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We present new results concerning the approximation of the total variation, 
∫
�

|∇u|, of 
a function u by non-local, non-convex functionals of the form

�δ(u) =
∫
�

∫
�

δϕ
(|u(x) − u(y)|/δ)

|x − y|d+1
dx dy,

as δ → 0, where � is a domain in Rd and ϕ : [0, +∞) → [0, +∞) is a non-decreasing 
function satisfying some appropriate conditions. The mode of convergence is extremely 
delicate, and numerous problems remain open. The original motivation of our work comes 
from Image Processing.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

r é s u m é

Nous présentons des résultats nouveaux concernant l’approximation de la variation totale ∫
�

|∇u| d’une fonction u par des fonctionnelles non convexes et non locales de la forme

�δ(u) =
∫
�

∫
�

δϕ
(|u(x) − u(y)|/δ)

|x − y|d+1
dx dy,
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quand δ → 0, où � est un domaine de Rd et ϕ : [0, +∞) → [0, +∞) est une fonction 
croissante vérifiant certaines hypothèses. Le mode de convergence est extrêmement délicat 
et de nombreux problèmes restent ouverts. La motivation provient du traitement d’images.

© 2016 Académie des sciences. Published by Elsevier Masson SAS. This is an open access 
article under the CC BY-NC-ND license 

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let ϕ : [0, +∞) → [0, +∞) be non-decreasing, and continuous on [0, +∞) except at a finite number of points in 
(0, +∞). Assume that ϕ(0) = 0 and that ϕ(t) = ϕ(t−) for all t > 0. Let � ⊂ R

d be a smooth bounded domain of Rd . 
Given a measurable function u on �, and δ > 0, we define the following non-local functionals:

�(u) :=
∫
�

∫
�

ϕ(|u(x) − u(y)|)
|x − y|d+1

dx dy ≤ +∞ and �δ(u) := δ�(u/δ).

We make the following three basic assumptions on ϕ:

ϕ(t) ≤ at2 in [0,1] for some positive constant a, (1)

ϕ(t) ≤ b in R+ for some positive constant b, (2)

and

γd

∞∫
0

ϕ(t)t−2 dt = 1, where γd := 2|Bd−1|; (3)

here Bd−1 denotes the unit ball in Rd−1 and |Bd−1| denotes its (d − 1)-Hausdorff measure (with γd = 2 when d = 1). 
Condition (3) is a normalization condition prescribed in order to have (7) below with constant 1 in front of 

∫
�

|∇u|. Denote

A = {
ϕ; ϕ satisfies (1)–(3)

}
. (4)

Note that � is never convex when ϕ ∈ A.

Here are three examples of functions ϕ that we have in mind. They all satisfy (1) and (2). In order to achieve (3), we 
choose ϕ = ciϕ̃i , where ϕ̃i is taken from the list below and ci is an appropriate constant:

ϕ̃1(t) =
{

0 if t ≤ 1

1 if t > 1,
ϕ̃2(t) =

{
t2 if t ≤ 1

1 if t > 1,
and ϕ̃3(t) = 1 − e−t2

.

Example 1 is extensively studied in [3,6,10–14] (see also [5,15]). Examples 2 and 3 are motivated by Image Processing (see 
[8,17]).

In this note, we are concerned with modes of convergence of �δ to the total variation as δ → 0. The convergence to the 
total variation of a sequence of convex non-local functionals Jε , defined by

Jε(u) =
∫
�

∫
�

|u(x) − u(y)|
|x − y| ρε(|x − y|)dx dy, (5)

where ρε is a sequence of radial mollifiers, was originally analyzed by J. Bourgain, H. Brezis and P. Mironescu and thoroughly 
investigated in [1,2,4,9].

The asymptotic analysis of �δ is much more delicate than the one of Jε , because two basic properties satisfied by Jε
(which played an important role in [1]) are not fulfilled by �δ :

i) there is no constant C such that

�δ(u) ≤ C

∫
�

|∇u| ∀ u ∈ C1(�̄), ∀ δ > 0, (6)

ii) �δ(u) is not a convex functional.

http://creativecommons.org/licenses/by-nc-nd/4.0/
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2. Statement of the main results

Concerning the pointwise limit of �δ as δ → 0, i.e. the convergence of �δ(u) for fixed u, we prove that, for every ϕ ∈ A,

�δ(u) converges, as δ → 0, to TV(u) =
∫
�

|∇u| ∀ u ∈
⋃
p>1

W 1,p(�). (7)

If u ∈ W 1,1(�), we can only assert that, for every ϕ ∈ A,

lim inf
δ→0

�δ(u) ≥
∫
�

|∇u|.

Surprisingly, for every d ≥ 1 and for every ϕ ∈ A, one can construct a function u ∈ W 1,1(�) such that

lim
δ→0

�δ(u) = +∞.

This kind of “pathology” was originally discovered by A. Ponce and presented in [10] for ϕ = c1ϕ̃1 (for another example, see 
[7]). One may also construct (see [7]) functions u ∈ W 1,1(�) such that

lim inf
δ→0

�δ(u) =
∫
�

|∇u| and lim sup
δ→0

�δ(u) = +∞.

When dealing with functions u ∈ BV(�), the situation becomes even more intricate. It may happen, for some ϕ ∈ A and 
some u ∈ BV(�), that

lim inf
δ→0

�δ(u) <

∫
�

|∇u|.

All these facts suggest that the mode of convergence of �δ to TV as δ → 0 is delicate and that a theory of pointwise 
convergence is out of reach. It turns out that 	-convergence (in the sense of E. De Giorgi) is the appropriate framework to 
analyze the asymptotic behavior of �δ as δ → 0.

Our main result is the following.

Theorem 1. For every ϕ ∈ A, there exists a constant K = K (ϕ) ∈ (0, 1], which is independent of �, such that, as δ → 0,

�δ 	-converges to �0 in L1(�), (8)

where �0 is defined on L1(�) by

�0(u) = K

∫
�

|∇u| for u ∈ BV(�), and + ∞ otherwise.

The proof of Theorem 1 is extremely involved and it would be desirable to simplify it. When ϕ = c1ϕ̃1 and � = R
d , 

Theorem 1 is originally due to H.-M. Nguyen [11,13]. One of the key ingredients was the following earlier result, basically 
due to J. Bourgain and H.-M. Nguyen [3, Lemma 2].

Lemma 1. Let � = (0, 1), ϕ = c1ϕ̃1 . There exists a constant k > 0 such that

lim inf
δ→0

�δ(u) ≥ k|u(t2) − u(t1)|,

for every u ∈ L1(�), and for all Lebesgue points t1, t2 ∈ (0, 1) of u.

Furthermore, one can show that

inf
ϕ∈A

K (ϕ) > 0.

One of the most intriguing remaining questions is

Open Problem 1. Is it true that for every ϕ ∈ A, K (ϕ) < 1 in Theorem 1?
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It has been proved in [11] (see also [7]) that K (c1ϕ̃1) < 1. However, the answer to Open Problem 1 is not known for 
ϕ = c2ϕ̃2 and ϕ = c3ϕ̃3, even when d = 1.

Motivated by questions arising in Image Processing (see, e.g., [7,8,16,17]), we consider the problem

inf
u∈Lq(�)

Eδ(u), (9)

where

Eδ(u) = λ

∫
�

|u − f |q + �δ(u), (10)

q ≥ 1, f ∈ Lq(�) is given, and λ is a fixed positive constant. Our goal is twofold: investigate the existence of minimizers 
for Eδ (for fixed δ) and analyze their behavior as δ → 0. The existence of a minimizer in (9) is not obvious since �δ is not 
convex and one cannot invoke the standard tools of Functional Analysis. Our main result in this direction is the following.

Theorem 2. Assume that ϕ ∈ A and ϕ(t) > 0 for all t > 0. Let q ≥ 1 and f ∈ Lq(�). For each δ > 0, there exists a minimizer uδ of (9). 
Moreover, uδ → u0 in Lq(�) as δ → 0, where u0 is the unique minimizer of the functional E0 defined on Lq(�) ∩ BV(�) by

E0(u) := λ

∫
�

|u − f |q + K

∫
�

|∇u|,

and 0 < K ≤ 1 is the constant coming from Theorem 1.

Note that the minimizers uδ of (9) need not be unique, but the convergence assertion in Theorem 2 holds for any choice 
of minimizers. The proof of the existence of a minimizer for (9) relies on the following compactness lemma for fixed δ, e.g., 
with δ = 1.

Lemma 2. Let ϕ ∈ A be such that ϕ(t) > 0 for all t > 0, and let (un) be a bounded sequence in L1(�) such that

sup
n

�(un) < +∞. (11)

There exists a subsequence (unk ) of (un) and u ∈ L1(�) such that (unk ) converges to u in L1(�).

The proof of the convergence as δ → 0 in Theorem 2 relies heavily on the 	-convergence of �δ (Theorem 1), and also 
on the following compactness lemma (with roots in H.-M. Nguyen [14]).

Lemma 3. Let ϕ ∈ A, (δn) → 0, and let (un) be a bounded sequence in L1(�) such that

sup
n

�δn (un) < +∞. (12)

There exists a subsequence (unk ) of (un) and u ∈ L1(�) such that (unk ) converges to u in L1(�).

The proofs of the results announced in this note are given in [7].
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