Non-convex, non-local functionals converging to the total variation
Haïm Brezis, Hoai-Minh Nguyen

To cite this version:
Haïm Brezis, Hoai-Minh Nguyen. Non-convex, non-local functionals converging to the total variation. Comptes Rendus. Mathématique, 2016, 10.1016/j.crma.2016.11.002. hal-01416637

HAL Id: hal-01416637
https://hal.sorbonne-universite.fr/hal-01416637
Submitted on 14 Dec 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0 International License
Mathematical analysis/Partial differential equations

Non-convex, non-local functionals converging to the total variation

Convergence de fonctionnelles non convexes et non locales vers la variation totale

Haïm Brezisa,b,c, Hoai-Minh Nguyend

a Department of Mathematics, Hill Center, Busch Campus, 110 Frelinghuysen Road, Piscataway, NJ 08854, USA
b Department of Mathematics, Technion, Israel Institute of Technology, 32,000 Haifa, Israel
c Laboratoire Jacques-Louis-Lions, Université Pierre-et-Marie-Curie, 4, place Jussieu, 75252 Paris cedex 05, France
d École polytechnique fédérale de Lausanne, EPFL, SB MATHAA CAMA, Station 8, CH-1015 Lausanne, Switzerland

\textbf{Abstract}

We present new results concerning the approximation of the total variation, $\int_{\Omega} |\nabla u|$, of a function u by non-local, non-convex functionals of the form

$$\Lambda_{\delta}(u) = \int_{\Omega} \int_{\Omega} \frac{\delta \varphi(|u(x) - u(y)|/\delta)}{|x-y|^{d+1}} \, dx \, dy,$$

as $\delta \to 0$, where Ω is a domain in \mathbb{R}^d and $\varphi : [0, +\infty) \to [0, +\infty)$ is a non-decreasing function satisfying some appropriate conditions. The mode of convergence is extremely delicate, and numerous problems remain open. The original motivation of our work comes from Image Processing.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

\textbf{Résumé}

Nous présentons des résultats nouveaux concernant l'approximation de la variation totale $\int_{\Omega} |\nabla u|$ d'une fonction u par des fonctionnelles non convexes et non locales de la forme

$$\Lambda_{\delta}(u) = \int_{\Omega} \int_{\Omega} \frac{\delta \varphi(|u(x) - u(y)|/\delta)}{|x-y|^{d+1}} \, dx \, dy,$$

as $\delta \to 0$, where Ω is a domain in \mathbb{R}^d and $\varphi : [0, +\infty) \to [0, +\infty)$ is a non-decreasing function satisfying some appropriate conditions. The mode of convergence is extremely delicate, and numerous problems remain open. The original motivation of our work comes from Image Processing.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

\textit{E-mail addresses:} brezis@math.rutgers.edu (H. Brezis), hoai-minh.nguyen@epfl.ch (H.-M. Nguyen).
1. Introduction

Let $\varphi : [0, +\infty) \to [0, +\infty)$ be non-decreasing, and continuous on $[0, +\infty)$ except at a finite number of points in $(0, +\infty)$. Assume that $\varphi(0) = 0$ and that $\varphi(t) = \varphi(t-)$ for all $t > 0$. Let $\Omega \subset \mathbb{R}^d$ be a smooth bounded domain of \mathbb{R}^d. Given a measurable function u on Ω, and $\delta > 0$, we define the following non-local functionals:

$$\Lambda(u) := \int_{\Omega} \int_{\Omega} \frac{\varphi(|u(x) - u(y)|)}{|x - y|^{d+1}} \, dx \, dy \leq +\infty \quad \text{and} \quad \Lambda_{\delta}(u) := \delta \Lambda(u/\delta).$$

We make the following three basic assumptions on φ:

$$\varphi(t) \leq at^2 \quad \text{in} \quad [0, 1] \quad \text{for some positive constant} \ a, \quad (1)$$

$$\varphi(t) \leq b \quad \text{in} \quad \mathbb{R}_+ \quad \text{for some positive constant} \ b, \quad (2)$$

and

$$\gamma_{d} \int_{0}^{\infty} \varphi(t) t^{-2} \, dt = 1, \quad \text{where} \quad \gamma_{d} := 2|B^{d-1}|; \quad (3)$$

here B^{d-1} denotes the unit ball in \mathbb{R}^{d-1} and $|B^{d-1}|$ denotes its $(d - 1)$-Hausdorff measure (with $\gamma_{d} = 2$ when $d = 1$). Condition (3) is a normalization condition prescribed in order to have (7) below with constant 1 in front of $\int_{\Omega} |\nabla u|$. Denote

$$A = \{ \varphi, \ \varphi \text{ satisfies (1)-(3)} \}. \quad (4)$$

Note that Λ is never convex when $\varphi \in A$.

Here are three examples of functions φ that we have in mind. They all satisfy (1) and (2). In order to achieve (3), we choose $\varphi = c_{i} \tilde{\varphi}_{i}$, where $\tilde{\varphi}_{i}$ is taken from the list below and c_{i} is an appropriate constant:

$$\tilde{\varphi}_{1}(t) = \begin{cases} 0 & \text{if} \ t \leq 1 \\ 1 & \text{if} \ t > 1 \end{cases}, \quad \tilde{\varphi}_{2}(t) = \begin{cases} t^{2} & \text{if} \ t \leq 1 \\ 1 & \text{if} \ t > 1, \end{cases} \quad \text{and} \quad \tilde{\varphi}_{3}(t) = 1 - e^{-t^{2}}.$$

Example 1 is extensively studied in [3,6,10–14] (see also [5,15]). Examples 2 and 3 are motivated by Image Processing (see [8,17]).

In this note, we are concerned with modes of convergence of Λ_{δ} to the total variation as $\delta \to 0$. The convergence to the total variation of a sequence of convex non-local functionals J_{ε}, defined by

$$J_{\varepsilon}(u) = \int_{\Omega} \int_{\Omega} \frac{|u(x) - u(y)|}{|x - y|} \rho_{\varepsilon}(|x - y|) \, dx \, dy, \quad (5)$$

where ρ_{ε} is a sequence of radial mollifiers, was originally analyzed by J. Bourgain, H. Brezis and P. Mironescu and thoroughly investigated in [1,2,4,9].

The asymptotic analysis of Λ_{δ} is much more delicate than the one of J_{ε}, because two basic properties satisfied by J_{ε} (which played an important role in [1]) are not fulfilled by Λ_{δ}:

i) there is no constant C such that

$$\Lambda_{\delta}(u) \leq C \int_{\Omega} |\nabla u| \quad \forall \ u \in C^{1} (\bar{\Omega}), \ \forall \ \delta > 0, \quad (6)$$

ii) $\Lambda_{\delta}(u)$ is not a convex functional.
2. Statement of the main results

Concerning the pointwise limit of Λ_δ as $\delta \to 0$, i.e. the convergence of $\Lambda_\delta(u)$ for fixed u, we prove that, for every $\varphi \in A$, $\Lambda_\delta(u)$ converges, as $\delta \to 0$, to $TV(u) = \int_\Omega |\nabla u| \ \forall u \in \bigcup_{p>1} W^{1,p}(\Omega)$. (7)

If $u \in W^{1,1}(\Omega)$, we can only assert that, for every $\varphi \in A$,

$$\liminf_{\delta \to 0} \Lambda_\delta(u) \geq \int_\Omega |\nabla u|.$$

Surprisingly, for every $d \geq 1$ and for every $\varphi \in A$, one can construct a function $u \in W^{1,1}(\Omega)$ such that

$$\lim_{\delta \to 0} \Lambda_\delta(u) = +\infty.$$

This kind of “pathology” was originally discovered by A. Ponce and presented in [10] for $\varphi = c_1 \tilde{\varphi}_1$ (for another example, see [7]). One may also construct (see [7]) functions $u \in W^{1,1}(\Omega)$ such that

$$\liminf_{\delta \to 0} \Lambda_\delta(u) = \int_\Omega |\nabla u| \text{ and } \limsup_{\delta \to 0} \Lambda_\delta(u) = +\infty.$$

When dealing with functions $u \in BV(\Omega)$, the situation becomes even more intricate. It may happen, for some $\varphi \in A$ and some $u \in BV(\Omega)$, that

$$\liminf_{\delta \to 0} \Lambda_\delta(u) < \int_\Omega |\nabla u|.$$

All these facts suggest that the mode of convergence of Λ_δ to TV as $\delta \to 0$ is delicate and that a theory of pointwise convergence is out of reach. It turns out that Γ-convergence (in the sense of E. De Giorgi) is the appropriate framework to analyze the asymptotic behavior of Λ_δ as $\delta \to 0$.

Our main result is the following.

Theorem 1. For every $\varphi \in A$, there exists a constant $K = K(\varphi) \in (0, 1]$, which is independent of Ω, such that, as $\delta \to 0$, Λ_δ Γ-converges to Λ_0 in $L^1(\Omega)$, where Λ_0 is defined on $L^1(\Omega)$ by

$$\Lambda_0(u) = K \int_\Omega |\nabla u| \text{ for } u \in BV(\Omega), \text{ and } +\infty \text{ otherwise.}$$

The proof of **Theorem 1** is extremely involved and it would be desirable to simplify it. When $\varphi = c_1 \tilde{\varphi}_1$ and $\Omega = \mathbb{R}^d$, **Theorem 1** is originally due to H.-M. Nguyen [11,13]. One of the key ingredients was the following earlier result, basically due to J. Bourgain and H.-M. Nguyen [3, Lemma 2].

Lemma 1. Let $\Omega = (0, 1)$, $\varphi = c_1 \tilde{\varphi}_1$. There exists a constant $k > 0$ such that

$$\liminf_{\delta \to 0} \Lambda_\delta(u) \geq k|u(t_2) - u(t_1)|,$$

for every $u \in L^1(\Omega)$, and for all Lebesgue points $t_1, t_2 \in (0, 1)$ of u.

Furthermore, one can show that

$$\inf_{\varphi \in A} K(\varphi) > 0.$$

One of the most intriguing remaining questions is

Open Problem 1. Is it true that for every $\varphi \in A$, $K(\varphi) < 1$ in **Theorem 1**?
It has been proved in [11] (see also [7]) that \(K(c_1\hat{\varphi}_1) < 1 \). However, the answer to Open Problem 1 is not known for \(\varphi = c_2\hat{\varphi}_2 \) and \(\varphi = c_3\hat{\varphi}_3 \), even when \(d = 1 \).

Motivated by questions arising in Image Processing (see, e.g., [7,8,16,17]), we consider the problem

\[
\inf_{u \in L^1(\Omega)} E_\delta(u),
\]

where

\[
E_\delta(u) = \lambda \int_\Omega |u - f|^q + \Lambda_\delta(u),
\]

\(q \geq 1, f \in L^q(\Omega) \) is given, and \(\lambda \) is a fixed positive constant. Our goal is twofold: investigate the existence of minimizers for \(E_\delta \) (for fixed \(\delta \)) and analyze their behavior as \(\delta \to 0 \). The existence of a minimizer in (9) is not obvious since \(\Lambda_\delta \) is not convex and one cannot invoke the standard tools of Functional Analysis. Our main result in this direction is the following.

Theorem 2. Assume that \(\varphi \in A \) and \(\psi(t) > 0 \) for all \(t > 0 \). Let \(q \geq 1 \) and \(f \in L^q(\Omega) \). For each \(\delta > 0 \), there exists a minimizer \(u_\delta \) of (9). Moreover, \(u_\delta \to u_0 \) in \(L^q(\Omega) \) as \(\delta \to 0 \), where \(u_0 \) is the unique minimizer of the functional \(E_0 \) defined on \(L^q(\Omega) \cap BV(\Omega) \) by

\[
E_0(u) := \lambda \int_\Omega |u - f|^q + K \int_\Omega |\nabla u|,
\]

and \(0 < K \leq 1 \) is the constant coming from Theorem 1.

Note that the minimizers \(u_\delta \) of (9) need not be unique, but the convergence assertion in **Theorem 2** holds for any choice of minimizers. The proof of the existence of a minimizer for (9) relies on the following compactness lemma for fixed \(\delta \), e.g., with \(\delta = 1 \).

Lemma 2. Let \(\varphi \in A \) be such that \(\varphi(t) > 0 \) for all \(t > 0 \), and let \((u_n)\) be a bounded sequence in \(L^1(\Omega) \) such that

\[
\sup_n \Lambda(u_n) < +\infty.
\]

There exists a subsequence \((u_{n_k})\) of \((u_n)\) and \(u \in L^1(\Omega) \) such that \((u_{n_k})\) converges to \(u \) in \(L^1(\Omega) \).

The proof of the convergence as \(\delta \to 0 \) in **Theorem 2** relies heavily on the \(\Gamma \)-convergence of \(\Lambda_\delta \) (Theorem 1), and also on the following compactness lemma (with roots in H.-M. Nguyen [14]).

Lemma 3. Let \(\varphi \in A, (\delta_n) \to 0 \), and let \((u_n)\) be a bounded sequence in \(L^1(\Omega) \) such that

\[
\sup_n \Lambda_{\delta_n}(u_n) < +\infty.
\]

There exists a subsequence \((u_{n_k})\) of \((u_n)\) and \(u \in L^1(\Omega) \) such that \((u_{n_k})\) converges to \(u \) in \(L^1(\Omega) \).

The proofs of the results announced in this note are given in [7].

References

