposition therefore becomes an af-
fordable approach for estimating motion with
EnKF in an operational setting, as the size of
the largest region may be defined according to
the computational constraints.

The Domain Decomposition is usually ap-
plied, as described by Hunt et al. (Hunt et al.,



2007), according to regular grids. The subdo-
mains are rectangles, whose dimensions corre-
spond to an empirical estimation of the decor-
relation value. However, the decomposition in
subdomains should rely on the structures dis-
played on images, so that the covariances be-
come negligible for pixels belonging to differ-
ent structures. The decomposition proposed in
our paper relies on a split-and-merge approach,
which is a segmentation technique that has been
widely used for image processing (the Reader
may refer to the foundational paper of Horowitz
and Pavlidis (Horowitz and Pavlidis, 1976)).
The split-and-merge segmentation is based on a
quadtree partition of the image. Starting from
the whole image, the splitting is iterated as long
as each new region is heterogeneous. A merg-
ing phase is then applied, in which regions with
similar properties are combined. The merging
phase aims to reduce the number nD of subdo-
mains. An extended observation subdomain Ei

is then associated to each subdomain Di in order
to impose the smoothness property, as it has been
previously justified. Having minimized the num-
ber nD of subdomains consequently minimizes the
number NOv of overlapping pixels in the obser-
vations subdomains. The parameters involved in
the split-and-merge method are related to the dis-
tance and the similarity between pixels. The first
parameter defines the maximal size of an anal-
ysis subdomain Dj . If we want to compare the
domain decomposition method to the ESL tech-
nique, this maximal size is chosen so that the dis-
tance between two pixels belonging to Dj is lower
than the decorrelation value used with the ESL
approach. The second parameter defines the no-
tion of homogeneous region. In other words, it
defines which properties should be verified by the
pixels of an analysis subdomain Dj , so that Dj is
considered as homogeneous. The classical choice
is to consider that the standard deviation σj of
the gray level values within the subdomain Dj

should be smaller than a given threshold. In or-
der to compare with the ESL method, the value
of σj is chosen to be equal to the brightness decor-
relation value of ESL.

5 Description of the experiments

This section displays and discusses results ob-
tained with both the ESL and DD approaches,
but we remind that only DD is also applied in an
operational setting as the computation is done in

parallel for each subdomain. The two methods
are set up with the same criteria on the size of
regions and on the similarity of gray level values,
in order to get an objective comparison of results
with the same modeling of structures.

A last component has to be defined which is
the model of dynamics IM used in Equation (4).
In our experiments, this model assume the La-
grangian constancy of velocity on each pixel tra-
jectory and the transport of the image brightness
by velocity:

∂w

∂t
(x, t) + (w.∇)w(x, t) = 0 (32)

∂I

∂t
(x, t) + w.∇I (x, t) = 0 (33)

The next subsections discuss first the results
on synthetic data and then demonstrate its prop-
erties on satellite acquisitions.

5.1 Synthetic experiment

The first experiment relies on a sequence of 9 syn-
thetic images, which have characteristics similar
to satellite acquisitions. These images are ob-
tained by integrating in time, with the model IM
of Equations (32) and (33), the motion field dis-
played on top of Figure 4 and the satellite image
on top of Figure 3. This process allows, not only
to obtain the sequence of image observations used
for testing motion estimation methods, but also
to compute the ground truth on motion. The bot-
tom parts of the two previous Figures display the
last image of the sequence and the ground truth
on motion at the corresponding time.

Figure 3: First and last image of the synthetic se-
quence.

In the following, we discuss the results ob-
tained with our two methods, ESL and DD, and



Figure 4: Ground truth on motion.

compare with those of the HS-brightness algo-
rithm (Sun et al., 2010), which gets the best per-
formances among all methods, which have been
tested on our experimental data.

Figure 5 provide the results that are computed
at the beginning of the sequence, while Figure 6
illustrates the results obtained at the last time.
It should be noted that, in the first case, HS-
brightness estimates motion from images 1 and
2, while in the second case this is between images
8 and 9.

Figure 5: Result of ESL (top), DD (bottom) and HS-
brightness (bottom) on the first image.

Figure 6: Result of ESL (top), DD (middle) and HS-
brightness (bottom) on the last image.

Figure 7 displays the domain decomposition
that is used for the DD approach, which is regular
in that experiment.

Figure 7: Domain decomposition.

The motion estimation obtained with the
three methods are visually equivalent and close
from the ground truth displayed on Figure 4. For
an improved understanding of the methods, we
computed statistics on the errors of the estima-
tions with regard to the ground truth. At ini-
tial time, the angular errors of the three methods
ESL, DD and HS-brightness are approximately
the same and around 9 degrees. However, at the
last time, the angular errors of the three meth-
ods are different and respectively of 9.0, 9.6 and
10.33 degrees for ESL, DD and HS-brightness.
HS-brightness is one of the initial member of the
ensemble and it has demonstrated to be the best
member. However, the other members are con-



tributing during time integration to that member
as we previously discussed. At the last time, ESL
and DD perform better than their best member.
That means that all methods are contributing in
the results. Apart of the result quality, the main
advantage of DD compared to ESL concerns the
computational time, which is divided by the num-
ber of subdomains, which is 64 for this illustra-
tion.

One additional output of the ESL and DD
methods, compared to HS-brightness, is the un-
certainty of the motion estimation, as discussed
in Sections 3 and 4. We first design an image of
the uncertainty on the orientation of motion at
each time t. Let wi

e(x, t) be the value of the ith

member, at location x and time t, and we(x, t) be
the estimation of the ensemble Kalman filter, ob-
tained as the average of all members values. We

define U(x, t) = ̂wi
e(x, t),we(x, t). This is the

average of the angular difference between each
member i and the estimation. This character-
izes the angular spread of the ensemble at pixel
x and time t. We also compute the map of angu-

lar errors, E(x, t) = ̂wGT (x, t),we(x, t), between
the ground truth wGT (x, t) and the estimation
we(x, t). This process is illustrated on Figures 8
and 9 where the two images U(x, t) and E(x, t),
computed for the method DD at the first and last
time of the sequence, are displayed. Results are
similar with the method ESL. It is visible that the
uncertainty measured by the ensemble is linked
to the error of the estimation. Further analysis is
part of the perspectives of this research.

Figure 8: Angular error map of DD, EDD, (top) and
uncertainty of angular error of DD, UDD, on the first
image.

Having analyzed the results on synthetic data,
we will demonstrate the potentiality of ESL and

Figure 9: Angular error E(x) and uncertainty on the
orientation U(x), with DD at last time.

DD on satellite acquisitions, in the next subsec-
tion.

5.2 Satellite data

Experiments were further conducted with meteo-
rological satellite sequences, such as the one dis-
played on Figure 10 (frames 1, 4, 8, 11, 15, 18).

The domain decomposition obtained with the
split-and-merge algorithm is given on Figure 11.
This gives a rough segmentation on the image, as
the boundaries of the clouds structures are not
accurately defined.

Motion results obtained with the ESL, DD
and HS-brightness methods are visualized on Fig-
ure 12 for the initial time and Figure 13 for the
last time. Motion results of ESL and DD are
equivalent, but the computational time required
by DD is 55 less than the one of ESL, since the
split-and-merge divides the whole domain in 55
subdomains. Results of HS-brightness show that
this approach is less suited on the real satellite
data. As HS-brightness is the best of the 50 mem-
bers used in the two methods, this also demon-
strates again that EnKF makes use of all its mem-
bers and that all methods are contributing to the
final estimation.

Figure 14 shows the uncertainty map, previ-
ously named image U(x), computed for the DD
method at the first time.



Figure 10: Six satellite acquisitions.

Figure 11: Domain decomposition performed by DD
on the first observation.

Figure 12: Comparison of ESL (top), DD (middle)
and HS-brightness (bottom) at initial time.

6 Conclusions

This paper describes the design of an ensem-
ble Kalman filter that estimates motion on fluid
flows images and provides a measure on the un-
certainty of the result. For suppressing the spu-
rious covariances, coming from the sampling of
the PDF by an ensemble, two methods are com-
pared which rely on the structures displayed on
the data. On the one hand, the Explicit Struc-
tures Localization method, ESL, which was de-
fined in the past by the authors, makes use of
a localization function for keeping correlated the
only pixels, which are simultaneously close (dis-
tance property) and having similar gray level val-
ues (brightness property). On the other hand, the
innovation of the paper concerns a Domain De-
composition approach, named DD, which is based
on a rough segmentation of the image and allows
processing each subdomain in parallel. The two
methods have been proven to be equivalent on
synthetic and satellite data, but only the Domain



Figure 13: Comparison of ESL (top), DD (middle)
and HS-brightness (bottom) at last time.

Figure 14: Uncertainty computed by DD at first time.

Decomposition approach is applicable in an oper-
ational setting, due to its reduced computational
requirements.

Various perspectives are considered for this re-
search. First, an improved space-time decompo-
sition of the domain will be implemented as this
is the key point for both decreasing the num-
ber of subdomains (and decreasing the compu-
tational cost), while correctly characterizing the
structures. On a methodological point of view,
the research will consider approaches such as

LETKF (Local Ensemble Transform Kalman Fil-
ter, see (Miyoshi et al., 2007)) for improving the
estimation of the uncertainty computed from the
ensemble. Last, the use of the uncertainty for op-
erational applications such as rain quantity fore-
cast will be further assessed.
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