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FINITE ELEMENT METHOD FOR DARCY’S PROBLEM COUPLED WITH THE

HEAT EQUATION

CHRISTINE BERNARDI†, SÉRÉNA DIB‡, VIVETTE GIRAULT†, FRÉDÉRIC HECHT†, FRANÇOIS MURAT†,
AND TONI SAYAH‡

Abstract. In this article, we study theoretically and numerically the heat equation coupled with

Darcy’s law by a nonlinear viscosity depending on the temperature. We establish existence and unique-
ness of the exact solution by using a Galerkin method. We propose and analyze two numerical schemes

based on finite element methods. An optimal a priori error estimate is then derived for each numerical
scheme. Numerical experiments are presented that confirm the theoretical accuracy of the discretization.

Keywords. Darcy’s equations; heat equation; Stampacchia’s method; finite element method; a priori

error estimates.

1. Introduction.

Let Ω ⊂ IRd, d = 2, 3, be a bounded simply-connected open domain in IRd, with a Lipschitz-continuous
boundary Γ. This work studies the temperature distribution of a fluid in a porous medium modelled by
a convection-diffusion equation coupled with Darcy’s law. The system of equations is

(P)



ν(T (x))u(x) +∇p(x) = f(x) in Ω,

(divu)(x) = 0 in Ω,

−α∆T (x) + (u · ∇T )(x) = g(x) in Ω,

(u · n)(x) = 0 on Γ,

T (x) = 0 on Γ,

where n is the unit outward normal vector on Γ. The unknowns are the velocity u, the pressure p and
the temperature T of the fluid. The function f represents an external density force and g an external
heat source. The viscosity ν depends on the temperature (Hooman and Gurgenci [15] or Rashad [17])
while the parameter α is a positive constant that corresponds to the diffusion coefficient.

We analyze the system (P) by setting it in an equivalent variational formulation and reducing it to a
single diffusion-convection equation for the temperature where the driving velocity depends implicitly
on the temperature, see (2.19)–(2.20). Existence of a solution is derived without restriction on the data
by Galerkin’s method and Brouwer’s Fixed Point. Global uniqueness is established when the solution is
slightly smoother and the data are suitably restricted. We also introduce an alternative equivalent vari-
ational formulation. Both variational formulations are discretized by finite element schemes. We derive
existence, conditional uniqueness, convergence, and optimal a priori error estimates for the solutions of
both schemes. Next, these schemes are linearized by suitable convergent successive approximation algo-
rithms. Finally, we present some numerical experiments for a model problem that confirm the theoretical
rates of convergence developed in this work.

The study of heat convection in a liquid medium whose motion is described by the Navier-Stokes equa-
tions coupled with the heat equation has been the object of many publications (see, for instance Bernardi,
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Métivet and Pernaud-Thomas [4], Deteix, Jendoubi and Yakoubi [10], or Gaultier and Lezaun [11]). A
different coupling Darcy’s system with the heat equation with constant viscosity but exterior force de-
pending on the temperature has been analyzed by (Bernardi, Yacoubi and Maarouf [5] or Boussinesq
[6]) and discretized with a spectral method. The present work can easily be modified to also take into
account the dependency of the external force on the temperature.

This article is organized as follows:

• Section 2 is devoted to the continuous problem and the analysis of the corresponding variational
formulation.

• In section 3, we introduce the discrete problems, recall their main properties, study their a priori
errors and derive optimal estimates.

• In section 4, we introduce an iterative algorithm and prove its convergence.
• Numerical results validating the numerical analysis are presented in Section 5.

2. Analysis of the model

2.1. Notation. Let Ω be a bounded open domain of IRd, d = 2 or 3, with a Lipschitz-continuous boundary
Γ, and unit outward normal n. To simplify, we define the notions below in three dimensions. We denote
by D(Ω) the space of functions that have compact support in Ω and have continuous derivatives of all
orders in Ω. Let α = (α1, α2, α3) be a triple of non negative integers, set |α| = α1 + α2 + α3, and define
the partial derivative ∂α by

∂α =
∂|α|

∂xα1
1 ∂xα2

2 ∂xα3
3

. (2.1)

Then, for any positive integer m and number p ≥ 1, recall the classical Sobolev space (Adams [2] or
Nečas [16])

Wm,p(Ω) = {v ∈ Lp(Ω); ∀ |α| ≤ m, ∂αv ∈ Lp(Ω)}, (2.2)

equipped with the seminorm

|v|Wm,p(Ω) =
{ ∑
|α|=m

∫
Ω

|∂αv(x)|p dx
} 1

p (2.3)

and the norm

‖v‖Wm,p(Ω) =
{ ∑

0≤k≤m

|v|p
Wk,p(Ω)

} 1
p . (2.4)

When r = 2, this space is the Hilbert space Hm(Ω). In particular, the scalar product of L2(Ω) is
denoted by (., .). The definitions of these spaces are extended straightforwardly to vectors, with the same
notation, but with the following modification for the norms in the non-Hilbert case. Let v be a vector
valued function; we set

‖v‖Lp(Ω) =
( ∫

Ω

|v(x)|p dx
) 1

p , (2.5)

where |.| denotes the Euclidean vector norm.
For vanishing boundary values, we define

H1
0 (Ω) = {v ∈ H1(Ω); v|Γ = 0}. (2.6)

We shall often use Sobolev’s imbeddings: for any real number p ≥ 1, there exists constants Sp and S0
p

such that

∀ v ∈ H1(Ω), ‖v‖Lp(Ω) ≤ Sp‖v‖H1(Ω) (2.7)

and

∀ v ∈ H1
0 (Ω), ‖v‖Lp(Ω) ≤ S0

p |v|H1(Ω). (2.8)

When p = 2, (2.8) reduces to Poincaré’s inequality.
We shall also use the standard spaces for Darcy’s equations

L2
0(Ω) = {v ∈ L2(Ω);

∫
Ω

v(x) dx = 0}, (2.9)
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H(div,Ω) = {v ∈ (L2(Ω))d; divv ∈ L2(Ω)}, (2.10)

H0(div,Ω) = {v ∈ H(div,Ω); (v · n)|Γ = 0}, (2.11)

equipped with the norm

‖v‖2H(div,Ω) = ‖v‖2L2(Ω)d + ‖divv‖2L2(Ω), (2.12)

and also the space

V = {v ∈ H0(div,Ω); divv = 0}. (2.13)

Finally, we recall the inf-sup condition between L2
0(Ω) and H0(div,Ω),

inf
q∈L2

0(Ω)
sup

v∈H0(div,Ω)

∫
Ω

(divv)(x)q(x) dx

‖v‖H(div,Ω)‖q‖L2(Ω)
≥ β, (2.14)

with a constant β > 0, and the inf-sup condition between H1(Ω) ∩ L2
0(Ω) and L2(Ω)d,

inf
q∈H1(Ω)∩L2

0(Ω)
sup

v∈L2(Ω)d

∫
Ω

v(x).∇q(x) dx

‖v‖L2(Ω)d |q|H1(Ω)
≥ 1. (2.15)

The first one follows immediately by solving a Laplace equation in Ω with a Neumann boundary condition
on Γ, and the second by choosing v = ∇q.

2.2. Variational formulation. Before setting (P) in variational form, let us make precise the assump-
tions on the function ν

• ν is Lipschitz-continuous with Lipschitz constant λ, i.e.,

∀s, t ∈ IR, |ν(s)− ν(t)| ≤ λ|s− t|. (2.16)

• ν is bounded and there exist two positive constants ν1 and ν2 such that for any τ ∈ IR

ν1 ≤ ν(τ) ≤ ν2. (2.17)

In many publications, the model used for the viscosity function ν(·) is not necessarily bounded over IR,
but then the mathematical analysis of the problem is much more complex. However, since in practical
situations, ν(T ) is neither infinite nor zero, we prefer to assume (2.17); this substantially simplifies the
analysis. The other assumptions on the data are, f ∈ L2(Ω)d and g ∈ L2(Ω). With these assumptions and
data, the space for Darcy’s velocity and pressure (u, p) is H0(div,Ω)×L2

0(Ω) or H0(div,Ω)×H1(Ω)∩L2
0(Ω)

and for the temperature T is H1
0 (Ω). Then, whereas there is no difficulty in setting Darcy’s system in

variational form, a variational formulation of the temperature equation is not that obvious. Indeed, the
convection term u · ∇T cannot be tested by an H1 function, since it is only in L1(Ω). Of course, it
can be observed that the temperature equation implies necessarily that this product belongs to H−1(Ω),
meaning in fact that T belongs to the weighted space

Hu = {S ∈ H1
0 (Ω) ; u · ∇S ∈ H−1(Ω)}. (2.18)

However, for the moment, it is simpler to set aside this space and choose instead the test functions in
H1

0 (Ω) ∩ L∞(Ω). Thus, we propose the following variational problem:

(V )



Find (u, p, T ) ∈ H0(div,Ω)× L2
0(Ω)×H1

0 (Ω) such that

∀v ∈ H0(div,Ω),

∫
Ω

ν(T (x))u(x) · v(x) dx −
∫

Ω

p(x)(divv)(x) dx =

∫
Ω

f(x) · v(x) dx ,

∀ q ∈ L2
0(Ω),

∫
Ω

q(x)(divu)(x) dx = 0,

∀S ∈ H1
0 (Ω) ∩ L∞(Ω), α

∫
Ω

∇T (x) · ∇S(x) dx +

∫
Ω

(u · ∇T )(x)S(x) dx =

∫
Ω

g(x)S(x) dx .

A straightforward argument shows that this problem is equivalent to the original problem (P) in the sense
that any solution (u, p, T ) of problem (P) in H0(div,Ω)× L2

0(Ω)×H1
0 (Ω) solves (V) and conversely.

When there is no ambiguity, to simplify, from now on, we denote the scalar products by parentheses.
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Problem (V) can also be written as a function of the single unknown T . Indeed, for given T , the Darcy
system has a unique solution (u, p); this is easily deduced from (2.17) and the inf-sup condition (2.14).
Thus u and p are functions of T , (u, p) = (u(T ), p(T )), and problem (V) is equivalent to the following
reduced formulation: Find T in H1

0 (Ω), such that

∀S ∈ H1
0 (Ω) ∩ L∞(Ω), α(∇T,∇S) +

∫
Ω

(u(T ) · ∇T )(x)S(x) dx = (g, S), (2.19)

where u(T ) is the velocity solution of: Find (u(T ), p(T )) ∈ H0(div,Ω)× L2
0(Ω), such that

∀v ∈ H0(div,Ω), (ν(T )u(T ),v)− (p(T ),divv) = (f ,v),

∀ q ∈ L2
0(Ω), (q,divu(T )) = 0.

(2.20)

By testing (2.20) with v = u(T ), we immediately derive from (2.17) and (2.14) the a priori bounds,

‖u(T )‖L2(Ω)d ≤
1

ν1
‖f‖L2(Ω)d , ‖

√
ν(T )u(T )‖L2(Ω) ≤

1
√
ν1
‖f‖L2(Ω)d ,

‖p(T )‖L2(Ω) ≤
1

β

(
‖f‖L2(Ω)d + ν2‖u(T )‖L2(Ω)d

)
.

(2.21)

These bounds imply the following continuity:

Lemma 2.1. Let ν satisfy (2.16), (2.17) and (Tk)k≥1 be a sequence of functions in L2(Ω) that con-
verges strongly to T in L2(Ω). Then, the sequence (u(Tk), p(Tk))k≥1 converges weakly to (u(T ), p(T )) in
H0(div,Ω)× L2

0(Ω) and

lim
k→∞

√
ν(Tk)u(Tk) =

√
ν(T )u(T ) strongly in L2(Ω)d,

lim
k→∞

p(Tk) = p(T ) strongly in L2(Ω).
(2.22)

Proof. The bounds (2.21) yield first the weak convergence (up to a subsequence) of (u(Tk), p(Tk))k≥1 in
L2(Ω)d × L2(Ω) to some function (u, p), and next that (u, p) belong to H0(div,Ω) × L2

0(Ω). Since Tk
converges almost everywhere and ν(Tk) ≤ ν2, the Lebesgue dominated convergence implies that for any
real number r > 0

lim
k→∞

ν(Tk) = ν(T ) strongly in Lr(Ω). (2.23)

By a standard argument, this allows to pass to the limit in (2.20) with Tk instead of T and smooth test
functions, thus showing that T solves (2.20). Hence u = u(T ) and p = p(T ).

As far as the strong convergences are concerned, first the weighted bound for the velocity in (2.21) implies

that, again up to a subsequence, (
√
ν(Tk)u(Tk))k≥1 tends weakly to some function w in L2(Ω)d and a

standard argument shows that w =
√
ν(T )u(T ). Next, by testing (2.20) (written with Tk instead of T )

with v = u(Tk), we obtain

‖
√
ν(Tk)u(Tk)‖2L2(Ω)d = (f ,u(Tk)) = (ν(T )u(T ),u(Tk)).

Hence,

lim
k→∞

‖
√
ν(Tk)u(Tk)‖2L2(Ω)d = ‖

√
ν(T )u(T )‖2L2(Ω)d , (2.24)

thus implying the strong weighted convergence of the velocity. Regarding the pressure, owing to (2.14),
for each k there exists a function vk in H0(div,Ω) such that (see Girault and Raviart [13])

divvk = p(Tk) and ‖vk‖H(div,Ω) ≤
1

β
‖p(Tk)‖L2(Ω). (2.25)

The bound (2.25) yields weak convergence (up to a subsequence) of (vk)k≥1 in H(div,Ω) to some function
v in H0(div,Ω) with divv = p(T ), and by testing (2.20) (written with Tk instead of T ) with v = vk, we
derive

‖p(Tk)‖2L2(Ω) = (p(Tk),divvk) = −(f ,vk) + (ν(Tk)u(Tk),vk)

= (p(T ),divvk)− (ν(T )u(T ),vk) + (ν(Tk)u(Tk),vk).

For passing to the limit in the nonlinear term, we write (ν(Tk)u(Tk),vk) = (
√
ν(Tk)u(Tk),

√
ν(Tk)vk).

In view of (2.17) and (2.25), the last factor is bounded in L2(Ω)d and hence (up to a subsequence)



ERROR A PRIORI 5

converges weakly to some function w in L2(Ω)d. As above, an easy argument shows that w =
√
ν(T )v.

This permits to take the limit of the nonlinear term, leading to

lim
k→∞

‖p(Tk)‖2L2(Ω) = ‖p(T )‖2L2(Ω), (2.26)

and to the strong convergence of p(Tk). Finally, uniqueness of the solution of (2.20) implies the conver-
gence of the whole sequence. �

2.3. Existence. Here, we propose to construct a solution of (2.19) by Galerkin’s method. Since H2(Ω)
is separable, so is its closed subspace H2(Ω)∩H1

0 (Ω); therefore, it has a countable basis {θi}i≥1. Let Θm

be the space spanned by the first m basis functions, {θi}1≤i≤m. The reduced problem (2.19) is discretized

in Θm by the square system of nonlinear equations: Find Tm =
∑

1≤i≤m

wiθi ∈ Θm, solution of

∀1 ≤ i ≤ m, α(∇Tm,∇ θi) +

∫
Ω

(u(Tm) · ∇Tm)(x) θi(x) dx = (g, θi), (2.27)

where the pair (u(Tm), p(Tm)) solves (2.20) with T = Tm. Then, given Tm in Θm, we introduce the
auxiliary problem, find Φ(Tm) ∈ Θm such that,

∀Sm ∈ Θm, (∇Φ(Tm),∇Sm) = α(∇Tm,∇Sm) +

∫
Ω

(u(Tm) · ∇Tm)(x)Sm(x) dx− (g, Sm). (2.28)

On one hand, (2.28) defines a mapping from Θm into Θm, and we easily derive its continuity from the
finite dimension and the continuity Lemma 2.1. On the other hand, Green’s formula (valid because the
basis functions are smooth) gives,

(∇Φ(Tm),∇Tm) = α|Tm|2H1(Ω) − (g, Tm) ≥ |Tm|H1(Ω)

(
α|Tm|H1(Ω) − S0

2‖g‖L2(Ω)

)
. (2.29)

Therefore Brouwer’s Fixed-Point Theorem implies immediately the next result.

Lemma 2.2. The discrete problem (2.27) has at least one solution Tm ∈ Θm and this solution satisfies
the bound

|Tm|H1(Ω) ≤
S0

2

α
‖g‖L2(Ω). (2.30)

Existence of a solution of (2.19) stems from Lemmas 2.1 and 2.2.

Theorem 2.3. Let ν satisfy (2.16) and (2.17). Then for any f ∈ L2(Ω)d, g ∈ L2(Ω), and positive
constant α, problem (2.19) has at least one solution T ∈ H1

0 (Ω) and this solution satisfies the bound
(2.30).

Proof. To simplify the discussion, the proof is written when d = 3; it is simpler when d = 2. The
uniform bound (2.30) implies that, up to a subsequence, (Tm)m converges weakly to some function
T in H1

0 (Ω). Therefore, it converges strongly in Lr(Ω), r < 6, and it follows from Lemma 2.1 that

(u(Tm), p(Tm))m converges weakly to (u(T ), p(T )) in H0(div,Ω) × L2
0(Ω), (

√
ν(Tm)u(Tm))m converges

strongly to
√
ν(T )u(T ) in L2(Ω)3, and (p(Tm))m converges strongly to p(T ) in L2(Ω). Now, let us freeze

the index i in (2.27) and let m tend to infinity. To pass to the limit in the nonlinear term, by applying
Green’s formula (owing again to the smoothness of the basis) we write,∫

Ω

(u(Tm) · ∇Tm)(x)θi(x) dx = −
∫

Ω

(u(Tm) · ∇ θi)(x)Tm(x) dx. (2.31)

The strong convergence of (Tm)m in L4(Ω) and the fact that∇ θi belongs to L4(Ω)3 imply that (Tm∇ θi)m
converges strongly to T∇ θi in L2(Ω)3. Since u(Tm) converges weakly to u(T ) in L2(Ω)3, these two
convergences imply

lim
m→∞

∫
Ω

(u(Tm) · ∇Tm)(x)θi(x) dx = −
∫

Ω

(u(T ) · ∇ θi)(x)T (x) dx, (2.32)

and consequently the limit functions satisfy for any i ≥ 1,

α(∇T,∇ θi)−
∫

Ω

(u(T ) · ∇ θi)(x)T (x) dx = (g, θi). (2.33)
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From this system and the density of the basis in H2(Ω) ∩H1
0 (Ω), we infer in the sense of distributions,

−α∆T + div(u(T )T ) = g i.e., − α∆T + u(T ) · ∇T = g.

This implies in particular that u(T )·∇T belongs to H−1(Ω); hence by taking the duality with S ∈ H1
0 (Ω),

we recover,

∀S ∈ H1
0 (Ω), α(∇T,∇S)+ < u(T ) · ∇T, S >H−1(Ω),H1

0 (Ω)= (g, S), (2.34)

which is a slightly sharper version of (2.19). �

2.4. Uniqueness. Before examining uniqueness of the solution, let us establish uniqueness of the solution
T ∈ H1

0 (Ω) of (2.19) for a given divergence-free velocity u ∈ H0(div,Ω),

∀S ∈ H1
0 (Ω) ∩ L∞(Ω), α(∇T,∇S) +

∫
Ω

(u · ∇T )(x)S(x) dx = (g, S). (2.35)

Existence is easily proved by a simpler version of the Galerkin technique used above and it yields a
solution satisfying (2.30). But uniqueness is far from straightforward because the obvious choice of test
function, S = T , is not available since T is not necessarily in L∞(Ω). To by-pass this difficulty, we shall
apply a renormalizing technique in the spirit of the work of Stampacchia [19].

For a given real number k > 0, let τk be the truncation function of one variable defined by

∀t ∈ IR, τk(t) =

{
t if |t| ≤ k
k sgn(t) if |t| > k,

(2.36)

and let σk be its primitive:

∀t ∈ IR, σk(t) =

∫ t

0

τk(s) ds. (2.37)

The function τk belongs to W 1,∞(IR) and for any S in H1
0 (Ω), τk(S) belongs to H1

0 (Ω) and a.e. in Ω,

∇ τk(S) =

{
∇S if |S| ≤ k
0 if |S| > k.

(2.38)

The function σk is Lipschitz continuous, it is piecewise C1(IR), it satisfies σk(0) = 0, and for all S in
H1

0 (Ω), σk(S) belongs to H1
0 (Ω). Then, we have the following result.

Lemma 2.4. For any α > 0, any g in L2(Ω), and any u in H0(div,Ω) satisfying divu = 0, problem
(2.35) has one and only one solution T in H1

0 (Ω); hence T is a function of u. The solution T satisfies
the bound

|T |H1(Ω) ≤
S0

2

α
‖g‖L2(Ω). (2.39)

Proof. As stated above, existence is an easy variant of the existence proof in Section 2.3. Regarding
uniqueness, let T be any solution of (2.35); the regularity of τk(T ) implies that we can test (2.35) with
S = τk(T ). This gives

α
(
∇T,∇ τk(T )

)
+

∫
Ω

(u · ∇T )(x)τk(T (x)) dx =
(
g, τk(T )

)
. (2.40)

First (2.38) implies (
∇T,∇ τk(T )

)
= ‖∇ τk(T )‖2L2(Ω)d . (2.41)

Next, from (2.37), we observe that

∇σk(T ) = τk(T )∇T, (2.42)

and hence ∫
Ω

(u · ∇T )(x)τk(T (x)) dx =
(
u,∇σk(T )

)
. (2.43)

Therefore Green’s formula and the fact that u is divergence-free yield∫
Ω

(u · ∇T )(x)τk(T (x)) dx = −
(
divu, σk(T )

)
= 0.
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Hence, if T ∈ H1
0 (Ω) is any solution of (2.35), it satisfies the equality

α‖∇ τk(T )‖2L2(Ω)d =
(
g, τk(T )

)
(2.44)

and therefore τk(T ) satisfies the bound (2.39). The strong convergence of τk(T ) to T in H1(Ω) allows to
derive (2.39), as k tends to infinity. Finally, since (2.35) is a linear equation in T , (2.39) for all solutions
T implies uniqueness. �

This lemma has the important consequence that all solutions of (2.19) satisfy the bound (2.39). Of course
all velocity and pressure solutions satisfy (2.21).

Now, we turn to uniqueness. Let (u1, p1, T1) and (u2, p2, T2) be two solutions of problem (V). Their
difference denoted (U, p, T ) satisfies,(

ν(T2)U,v
)

+
(
(ν(T1)− ν(T2))u1,v

)
= 0,

α
(
∇T,∇S

)
+
(
U · ∇T1, S

)
+
(
u2 · ∇T, S

)
= 0,

(2.45)

for all divergence-free v in H0(div,Ω) and all S in H1
0 (Ω)∩L∞(Ω). Clearly, uniqueness cannot be derived

from (2.45) without regularity assumptions on the solution. This is the object of the next theorem. To
simplify, it is stated when d = 3.

Theorem 2.5. Let d = 3 and ν satisfy (2.16) and (2.17). In addition to the assumptions of Theorem
2.3, we suppose that problem (2.19) has a solution T1 in L∞(Ω), that u(T1) belongs to L3(Ω)3 and that

λS0
6

αν1
‖T1‖L∞(Ω)‖u(T1)‖L3(Ω)3 < 1. (2.46)

Then problem (2.19) has no other solution in H1
0 (Ω).

Proof. Set u1 = u(T1) and use the notation of (2.45). From the first part of (2.45), and the above
assumptions, we immediately derive,

ν1‖U‖L2(Ω)3 ≤ ‖(ν(T1)− ν(T2))u1‖L2(Ω)3 ≤ λ‖T‖L6(Ω)‖u1‖L3(Ω)3 ≤ λS0
6 |T |H1(Ω)‖u1‖L3(Ω)3 . (2.47)

To deduce a useful bound for T from the second part of (2.45), we first apply Green’s formula to the
second term, a valid operation since both S and T1 belong to H1

0 (Ω) ∩ L∞(Ω),∫
Ω

(U · ∇T1)(x)S(x) dx = −
∫

Ω

(U · ∇S)(x)T1(x) dx, (2.48)

and we test (2.45) with S = τk(T ). Then arguing as in the proof of Lemma 2.4, we obtain∫
Ω

(u2 · ∇T )(x)τk(T (x)) dx = 0. (2.49)

Hence

α|τk(T )|2H1(Ω) ≤ |τk(T )|H1(Ω)‖T1‖L∞(Ω)‖U‖L2(Ω)3 , (2.50)

implying that for all k > 0,

α|τk(T )|H1(Ω) ≤ ‖T1‖L∞(Ω)‖U‖L2(Ω)3 . (2.51)

From this bound and the strong convergence of τk(T ) to T as k tends to infinity, we deduce

α|T |H1(Ω) ≤ ‖T1‖L∞(Ω)‖U‖L2(Ω)3 . (2.52)

Then by substituting the bound (2.47) for U, we infer

α|T |H1(Ω) ≤
λS0

6

ν1
|T |H1(Ω)‖u1‖L3(Ω)3‖T1‖L∞(Ω). (2.53)

This proves uniqueness when (2.46) holds. �

The smallness condition (2.46) for uniqueness is of course restrictive, but for nonlinear problems, unique-
ness is rarely guaranteed without restrictions. On the other hand, although the regularity assumptions on
the solution in the statement of Theorem 2.5 are not easily inferred from the equations, they are pretty
reasonable from a physical point of view.
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2.5. Alternative Variational formulation. The variational problem (V ) introduced in Section 2.2 is
well adapted to locally conservative discrete schemes. However, the numerical implementation of such
schemes is not so straightforward and can be simplified by eliminating the divergence from the first two
equations of (V ) by means of Green’s formula. This leads to the following alternative:

(Va)



Find (u, p, T ) ∈ L2(Ω)d × (H1(Ω) ∩ L2
0(Ω))×H1

0 (Ω) such that

∀v ∈ L2(Ω)d,

∫
Ω

ν(T (x))u(x) · v(x) dx +

∫
Ω

∇p(x) · v(x) dx =

∫
Ω

f(x) · v(x) dx ,

∀ q ∈ H1(Ω) ∩ L2
0(Ω),

∫
Ω

∇q(x) · u(x) dx = 0,

∀S ∈ H1
0 (Ω) ∩ L∞(Ω), α

∫
Ω

∇T (x) · ∇S(x) dx +

∫
Ω

(u · ∇T )(x)S(x) dx =

∫
Ω

g(x)S(x) dx ,

which is obviously equivalent to (V ). It leads to numerical schemes that are more easily implemented.

3. Discretization

From now on, we assume that Ω is a polygon when d = 2 or polyhedron when d = 3, so it can be completely
meshed. Now, we describe the discretization space. A regular (see Ciarlet [8]) family of triangulations
(Th)h of Ω, is a set of closed non degenerate triangles or tetrahedra, called elements, satisfying,

• for each h, Ω̄ is the union of all elements of Th;
• the intersection of two distinct elements of Th is either empty, a common vertex, or an entire

common edge or face;
• the ratio of the diameter of an element K in Th to the diameter of its inscribed circle or ball is

bounded by a constant independent of h.

As usual, h denotes the maximal diameter of all elements of Th. For each K in Th, we denote by P1(K)
the space of restrictions to K of polynomials in d variables and total degree at most one.

In what follows, c, c′, C, C ′, c1, . . . stand for generic constants which may vary from line to line but are
always independent of h. For a given triangulation Th, we define the following finite dimensional spaces:

Zh = {Sh ∈ C0(Ω̄); ∀κ ∈ Th, Sh|K ∈ P1(K)} and Xh = Zh ∩H1
0 (Ω). (3.1)

There exists an approximation operator (when d = 2, see Bernardi and Girault [3] or Clément [9]; when
d = 2 or d = 3, see Scott and Zhang [20]), Rh ∈ L(W 1,p(Ω);Zh) and Rh ∈ L(W 1,p(Ω)∩H1

0 (Ω);Xh) such
that for all K in Th, m = 0, 1, l = 0, 1, and all p ≥ 2,

∀S ∈W l+1,p(Ω), |S −RhS|Wm,p(K) ≤ C(p,m, l)hl+1−m|S|W l+1,p(∆K), (3.2)

where ∆K is the macro element containing the values of S used in defining Rh(S).

3.1. First discrete scheme. The velocity and pressure are discretized by RT0 elements. More precisely,
the discrete spaces (Wh,1,Mh,1) are defined as follows:

Wh ={vh ∈ H(div,Ω); vh(x)|K = aKx + bK , aK ∈ IR,bK ∈ IRd, ∀K ∈ Th},
Wh,1 =Wh ∩H0(div,Ω),

(3.3)

Mh = {qh ∈ L2(Ω); ∀K ∈ Th, qh|K is constant} and Mh,1 = Mh ∩ L2
0(Ω). (3.4)

The kernel of the divergence in Wh,1 is denoted by Vh,1,

Vh,1 = {vh ∈ Wh,1; divvh = 0 in Ω}. (3.5)

There exists an approximation operator ξ1
h ∈ L(H1(Ω);Wh) and ξ1

h ∈ L(H1(Ω) ∩H0(div,Ω);Wh,1) such
that for all K in Th (Roberts and Thomas [18]):

∀v ∈ H1(Ω)d, ‖v − ξ1
h(v)‖L2(K)d ≤ C1 h|v|H1(K)d , (3.6)

and

∀v ∈ H1(Ω)d with divv ∈ H1(Ω), ‖div(v − ξ1
h(v))‖L2(K) ≤ C2 h|divv|H1(K). (3.7)
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Furthermore, if divu = 0 then div(ξ1
h(u)) = 0. In addition, we shall use the operator ρh ∈ L(L2(Ω);Mh)

and ρh ∈ L(L2
0(Ω);Mh,1) defined by

ρh(q)|K =
1

|K|

∫
K

q(x) dx , ∀K ∈ Th; (3.8)

it satisfies

∀q ∈ H1(Ω), ‖q − ρh(q)‖L2(K) ≤ c h |q|H1(K). (3.9)

The following discrete inf-sup condition holds (see Roberts and Thomas [18]):

∀ qh ∈Mh,1, sup
vh∈Wh,1

∫
Ω

qh(x)(divvh)(x) dx

‖vh‖H(div,Ω)
≥ β1‖qh‖L2(Ω), (3.10)

with a constant β1 > 0 independent of h. We then consider the straightforward discretization of Problem
(V ):

(Vh,1)



Find (uh, ph, Th) ∈ Wh,1 ×Mh,1 ×Xh such that

∀vh ∈ Wh,1,

∫
Ω

ν(Th(x))uh(x) · vh(x) dx −
∫

Ω

ph(x)(divvh)(x) dx =

∫
Ω

f(x) · vh(x) dx ,

∀qh ∈Mh,1,

∫
Ω

qh(x)(divuh)(x) dx = 0,

∀Sh ∈ Xh, α

∫
Ω

∇Th(x) · ∇Sh(x) dx +

∫
Ω

(uh · ∇Th)(x)Sh(x) dx =

∫
Ω

g(x)Sh(x) dx .

It is easy to see that the second equation above implies that divuh = 0 in Ω. Hence this scheme exactly
preserves the zero divergence condition.

3.1.1. First scheme: Existence, convergence, and uniqueness. Existence of a solution of (Vh,1) is derived
by duplicating the steps of Section 2.3. First (Vh,1) is split as in (2.19)–(2.20), i.e., find Th in Xh, such
that

∀Sh ∈ Xh, α(∇Th,∇Sh) + (uh(Th) · ∇Th, Sh) = (g, Sh), (3.11)

where uh(Th) is the velocity solution of: Find (uh(Th), ph(Th)) ∈ Wh,1 ×Mh,1, such that

∀vh ∈ Wh,1, (ν(Th)uh(Th),vh)− (ph(Th),divvh) = (f ,vh),

∀ qh ∈Mh,1, (qh,divuh(Th)) = 0.
(3.12)

Indeed, since the approximation is conforming and (3.10) holds, an easy argument shows that, for
given Th ∈ Xh, (3.12) (which is a square linear system in finite dimension) has a unique solution
(uh(Th), ph(Th)), and this solution satisfies the same bounds as (2.21), uniform in h,

‖uh(Th)‖L2(Ω)d ≤
1

ν1
‖f‖L2(Ω)d , ‖

√
ν(Th)uh(Th)‖L2(Ω) ≤

1
√
ν1
‖f‖L2(Ω)d ,

‖ph(Th)‖L2(Ω) ≤
1

β1

(
‖f‖L2(Ω)d + ν2‖uh(Th)‖L2(Ω)d

)
≤ 1

β1
‖f‖L2(Ω)d

(
1 +

ν2

ν1

)
.

(3.13)

Moreover, in view of the regularity of functions of Xh, we immediately derive that every solution of
(3.11)–(3.12) satisfies the a priori bound, uniform in h,

|Th|H1(Ω) ≤
S0

2

α
‖g‖L2(Ω). (3.14)

As a consequence, the argument of the existence lemma 2.2 can be applied to (3.11), thus establishing
that (3.11) has at least one solution. Similarly, the convergence proof of Theorem 2.3 carries over to
(3.11), considering the approximation properties of the operators Rh, ξ1

h and ρh. Finally, uniqueness
follows easily from Green’s formula, since uh is in L∞(Ω)d and Th in W 1,∞(Ω). This is summed up in
the following existence, convergence and uniqueness theorems. To simplify, the uniqueness theorem is
stated when d = 3.
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Theorem 3.1. Let ν satisfy (2.17). Then for any data (f , g) ∈ L2(Ω)d × L2(Ω), (Vh,1) has at least a
solution (uh, ph, Th) ∈ Wh,1 ×Mh,1 ×Xh. Moreover, every solution of (Vh,1) satisfies the bounds (3.13)
and (3.14).

Theorem 3.2. Let ν satisfy (2.16), (2.17) and (uh, ph, Th) be any solution of the discrete problem (Vh,1).
We can extract a subsequence, still denoted (uh, ph, Th) such that

lim
h→0

Th = T weakly in H1(Ω),

lim
h→0

uh = u weakly in H(div,Ω),

lim
h→0

√
ν(Th)uh =

√
ν(T )u strongly in L2(Ω)d,

lim
h→0

ph = p strongly in L2(Ω),

(3.15)

where (u, p, T ) solves problem (V ).

Theorem 3.3. Let d = 3 and ν satisfy (2.16) and (2.17). Suppose that problem (3.11) has a solution
Th ∈ Xh such that

λS0
6

αν1
‖Th‖L∞(Ω)‖uh(Th)‖L3(Ω)3 < 1. (3.16)

Then problem (3.11) has no other solution Th ∈ Xh.

3.1.2. First discrete scheme. A priori error estimates. A priori error estimates are obtained when the ex-
act solution satisfies a slightly stronger smoothness and smallness condition than the uniqueness condition
(2.46) of Theorem 2.5.

Theorem 3.4. Let d = 3 and ν satisfy (2.16) and (2.17). We suppose that problem (2.19) has a solution
T in W 1,3(Ω), that u = u(T ) belongs to L3(Ω)3, and that

λ (S0
6)2 ‖u‖L3(Ω)3 |T |W 1,3(Ω) < αν1. (3.17)

Then the following error inequalities hold:(
1−λ(S0

6)2

αν1
‖u‖L3(Ω)3 |T |W 1,3(Ω)

)
|T − Th|H1(Ω) ≤ 2|T −Rh(T )|H1(Ω)

+
S0

6

αν1
‖f‖L2(Ω)3 |T −Rh(T )|W 1,3(Ω) +

S0
6

α

(
1 +

ν2

ν1

)
|T |W 1,3(Ω) inf

wh∈Vh,1

‖u−wh‖L2(Ω)3 ,

(3.18)

‖u− uh‖L2(Ω)3 ≤
(
1 +

ν2

ν1

)
inf

wh∈Vh,1

‖u−wh‖L2(Ω)3 +
λS0

6

ν1
‖u‖L3(Ω)3 |T − Th|H1(Ω), (3.19)

‖p− ph‖L2(Ω) ≤ 2 ‖p− ρh(p)‖L2(Ω) +
1

β1

(
ν2‖u− uh‖L2(Ω)3 + λS0

6‖u‖L3(Ω)3 |T − Th|H1(Ω)

)
. (3.20)

Proof. Let (u, p, T ) and (uh, ph, Th) solve respectively (V ) and (Vh,1). We shall prove first (3.19), next
(3.20), and finally (3.18).

1) Let us estimate the velocity error in terms of the temperature error. By taking the difference between
the second equations of (V ) and (Vh,1) and testing with v = vh ∈ Vh,1, we obtain

(ν(T )u,vh) = (ν(Th)uh,vh). (3.21)

Then by inserting ν(Th) and an arbitrary wh ∈ Vh,1, and testing with vh = uh−wh that belongs indeed
to Vh,1, we easily derive

‖(ν(Th))1/2(uh −wh)‖2L2(Ω)3 = ((ν(T )− ν(Th))u,uh −wh) + (ν(Th)(u−wh),uh −wh). (3.22)

Hence (2.17) and the Lipschitz continuity of ν yield

ν1‖uh −wh‖L2(Ω)3 ≤ ν2‖u−wh‖L2(Ω)3 + λ‖u‖L3(Ω)3‖T − Th‖L6(Ω)3 (3.23)

and (3.19) follows immediately from Sobolev’s imbedding and the triangle inequality.
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2) The proof of the error estimate for the pressure follows the same lines. By taking the difference between
the second equations of (V ) and (Vh,1), inserting ρh(p), and testing with vh in Wh,1, we obtain

(ρh(p)− ph,divvh) = (ρh(p)− p, divvh) + (ν(T )u− ν(Th)uh,vh). (3.24)

It follows from the inf-sup condition (3.10) (see for instance Girault and Raviart [13]) that there exists
vh in Wh,1 such that

divvh = ρh(p)− ph and ‖vh‖H(div,Ω) ≤
1

β1
‖ρh(p)− ph‖L2(Ω). (3.25)

With this vh, (3.24) implies

‖ρh(p)− ph‖L2(Ω) ≤ ‖ρh(p)− p‖L2(Ω) +
1

β1
‖ν(T )u− ν(Th)uh‖L2(Ω)3 . (3.26)

By treating the last term as above, we recover (3.20).

3) By taking the difference between the first equation of (V ) and (Vh,1), tested with Sh, and inserting
Rh(T ), we obtain

α
(
∇(Rh(T )− Th),∇Sh

)
= α

(
∇(Rh(T )− T ),∇Sh

)
+
(
uh · ∇(Th −Rh(T )), Sh

)
+
(
uh · ∇(Rh(T )− T ), Sh

)
+
(
(uh − u) · ∇T, Sh

)
.

Then the choice Sh = Rh(T )− Th and the antisymmetric property of the transport term yield

α|Rh(T )− Th|2H1(Ω) = α(∇(Rh(T )− T ),∇(Rh(T )− Th)) + ((uh − u) · ∇T,Rh(T )− Th)

+(uh · ∇(Rh(T )− T ), Rh(T )− Th).

With Hölder’s inequality, this becomes

α|Rh(T )−Th|2H1(Ω) ≤ α |Rh(T )− T |H1(Ω)|Rh(T )− Th|H1(Ω)

+
(
‖u− uh‖L2(Ω)3 |T |W 1,3(Ω) + ‖uh‖L2(Ω)3 |Rh(T )− T |W 1,3(Ω)

)
‖Rh(T )− Th‖L6(Ω).

Then Sobolev’s imbedding implies

|Rh(T )− Th|H1(Ω) ≤ |Rh(T )− T |H1(Ω)

+
S0

6

α

(
‖u− uh‖L2(Ω)3 |T |W 1,3(Ω) + ‖uh‖L2(Ω)3 |Rh(T )− T |W 1,3(Ω)

)
.

By substituting (3.19) and the first part of (3.13) into this inequality and using the triangle inequality,
we derive

|T − Th|H1(Ω) ≤2 |T −Rh(T )|H1(Ω) +
S0

6

αν1
‖f‖L2(Ω)3 |T −Rh(T )|W 1,3(Ω)

+
S0

6

α
|T |W 1,3(Ω)

((
1 +

ν2

ν1

)
inf

wh∈Vh,1

‖u−wh‖L2(Ω)3

+
λS0

6

ν1
‖u‖L3(Ω)3 |T − Th|H1(Ω)

)
.

(3.27)

Then (3.18) follows by collecting terms in (3.27) and applying the assumption (3.17). �

Remark 3.5. Under the assumptions of Theorem 3.4, the solution of the scheme (Vh,1) converges strongly
to the solution of (V) when h tends to zero. Indeed, for u ∈ L3(Ω)3 and T ∈ W 1,3(Ω), the right-hand
sides of the three error inequalities (3.18), (3.19) and (3.20) tend to zero as h tends to zero. �

Remark 3.6. When the exact solution (u, p, T ) ∈ H1(Ω)3×H1(Ω)×W 2,3(Ω), (3.18), (3.19) and (3.20)
yield a specific rate of convergence,

‖u− uh‖H(div,Ω) + ‖p− ph‖L2(Ω) + |T − Th|H1(Ω) ≤ C h
(
|u|H1(Ω)3 + |p|H1(Ω) + |T |W 2,3(Ω)

)
. (3.28)

�
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3.2. Second discrete scheme. Let K be an element of Th with vertices ai, 1 ≤ i ≤ d + 1, and
corresponding barycentric coordinates λi. We denote by bK ∈ Pd+1(K) the basic bubble function

bK(x) = λ1(x)...λd+1(x). (3.29)

We observe that bK(x) = 0 on ∂K and that bK(x) > 0 in the interior of K.
Let (Wh,2,Mh,2) be a pair of discrete spaces approximating L2(Ω)d ×

(
H1(Ω) ∩ L2

0(Ω)
)

defined by

Wh,2 = {vh ∈ (C0(Ω̄))d; ∀K ∈ Th, vh|K ∈ P(K)
d}, (3.30)

M̃h = {qh ∈ C0(Ω̄); ∀K ∈ Th, qh|K ∈ P1(K)} and Mh,2 = M̃h ∩ L2
0(Ω), (3.31)

where

P(K) = P1(K)⊕Vect{bK}.
Let Vh,2 be the kernel of the divergence in Wh,2,

Vh,2 = {vh ∈ Wh,2; ∀qh ∈Mh,2, (divvh, qh) = 0}. (3.32)

Since Wh,2 contains the polynomials of degree one in each K, we can construct a variant πh of Rh (cf.
Girault and Lions [12] or Scott and Zhang [20]) in L(L2(Ω)d;Zh) that is quasi-locally stable in L2(Ω),
i.e., for all K in Th

∀v ∈ L2(Ω)d, ‖πh(v)‖L2(K)d ≤ C‖v‖L2(∆K)d , (3.33)

and has the same quasi-local approximation properties as Rh for all K in Th, for m = 0, 1 and 1 ≤ l ≤ 2,

∀v ∈ H l(Ω)d, |v − πh(v)|Hm(K)d ≤ C hl−m|v|Hl(∆K)d . (3.34)

Regarding the pressure, since Zh coincides with M̃h, an easy modification of Rh yields an operator
rh ∈ L(H1(Ω); M̃h) and rh ∈ L(H1(Ω) ∩ L2

0(Ω);Mh,2) (see for instance Abboud, Girault and Sayah [1]),
satisfying (3.2). We approximate problem (Va) by the following discrete scheme:

(Vh,2)



Find (uh, ph, Th) ∈ Wh,2 ×Mh,2 ×Xh such as

∀vh ∈ Wh,2,

∫
Ω

ν(Th(x))uh(x) · vh(x) dx +

∫
Ω

∇ph(x) · vh(x) dx =

∫
Ω

f(x) · vh(x) dx ,

∀qh ∈Mh,2,

∫
Ω

∇qh(x) · uh(x) dx = 0,

∀Sh ∈ Xh, α

∫
Ω

∇Th(x) · ∇Sh(x) dx +

∫
Ω

(uh · ∇Th)(x)Sh(x) dx

+
1

2

∫
Ω

(divuh)(x)Th(x)Sh(x) dx =

∫
Ω

g(x)Sh(x) dx ,

where as usual, the second nonlinear term in the last equation is added to compensate for the fact that
divuh 6= 0. It is well-known that Green’s formula and the functions regularity imply that(

uh · ∇Th, Sh
)

+
1

2

(
(divuh)Th, Sh

)
=

1

2

((
uh · ∇Th, Sh

)
−
(
uh · ∇Sh, Th

))
, (3.35)

so that the nonlinear term is antisymmetric. One of the key points for studying (Vh,2) is the discrete
inf-sup condition satisfied by the pair of spaces (Wh,2,Mh,2). Its proof consists in using the continuous
inf-sup condition and Fortin’s lemma (see for instance Girault and Raviart [13]) based on the operator

Fh(v) = πh(v) +
∑
K∈Th

αK(v)bK ,

where

αK(v) =
1∫

K

bK(x) dx

∫
K

(v − πh(v))(x) dx .

Fortin’s lemma holds with this operator and leads to the following discrete inf-sup condition:

∀ qh ∈Mh,2, sup
vh∈Wh,2

∫
Ω

∇qh(x) · vh(x) dx

‖vh‖L2(Ω)d
≥ β2 |qh|H1(Ω), (3.36)
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with a constant β2 > 0 independent of h. We also have the following bound in each element K,

∀v ∈ H1(Ω)d, ‖v −Fh(v)‖L2(K)d ≤ C h|v|H1(∆K)d . (3.37)

Owing to this inf-sup condition, (Vh,2) has the same splitting as (Vh,1), i.e., find Th in Xh, such that

∀Sh ∈ Xh, α(∇Th,∇Sh) + (uh(Th) · ∇Th, Sh) +
1

2
((divuh(Th))Th, Sh) = (g, Sh), (3.38)

where uh(Th) is the velocity solution of (3.12) stated in Wh,2 ×Mh,2. Of course, uh(Th) and ph(Th)
satisfy the bounds (3.13) with β2 instead of β1. Moreover, as all functions involved are smooth enough,
Green’s formula implies the bound (3.14) for Th. Hence we have the analogue of Theorem 3.1 with the
same proof.

Theorem 3.7. Let ν satisfy (2.17). Then for any data (f , g) ∈ L2(Ω)d × L2(Ω), problem (Vh,2) has at
least a solution (uh, ph, Th) ∈ Wh,2 ×Mh,2 ×Xh and every solution of (Vh,2) satisfies the bounds (3.13)
and (3.14).

Because the divergence of the discrete velocity does not vanish, the sufficient condition for uniqueness is
more restrictive.

Theorem 3.8. Let d = 3 and ν satisfy (2.16) and (2.17). Suppose that problem (3.38) has a solution
Th ∈ Xh such that

λS0
6

2αν1
‖uh(Th)‖L3(Ω)3

(
‖Th‖L∞(Ω) + S0

6 |Th|W 1,3(Ω)

)
< 1. (3.39)

Then problem (3.38) has no other solution Th ∈ Xh.

Proof. Here again, we consider two solutions of problem (3.38) and denote the difference in velocity and in
temperature by Uh and Th. On one hand, since the velocity equation is the same for both discretizations,
Uh satisfies the analogue of (2.47),

ν1‖Uh‖L2(Ω)3 ≤ λS0
6 |Th|H1(Ω)‖uh,1‖L3(Ω)3 . (3.40)

On the other hand, using (3.35), the difference in the temperature equation reads with Sh = Th,

α|Th|2H1(Ω) +
1

2

((
Uh, ·∇Th,1, Th

)
−
(
Uh · ∇Th, Th,1

))
= 0. (3.41)

Then the above estimate for ‖Uh‖L2(Ω)3 and condition (3.39) imply uniqueness. �

We have the same convergence of a discrete to an exact solution, but the proof is slightly more involved,
again due to the non zero divergence.

Theorem 3.9. Let ν satisfy (2.16), (2.17) and (uh, ph, Th) be any solution of the discrete problem (Vh,2).
We can extract a subsequence, still denoted (uh, ph, Th) such that

lim
h→0

Th = T weakly in H1(Ω),

lim
h→0

uh = u weakly in H(div,Ω),

lim
h→0

√
ν(Th)uh =

√
ν(T )u strongly in L2(Ω)d,

lim
h→0

ph = p weakly in H1(Ω) and strongly in L2(Ω),

(3.42)

where (u, p, T ) solves problem (V ).

Proof. The convergences are the same since the solutions satisfy the same bounds, but passing to the
limit in (3.38) is slightly different. Let us use the expression (3.35) with the choice Sh = Rh(S) for a
smooth function S. The convergence of

(
uh · ∇Sh, Th

)
is done as in Theorem 2.3. For

(
uh · ∇Th, Sh

)
we

use the strong convergence of
√
ν(Th)uh. Indeed, we write(

uh · ∇Th, Sh
)

=
(√

ν(Th)uh · ∇Th,
1√
ν(Th)

Sh
)
, (3.43)
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which is the sum of terms of the form

(
√
ν(Th)uh,i,

1√
ν(Th)

Sh
∂Th
∂xi

), (3.44)

where uh,i denotes the i-th component of uh. The first factor converges strongly to
√
ν(T )ui in L2(Ω),

while the second factor is bounded in L2(Ω); therefore, again up to a subsequence, it converges weakly
in L2(Ω), and a standard argument shows that its limit is

1√
ν(T )

S
∂T

∂xi
. (3.45)

Thus, we conclude that (u, p, T ) solves problem (Va). �

3.2.1. A priori error estimates for the second scheme. As the equations satisfied by uh(Th) and ph(Th)
are the same for the two schemes, the error estimates for the discrete velocity and pressure in terms of
the temperature error are the same with an additional term |p− rh(p)|H1(Ω) in the velocity error,

‖u−uh‖L2(Ω)3 ≤
(
1+

ν2

ν1

)
inf

wh∈Vh,2

‖u−wh‖L2(Ω)3+
λS0

6

ν1
‖u‖L3(Ω)3 |T−Th|H1(Ω)+

1

ν1
|p−rh(p)|H1(Ω), (3.46)

and ρh replaced by rh in the pressure error. Therefore, we only need to establish an error estimate for
the temperature. It is stated under the same regularity condition on the data, but under a slightly more
restrictive smallness condition, again due to the stabilizing term.

Theorem 3.10. We retain the setting and assumptions of Theorem 3.4 and in addition, we suppose that
T ∈ L∞(Ω) and

λS0
6 ‖u‖L3(Ω)3

(
S0

6 |T |W 1,3(Ω) + ‖T‖L∞(Ω)

)
< 2αν1. (3.47)

Then uh−u satisfies (3.46), ph−p satisfies (3.20) with rh instead of ρh and β2 instead of β1, and Th−T
satisfies(

1− λS0
6

2αν1
‖u‖L3(Ω)3

(
S0

6 |T |W 1,3(Ω) + ‖T‖L∞(Ω)

))
|T − Th|H1(Ω) ≤ 2|T −Rh(T )|H1(Ω)

+
1

2αν1
‖f‖L2(Ω)3

(
S0

6 |T −Rh(T )|W 1,3(Ω) + ‖T −Rh(T )‖L∞(Ω)

)
+

1

2α

((
1 +

ν2

ν1

)
inf

wh∈Vh,2

‖u−wh‖L2(Ω)3 +
1

ν1
|p− rh(p)|H1(Ω)

)(
S0

6 |T |W 1,3(Ω) + ‖T‖L∞(Ω)

)
.

(3.48)

Proof. As stated above, the velocity error is given by (3.46) and the pressure error is unchanged; it
remains to establish the temperature error. Again, we use the expression (3.35); then for any function
Sh in Xh, the temperature’s error equation is,

α
(
∇(Rh(T )− Th),∇Sh

)
= α

(
∇(Rh(T )− T ),∇Sh

)
+

1

2

((
uh · ∇(Th −Rh(T )), Sh

)
−
(
uh · ∇Sh, Th −Rh(T )

))
+

1

2

((
uh · ∇(Rh(T )− T ), Sh

)
−
(
uh · ∇Sh, Rh(T )− T

))
+

1

2

((
(uh − u) · ∇T, Sh

)
−
(
(uh − u) · ∇Sh, T

))
.

Up to the factor 1
2 , the terms in the last two lines of the right-hand side are bounded by

‖uh‖L2(Ω)3

(
|Rh(T )− T |W 1,3(Ω)‖Sh‖L6(Ω) + ‖Rh(T )− T‖L∞(Ω)|Sh|H1(Ω)

)
+ ‖uh − u‖L2(Ω)3

(
|T |W 1,3(Ω)‖Sh‖L6(Ω) + ‖T‖L∞(Ω)|Sh|H1(Ω)

)
.
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Then the choice Sh = Rh(T ) − Th, the antisymmetric property of the transport term, and Sobolev’s
imbedding yield

|Rh(T )− Th|H1(Ω) ≤|Rh(T )− T |H1(Ω)

+
1

2α
‖uh‖L2(Ω)3

(
S0

6 |Rh(T )− T |W 1,3(Ω) + ‖Rh(T )− T‖L∞(Ω)

)
+

1

2α
‖uh − u‖L2(Ω)3

(
S0

6 |T |W 1,3(Ω) + ‖T‖L∞(Ω)

)
.

By substituting (3.46) into this inequality and using the triangle inequality, we derive

|T − Th|H1(Ω) ≤2 |T −Rh(T )|H1(Ω)

+
1

2α
‖uh‖L2(Ω)3

(
S0

6 |T −Rh(T )|W 1,3(Ω) + ‖T −Rh(T )‖L∞(Ω)

)
+

1

2α

(
S0

6 |T |W 1,3(Ω) + ‖T‖L∞(Ω)

)
×
((

1 +
ν2

ν1

)
inf

wh∈Vh,2

‖u−wh‖L2(Ω)3 + |p− rh(p)|H1(Ω)

+
λS0

6

ν1
‖u‖L3(Ω)3 |T − Th|H1(Ω)

)
.

(3.49)

Then (3.48) follows by collecting terms in (3.49), using the first part of (3.13), and applying the assump-
tion (3.47). �

Remark 3.11. In addition to the assumptions of Theorem 3.10, we suppose that T belongs to W 1,s(Ω)
with s > 3. Then the error of the scheme (Vh,2) tends to zero as h tends to zero since, for u ∈ L3(Ω)3

and T ∈W 1,s(Ω) the right-hand sides of the error inequalities tend to zero as h tends to zero. �

Remark 3.12. When the exact solution (u, p, T ) is in H1(Ω)3 ×H2(Ω)×W 2,3(Ω) ∩W 1,∞(Ω), we can
prove a specific rate of convergence,:

‖u−uh‖L2(Ω)3 +|p−ph|H1(Ω)+|T−Th|H1(Ω) ≤ C h
(
|u|H1(Ω)3 +|p|H2(Ω)+|T |W 2,3(Ω)+|T |W 1,∞(Ω)

)
. (3.50)

�

4. Successive approximations

In order to solve the discrete system, we propose in this section a straightforward successive approximation
algorithm that linearizes the discrete problem at each step and converges to the exact solution under the
sufficient conditions of the error theorems in the preceding section. The same algorithm is applied to
the two schemes, and for the sake of conciseness, we only discuss the first scheme; the analysis of the
algorithm for the second scheme being exactly the same.

The algorithm proceeds as follows: Given a first guess T 0
h in Xh, for i ≥ 0, find (ui+1

h , pi+1
h , T i+1

h ) ∈
Wh,1 ×Mh,1 ×Xh such that

∀vh ∈ Wh,1,

∫
Ω

ν(T ih(x))ui+1
h (x) · vh(x) dx −

∫
Ω

pi+1
h (x)(divvh)(x) dx =

∫
Ω

f(x) · vh(x) dx ,

∀ qh ∈Mh,1,

∫
Ω

qh(x)(divui+1
h )(x) dx = 0,

(4.1)

∀Sh ∈ Xh, α

∫
Ω

∇T i+1
h (x) · ∇Sh(x) dx +

∫
Ω

(ui+1
h · ∇T i+1

h )(x)Sh(x) dx =

∫
Ω

g(x)Sh(x) dx, (4.2)

which in reduced form is equivalent to finding T ih ∈ Xh such that, for all Sh ∈ Xh,

α

∫
Ω

∇T i+1
h (x) · ∇Sh(x) dx +

∫
Ω

(uh(T ih) · ∇T i+1
h )(x)Sh(x) dx =

∫
Ω

g(x)Sh(x) dx. (4.3)

It follows from the material of Section 3 that for each initial guess T 0
h , this algorithm generates a unique

sequence (uih, p
i
h, T

i
h)i≥1, and each sequence satisfies the bounds (3.13)–(3.14), for i ≥ 1, that are inde-

pendent of T 0
h , of i and of h. Regarding convergence, and reverting to the setting and proof of Theorem
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3.4, it is easy to check that the first two components satisfy the following error bounds for all i ≥ 0:

‖u− ui+1
h ‖L2(Ω)3 ≤

(
1 +

ν2

ν1

)
inf

wh∈Vh,1

‖u−wh‖L2(Ω)3 +
λS0

6

ν1
‖u‖L3(Ω)3 |T − T ih|H1(Ω), (4.4)

‖p− pi+1
h ‖L2(Ω) ≤ 2 ‖p− ρh(p)‖L2(Ω) +

1

β1

(
ν2‖u− ui+1

h ‖L2(Ω)3 + λS0
6‖u‖L3(Ω)3 |T − T ih|H1(Ω)

)
. (4.5)

An error bound for T − T i+1
h is a little more complex. The argument of the proof of Theorem 3.4 yields

the analogue of (3.27),

|T − T i+1
h |H1(Ω) ≤2 |T −Rh(T )|H1(Ω) +

S0
6

αν1
‖f‖L2(Ω)3 |T −Rh(T )|W 1,3(Ω)

+
S0

6

α
|T |W 1,3(Ω)

((
1 +

ν2

ν1

)
inf

wh∈Vh,1

‖u−wh‖L2(Ω)3

+
λS0

6

ν1
‖u‖L3(Ω)3 |T − T ih|H1(Ω)

)
.

(4.6)

Now, either there is an index i0 ≥ 0 such that

|T − T i0h |H1(Ω) ≤ |T − T i0+1
h |H1(Ω),

or there is none. In the first case, we have

sup
i≥i0
|T − T ih|H1(Ω) = max

(
|T − T i0h |H1(Ω), sup

i≥i0+1
|T − T ih|H1(Ω)

)
= sup
i≥i0+1

|T − T ih|H1(Ω).

Therefore, by taking first the supremum over i for i ≥ i0 of the right-hand side of (4.6) and next the
supremum of the left-hand side of the resulting inequality, we deduce(

1−λ(S0
6)2

αν1
‖u‖L3(Ω)3 |T |W 1,3(Ω)

)
sup
i>i0

|T − T ih|H1(Ω) ≤ 2|T −Rh(T )|H1(Ω)

+
S0

6

αν1
‖f‖L2(Ω)3 |T −Rh(T )|W 1,3(Ω) +

S0
6

α

(
1 +

ν2

ν1

)
|T |W 1,3(Ω) inf

wh∈Vh,1

‖u−wh‖L2(Ω)3 .

(4.7)

In the second case, we have for all i ≥ 0,

|T − T ih|H1(Ω) > |T − T i+1
h |H1(Ω),

in which case the sequence of positive numbers
(
|T − T ih|H1(Ω)

)
i≥0

decreases monotonically and hence

converges to some nonnegative limit. Since the sequence converges, we can pass to the limit in (4.6), thus
obtaining(

1−λ(S0
6)2

αν1
‖u‖L3(Ω)3 |T |W 1,3(Ω)

)
lim
i→∞

|T − T ih|H1(Ω) ≤ 2|T −Rh(T )|H1(Ω)

+
S0

6

αν1
‖f‖L2(Ω)3 |T −Rh(T )|W 1,3(Ω) +

S0
6

α

(
1 +

ν2

ν1

)
|T |W 1,3(Ω) inf

wh∈Vh,1

‖u−wh‖L2(Ω)3 .

(4.8)

Since, for u in L3(Ω)3 and T in W 1,3(Ω) the right-hand sides of both (4.7) and (4.8) tend to zero as h
tends to zero, we deduce the following convergence:

Theorem 4.1. We retain the assumptions of Theorem 3.4. Then the sequence (T ih)i≥0 generated by (4.3)
either satisfies (4.7) in which case for some i0 ≥ 0,

lim
h→0

sup
i>i0

|T − T ih|H1(Ω) = 0,

or it satisfies (4.8), in which case

lim
h→0

lim
i→∞

|T − T ih|H1(Ω) = 0.

Remark 4.2. When the exact solution is sufficiently smooth and the mesh is quasi uniform so that
global inverse inequalities hold, by restricting further the size of the data, we can prove a specific rate of
convergence of the algorithm. �
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5. Numerical results

To validate the theoretical results, we perform several numerical simulations using Freefem++ (see [14]).
We consider a square domain Ω =]0, 3[2. Each edge is divided into N equal segments so that Ω is divided
into 2N2 triangles (see Figure 1).

Figure 1. Geometry of the domain

We choose for exact solution (u, p, T ) = (curlψ, p, T ) where ψ, p and T are defined by

ψ(x, y) = e−β((x−1)2+(y−1)2), (5.1)

p(x, y) = cos(
π

3
x) cos(

π

3
y), (5.2)

and
T (x, y) = x2(x− 3)2y2(y − 3)2. (5.3)

We henceforth take α = 3, β = 5 and N = 100.
In Figures 2 and 3, we compare the numerical and the exact pressure, temperature and velocity for
ν(T ) = T + 1 when the numerical solution is computed by using the first discrete scheme.

Figure 4 plots the global error curves versus h in logarithmic scales, global in the sense that they depict
the sum of the velocity, pressure and temperature errors. The algorithm is tested as the number of
segments increase from 30 to 120. The slope of the error’s curve for the first discrete scheme is equal to

1.0036 for ν(T ) = T + 1, 0.9938 for ν(T ) = e−T +
1

10
and finally 0.9956 for ν(T ) = sin(T ) + 2. For the

second discrete scheme, the slope is equal to 1.0122 for ν(T ) = T + 1, 0.9994 for ν(T ) = e−T +
1

10
and

finally 1.0091 for ν(T ) = sin(T ) + 2.

Remark 5.1. Note that the error curves are consistent with the theoretical results in Section 3. �
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