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Abstract

Whether crop phenology changes are caused by clamganagements or by climate change
belongs to the category of problems known as deteetttribution. Three type of rice (early,
late and single rice) in China show an averagesas® in Length of Growing Period (LGP)
during 1991-2012: 1.0+4.8 day/decade (xstandardatlem across sites) for early rice,
0.2+4.5 day/decade for late rice and 2.0+6.0 da@de for single rice, based on observations
from 141 long-term monitoring stations. Positive R.Grends are widespread, but only
significant (P<0.05) at 25% of early rice, 22% afel rice and 38% of single rice sites. We
developed a Bayes-based optimization algorithm, @stanized five parameters controlling
phenological development in a process-based cropdemdORCHIDEE-crop) for
discriminating effects of managements from thoseliofiate change on rice LGP. The results
from the optimized ORCHIDEE-crop model suggest thiatate change has an effect on LGP
trends dependent on rice types. Climate trends Bhweetened LGP of early rice (-2.0£5.0
day/decade), lengthened LGP of late rice (1.1tayldkcade) and have little impacts on LGP
of single rice (-0.41£5.4 day/decade). ORCHIDEE-csopulations further show that change
in transplanting date caused widespread LGP chanlyefor early rice sites, offsetting 65%
of climate change induced LGP shortening. The piyndrivers of LGP change are thus
different among the three types of rice. Managenaeatpredominant driver of LGP change
for early and single rice. This study shows thanhptex regional variations of LGP can be
reproduced with an optimized crop model. We furtkseggest that better documenting
observational error and management practices cianréguce large uncertainties existed in

attribution of LGP change, and future rice crop elody in global/regional scales should



46 consider different types of rice and variable tpdasting dates in order to better account
47  impacts of management and climate change.
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1. Introduction

The Length of the Growing Period (LGP), definedlasinterval in days from the day of
planting/transplanting to the day of maturity, is iategrated indicator of crop development
that has been related to production (Bastsal, 2014, Zhang & Tao, 2013). Shortening LGP
caused by warmer climate is recognized as a keygangeresponse through which climate
change may impact agricultural production (Bassal, 2014, Estrellat al, 2007, Linet al,
2005, Porteret al, 2014). However, historical change in LGP has besorted diversely
across different crops and regions. Some studigsdfehortening LGP over the past decades
(Chmielewskiet al, 2004, Heet al, 2015, Siebert & Ewert, 2012, Tabal, 2014b, Xiacet
al., 2013). For example, oat in Germany was foundawehshorter LGP over the past five
decade with rates of change ranging from -0.1 # day/decade (Siebert & Ewert, 2012). On
the other hand, there are also studies findinig ldhange or even a lengthening in LGP (Liu
et al, 2012, Liuet al, 2010, Sacks & Kucharik, 2011, Tabal, 2013, Zhanget al, 2013).
For example, maize in the US Corn Belt shows lesgtig LGP during 1981-2005 with an

average positive trend of 5 day/decade (Sacks &Kk, 2011).

The LGP change of China’s ric®©iyza sativy, which is the staple food resource for
more than half of Chinese population and the crdp thie largest growing area in the country,
has attracted research interest. Observed trendEefLGP across different stations vary
largely from -2 day/decade to more than 7 day/deaaer the past 2-3 decades, the majority
of the field-scale observations showing either smmificant change or a lengthening of LGP

(Liu et al, 2010, Tacet al, 2006, Tacet al, 2013). One hypothesis explaining the lack of
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evidence for shortening trend of rice LGP was thahagement practices has counterbalanced
the effects of climate change (e.g. Leti al, 2012, Taoet al, 2013, Zhanget al, 2013).
However, large uncertainties remain on the relatimetributions of climate change, shifts in
transplanting date and other management practegs (se of longer-duration cultivar),
which limits our ability to understand the pasintte and project the near term evolution of

LGP and its possible consequences for future crogyetion.

Attribution of the observed trend of LGP from pattservations remains challenging
because both changes in climate and in managemexttiges have taken place
simultaneously. Recent studies used statistical elsodo characterize the interannual
sensitivity of rice LGP to temperature and to sefgithe contribution of the temperature
trend to LGP trend for rice and maize crops overgériod 1981-2009 (Taet al, 2014a, Tao
et al, 2013, Zhanget al, 2013). This approach has some limitations: fstfistical models
built from interannual LGP variations cannot iseldlhe impact of changing planting dates
from the effects of climate change; second, stesistanalyses usually assume linear and
constant response to climatic variations (Zhahg@l, 2013), but several studies showed that
the response is neither linear (Lobetlal, 2013) nor constant with time (Lobelt al, 2014;
Burke & Emerick, 2015). On the other hand, crop eteaan provide an alternative mean to
further understand mechanisms and quantify thiations of different drivers (e.g. Lobedt
al., 2012). Therefore, a question to ask in complenaérihe statistical models is whether
crop models can be used as an independent metlsmpévate climate change impacts from

management. Using crop models factorial simulatishere each driver is varied at a time, or
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combined, instead of statistical models based stohcal data can overcome the limitations
by having mechanistic representation of climatengeaimpacts (Gregory & Marshall,
2012), but earlier application of crop models fbe tattribution of rice LGP trends were

criticized for lack of validation for the study ieg (Taoet al, 2013).

The first objective of this study is to optimizepeocess-based crop model to represent
rice phenology in China. The second objective isuto the optimized model for attributing
LGP change to climate change and change in vantarsagement practices during the last
two decades. To achieve these goals, we first atelieand harmonized observations of the
rice LGP during 1991-2012 from an extensive statietwork in China (287 sites). Then, a
random set of 80% of the sites is used to optimize process-based crop model
(ORCHIDEE-crop) under a Bayesian framework, bylralkion of the parameters controlling
rice phenology. The optimized model results ar@ #nvaluated against the remaining 20% of
the site observations. Finally, contributions toR.@ends from climate change, transplanting
date change and other management practices (inglumiltivar change) are separated by
comparing the LGP observations and simulationhefdptimized model driven by observed

and fixed transplanting date.

2. Methods
2.1 Rice phenology observations from Agrometeorcédgtations
Transplanting and maturity date of rice in Chinaimy 1991-2012 were recorded over

287 agro-meteorological field stations by the CheéeMeteorological Administration,
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covering the entire rice growing area, from thetimeast to the southwest and Hainan Island
(Fig. 1). The length of These observations were enfmflowing a standardized protocol
across sites (CMA, 1993). The dataset includeslesinge (177 stations), early rice (110
stations) and late rice (110 stations). Early &od late rice have the same number of stations
because they are two consecutive crops on the saieneomprising the double rice cropping
system (i.e. rotation between early rice and late (Tao et al., 2013)). 80% of the 287
stations are used to optimize ORCHIDEE-crop modmiameters. Time coverage of the
stations ranges from few years to 21 years (Figvith) 141 stations (88 for single rice and 53
for early/late rice) having records longer thanygars, which are the long-term stations used

for the detection and attribution of LGP trendgy(ffe S3).
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Fig. 1. Spatial distribution of agrometeorological statiomsChina for (a) early rice, (b) late
rice, and (c) single rice. Color shows the numbkyears of available observations in each
station. Blue circle indicates stations randomlyested to cross-validate the model. Grey
shading indicates the fraction of rice growing ar@aolking et al., 2002) that darker pixel

has larger area of rice croplands.
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2.2 Simulating rice phenology with ORCHIDEE-cropd®io

ORCHIDEE-crop model (svn version no. 2409) is acpss-based crop model, which is
based on the generic vegetation model ORCHIDEEn(i€tet al, 2005), simulating carbon,
water and energy fluxes (e.g. photosynthesis, ra&spn and evapotranspiration) and includes
an agronomical module simulating crop phenologyaf larea dynamics, growth of
reproductive organs, carbon allocations and manaegenmpacts (Wu et al. 2015). The
formula for crop phenology, leaf area dynamics,wgho of reproductive organs were
originated from a generic crop model STICS (Brisseinal, 2003). Compared with
ORCHIDEE-STICS (Gervoist al, 2004), an earlier version of the crop model, Wwhic
chained the ORCHIDEE model with STICS only throudeaf area dynamics,
ORCHIDEE-crop has a complete coupling between gmpvth and physiology of carbon
and water exchanges in soil-vegetation-atmosphenéntium. ORCHIDEE-crop calculates
thermal unit accumulation, photosynthesis and gnesghange on a half-hourly time step,
while leaf area dynamics, carbon allocation ananaiss and soil organic carbon change are

simulated on a daily time step.

Like most crop models, the crop growth cycle in GREEE-crop is divided into several
stages with the developments driven by accumuldtedmal unit. Since simulation of rice
growth starts from transplanting (LEV), the grovatycle is divided into only three phases,
which are divided by the onset of grain filling (PRand the physiological maturity (MAT).

The thermal unit ddd) needed to grow from transplanting to maturity gmescribed
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parameters (GDRvporp and GDDQrpmar). Accumulation of thermal unigld) is calculated at
each half-hourly time step following Eq. 1:

gdd = f(T) X 6, X 6, X (¢ Xmin(6,,5,) +1— ¢€) (Eq.1)
Where f(t) is a tri-linear function of temperatuf®) following Eq. 2,5, (dv, dn, 6w) are
crop-specific scalars for photo-period (vernaliaatinitrogen, water) regulations respectively.

¢ Iis a scalar parameter describing the sensitiith® crop to nitrogen and water stress.

( 0, t < Thminort > Thax

t— Tmin ’ Tmin <t< Topt
o= (Eq.2)

Typt — T
P X (t - Tmax )r Topt <t< Tmax
Topt - Tmax
As described above, temperature change has eofdst- control overgdd (Fig. S1).
Therefore, the most important parameters for actatmons of gdd are GDD gvprp
GDDprpmaT Tmins Topt @and Tmax (Table 1), which are to be optimized in the par@me
optimization. Details of the regulation scalars cenfound in Brissoret al. (2008). In our
study, 6,=1 because transplanted rice require no vernadizat develop; we assumed that

o=1 and 6, = 1 because 93% of rice cropland in China is ategd

(http://www.knowledgebank.irri.org/country-specifisia/rice-knowledge-for-china/2013-06-

03-07-15-17 Salmonet al, 2015), and the nitrogen fertilizer applicationtergs higher than
100 kgN h& (Zhou et al, 2014). In this study, we also assundgdl, which indicates that
photoperiodic constraint on the phenology is midifoarice. This is probably true for early
and single rice, because varieties insensitiveatelength change are commonly used (Cao et
al., 2011). There are, however, cases for late wdeere day-length sensitive varieties are
used (Cao et al., 2011), but we cannot accounidttd lake of information on the extent for
application of day-length sensitive varieties. Rartdetails on ORCHIDEE-crop structure

10
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and parameters can be found in Wu et al. (20153hduld be noted that rice phenology
development is modelled mostly by temperature dry@cesses in almost all rice models (Li
et al.,, 2015), so the parameter we chose here s&mréhe main processes driving the
phenology development. Other parameters of ORCHHOER are not optimized here,

because the phenology observations can provide lomsstraint on them.

In this study, two types of simulation experimewere performed for each site: (1) For
validation and comparison with observed LGP, sitnoteS0 was driven by observed variable
climate and the observed variable transplantinge d=ich year at each station; (2) For
isolating the impact of transplanting date fromt thiaclimate change on LGP, simulations S1
was driven by a time-invariant (fixed) transplagtiiate defined as the average of the earliest
three year of each record. Climate forcing for datian SO and S1 was obtained from
CRU-NCEP dataset v5.2 (http://dods.extra.cea.l@/g&l9viov/cruncep/). The difference
between SO and S1 can be used to attribute thigoinaaf LGP trends explained by changes in
transplanting dates. Assuming the model structae rfo time-dependent systematic errors,
the residual differenceAj between trends in observed LGP and in simulaBfncan be
interpreted as reflecting the contribution of dahe management operations not considered in
S0, including change in the cultivars. Previoudists usually interpreted such a residual
between observed and modelled LGP (either fromisstatl modelling or from process
modelling) as being caused by change in the cutiuged over time (Liu et al., 2012, Tao et
al., 2013, Zhang et al., 2013), but it could coettrer changes in agronomic practice, such as
fertilization change.
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2.3 Parameter optimization with particle filter

We used a particle filter method with sequentiapamiance resampling (PFSIR) to
optimize the ORCHIDEE-crop parameters for earlyte laand single rice phenology
respectively over China. Particle filter is a Mofarlo implementation of recursive Bayesian
theorem to estimate the posterior probability dgr a state-space (here is the parameter set
of the model) (van Leeuwen, 2009). A set of ensenmbémbers of the parameter set called
“particles” hereafter, are used as a discrete agpmpadion of the multi-dimensional
probability density function (PDF) of the model gareters. The PDF evolves by propagating
all particles forward in space or time through @BCHIDEE-crop model. Each step when
observations become available, each particle igrass a weight (or importance) according
to the model-observation differences. A new sepanticles is generated after each iteration
by resampling the weighted particles (sequentigbartance resampling). The optimized
parameter sets for early rice, late rice and singke are obtained through applying PFSIR to
ORCHIDEE-crop model respectively. Particle filteras been found to have broader
suitability than traditional variational methodsh@in & Morzfeld, 2013), in particular for
non-linear cases. Thus, variant forms of partidterfhave become growingly popular when
applying in earth system models (e.g. Bilioatsal, 2014, Yuet al, 2014). Further details of

PFSIR used in this study can be found in the Append

Advantages of using the PFSIR method are multiplest, unlike error minimization
methods or manual adjustments previously adopted Gregory & Marshall, 2012, Zhang

12
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et al, 2014a), PFSIR not only provides a best (maximikalihood) estimate, given an
observation probability, according to the Bayesothen, but also the uncertainties of the
optimized parameters; Second, unlike variationathods (e.g. 4D-Var) assuming Gaussian
distributions of the parameters, no assumptionsnaeessary for the posterior parameter
distribution of the parameters in the particleefiitwhich makes it suitable for a model like
ORCHIDEE-crop that uses some non-Gaussian andhibiceke parameters; Third, particle
filter does not assume linearity of the state-spatech overcomes some of the limitations of
methods based upon linearization of the state-spach as ensemble Kalman filter (van
Leeuwen, 2010); Fourth, when being fed with largeadet, the Bayes-based particle filter is
less sensitive to data outliers than error minitnramethods (e.g. Kersebaush al, 2015),
which also make it suitable for application in cropdels and over regional scale; Fifth, the
particle filter does not require the effort of ctrosting the tangent linear model of the
original model for calculating sensitivities of theodel output to its parameters, and tends to
have higher efficiency than other Monte-Carlo mdgh{Gauchereét al, 2008). The particle
filter is thus recommended for non-linear data ragation, though has limitations for
high-dimensional system (van Leeuwen, 2009). Witowing number of parameters
(dimension of the parameter space), the filter ipagome less efficient and required a huge
number of computing resources in order to obtafisfs&tory estimates. Some improvements
to the particle filter would be needed in such hilymensional cases (e.g. van Leeuwen,
2010). Given the relatively small dimension of therameter set (Table 1), this poses little

threats to our study.
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To evaluate the robustness of the optimized medekandomly selected 20% of the sites
(22 sites of early rice, 21 sites of late rice 8bdsites of single rice, see Fig. 1 for its spatial
distribution) as validation sites. The validatiates are not used into the PFSIR, providing
independent evaluation measurements of the perfarentor the optimized model. It should
be noted that the probability of posterior paramdistribution usually reflects the strength of
constraint from the observation data, thus theagbi posterior probability distribution is
also a metric to evaluate the performance of th#iga filter. Larger spread of posterior

probability distribution would indicate loose caraht from the observations.

It should be noted that we infer only one set dirmjzed parameter for each rice type
over China, which is consistent with our intenttoruse a generic model across large regions,
but could be a limitation in cases when local g within the same rice type have very
different parameters. Separating the rice growneg &nto finer zones and producing multiple
parameter sets for each rice type (Zhatgal, 2014a) may yield smaller errors due to
increased degree of freedom and a potentially betikbration reflecting the diversity of
local varieties. But doing this would also increése risk of over-fitting and would require a
detailed zoning map of rice crop varieties instedoning map of climate. In addition, there
are growing requests for assessing climate chamgadts over regional and global scales
(Rosenzweiget al, 2014) asking for robust parameter sets represgiatibroad scale of the

growing area.

2.4 Trend analyses
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We calculated the trend of rice LGP from the obagowns, the simulations SO and S1,
and for the residual by regressing time series of LGP at each statyamat year using least
square regression. The trend estimates were cothpatie non-parametric test (Sen’s slope)
(Fig. S2). The similar estimates between leastregresgression slope and Sen’s slope indicate
robustness of the trend estimates to potentiaievsitl| Statistical significance was reported
based on two-tailed-test. Only stations with more than 15 years ofeobations during

1991-2012 are used in the trend analyses (Fig. S3).

3. Results
3.1 Simulated LGP with prior and posterior paraniste

Fig. 2 shows the histogram of the simulated biat®P (difference between observed
LGP and simulated LGP) for simulation SO before aftdr optimization, and for the three
rice types. Over site-years used in optimizatibe, posterior model largely reduces the root
mean square error (RMSE) from 32.7 days (priod4@ days for early rice (optimized) (Fig.
2a), from 108.9 days to 12.4 days for late ricg.(Rb), and from 73.7 days to 24.4 days for
single rice (Fig. 2c). When we only look at spatiatiations across sites (Fig. S4), we found
that the posterior model not only reduces the albs@rrors (indicated by the vicinity to 1:1
line), but also better reproduces the spatial LGRdignt among the sites used for
optimization. The Rfor the spatial gradient improves from 0.41 (P40. 0.55 (P<0.01)
for early rice (Fig. S4a), from 0.00 (P=0.91) t8®(P<0.01) for late rice (Fig. S4b), and from
0.21 (P<0.01) to 0.47 (P<0.01) for single rice (AGc). Interannual variations of LGP at the
long-term sites used for optimization also shownigigant improvement for all three rice

15
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types (P<0.05) (Fig. S5). These show that giversthecture of the ORCHIDEE-crop model,
with the PFSIR optimization method, it is possita€ind a set of parameters for each of the
three rice types, which provides an improved fitthe LGP observations across sites and

years.

To test whether the improvements due to optimipaisolimited to the sites chosen for
optimization, we also use the prior and posteriodat parameters in ORCHIDEE-crop runs
at the cross-validation sites. The RMSE of LGPtha simulation SO with prior parameters
are 33.9 day for early rice, 113.0 day for latee ramd 74.5 day for single rice, respectively.
The RMSE of LGP with posterior parameters at thessivalidation sites are 16.3 day for
early rice, 10.2 for late rice and 19.2 for singiee, which are close to that over the
optimization sites (Fig. 2d-f). Therefore, the RM&&tluction over the validation sites is
similar to that over the optimization sites (Figl-f2. The improved spatial gradients (Fig.
S4d-f) and interannual correlation between obsearetimodeled LGP (Fig. S5d-f) also hold
for the validation sites. Indeed, when we re-sel@dhe sites used for optimization and
running the particle filter once again for testimgg obtain a similar set of parameter set than
the one presented in Table 1, further indicating thbustness of the optimized models in
reproducing the spatiotemporal variations of ric@PLin China during 1990-2012, for the
three rice types.

Table 1.Prior and posterior parameters for early rices tade and single rice.

Prior Posterior

Generic rice Early rice Late rice Single rice

16
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Fig. 2. Histogram of the differences between observed theafitice growing period (LGP)

and simulated LGP with prior parameters (blue-edgads) and optimized parameters (grey
bars) for (a) optimization sites of early rice, @timization sites of late rice, (c) optimization
sites of single rice, (d) validation sites of earige, (e) validation sites of late rice, and (f)

validation sites of single rice.

The optimization of ORCHIDEE-crop parameters notyosignificantly reduced the
misfit with site observations but also significgnthanged the simulated trend in LGP (Fig
S4). For early and single rice, the trend in omedi LGP (-0.7+2.7 day/decade (mean =
standard deviation across sites) for early rice -@btt5.2 day/decade for single rice) differs
by more than 60% (P<0.01) from the prior modeledPli€&End (-1.7+4.8 day/decade for early
rice and -1.5+£18.4 day/decade for single rice)(ES§a and c). For late rice, the optimization
even changes the sign of the simulated LGP treddaagely reduced the spatial variations of
the trend (Fig. S6b). The average LGP trend foe late is changed from -7.5+16.7
day/decade to 1.0+3.0 day/decade (Fig. S6b). Thmmmed model thus produces lengthening
instead of shortening LGP for late rice. The LG#htt simulated by the optimized model is
further analyzed in the sectiomttribution of LGP trends to climate change, tralasyping

date change and other management factors”

3.2 Optimized parameter sets
Fig. 3 shows the probability distribution of thedioptimized parameters (see Methods
section for descriptions of the parameters) of@RCHIDEE-crop simulation for LGP before
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(prior) and after (posterior) optimization for garlce, late rice and single rice, respectively.
Optimized (posterior) parameters of thermal ungureements (GDR:yprp and GDDBrpmar)
show largest uncertainty reduction (UR) with a 98fer reduction in the standard deviation
after optimization (Fig. 3a and b, Table 1), indiicg strong observational constraints on these
parameter values. Early, late and single rice hhe@ posterior thermal unit requirements
(GDD.evprp and GDDpgrpmay) CONcentrated in a narrow range of values, which a
significantly different from each other (P<0.05n @e other hand, the temperature threshold
parameters regulating phenological developmegi(Top and Thaxin Eq. 2) show different
values after optimization among the three rice sypeor early rice, Jin for phenology
development is well constrained with a UR of 78%949.5°C, Fig. 3d), while T has a
large posterior range between®@and 35°C (32.3+1.9°C, Fig. 3c) and a UR of 55%. For
late and single rice, optimized,} are slightly lower than early rice (3t21.1°C for late rice
and 9.4+ 0.5°C for single rice, Fig. 3d) and UR of 52% and 7&3.the contrary, optimized
Topt for late and single rice are much lower than eddy (23.4+0.6 °C for late rice and 22.8
+0.5 °C for single rice, Fig. 3c) with UR ~85%. The highmptimal Top: and Tin values
found for early rice, compared to single and late suggest that early rice must be more
acclimated to the high temperature in spring amdrsar over southern China, which matches
its geographical distributions (Fig. 1) and was aotounted in the prior values of these
parameters. For all the three rice types, the postgrobability distribution of Fax shows a
large range (Fig. 3e) indicating that this tempeeathreshold that corresponds to the stop of
phenology development is less well constrained ftben LGP observations, likely because
Tmax IS @ high-end threshold, which is not frequentdaahed in the historical period
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348 1991-2012 (4 site-days for early rice, no site-ftaytate rice and 7 site-days for single rice).
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350 Fig. 3. Histogram of the prior and posterior parameter distition for early rice, late rice
351 and single rice. The optimized parameters inclleedDD\ evorp (b) GDDbrpmaT (€) Topt (d)

352 Tmin, and (e) Tax (see Methods section for definitions and desan#tiof the parameters).

353

354 3.3 Attribution of LGP trends to climate changearnsplanting date change and other
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management factors

At country scale, observations show an averagehening of LGP for all three types of
rice (Fig. 4). Single rice sites show the largesgthening rate of 2.0+6.0 day/decade (mean *
standard deviation in spatial variations), followmdearly rice (1.0+4.8 day/decade) and late
rice (0.2+4.5 day/decade). But there are largeteHste variations in the observed LGP trend
(Fig. S7). For single rice, 61% of the sites shotwead towards longer LGP, 50% of which
are statistically significant (Fig. s7c). For eaalyd late rice, the percentage of sites showing
longer LGP is similar (58% and 55% for early ani lace respectively), but the percentage
of significant positive trends was smaller thart floa single rice (27% and 19% for early and
late rice respectively). There is a large proportid sites showing no significant change of
LGP (more than 50% for all three types of riceflicating that LGP change is either weakly
sensitive to climate change or compensated bytsftdachange in climate and managements.
To further understand the drivers of the LGP tremds estimated the contribution of climate
change alone from simulation S1, the contributibriransplanting date from the difference
between simulation SO and S1, and interpreteddhg&ibution of all other management (OM)

as being caused by a non-modeled residual 2eras explained in the Method section.
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Fig. 4. Box plot of change in the length of rice growingipe length (LGP) over the past two
decades derived from observations and simulationshie three rice types. The LGP change
due to climate change is obtained from simulatidn Bhe LGP change due to change of
transplanting date is obtained by the differenceMeen simulation SO and simulation S1; The
LGP change due to other management (OM) is obtaibgdthe difference between
observations and simulation SO. The lower and uggige of the box indicate 2%&nd 75"
percentile of the trends. The line and cross insiebox indicate the median and the mean of

the trends, respectively.

As Fig. 4 and Fig. 5 shows, the impacts of clindtange on LGP change differs between
the three rice types. For early rice sites usimgsimulation S1 with the optimized model, we
infer an average shortening of LGP induced by diér@ange alone of -2.0+5.0 day/decade
(Fig. 4). Except for sites in Hainan and Guangxe shortening of LGP in simulation S1 is
widespread (71%) and significant at 41% of theyeade sites (Fig. S7j). However, for late

rice, climate change alone leads to an averagehenigg of the LGP of 1.1+5.4 day/decade,
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with 16% of the sites having a significant lengtingnmostly in Hunan, Jiangxi and Fujian
provinces (Fig. S7k). This positive LGP trend fatel rice in response to climate change
occurs in ORCHIDEE-crop because temperature duheggrowing season is reaching the
optimum temperature of phenology development fta tece in southern China (Table 1). For
single rice, the contribution of climate changel @GP trends shows regional differences.
Climate change is modeled to shorten LGP over pasgtern China and high-altitude Yungui
plateau over southwestern China, but to lengther® li6 the middle and lower reach of
Yangtze River basin (Fig. S71). These regional @&sts for single rice LGP trends leads to a
near neutral average impact of climate change orP litend across China (-0.4+£5.4
day/decade, Fig. 4). Among all the sites, climdi@nge is the dominant factor contributing to
the observed LGP trend for 26% of early rice siB88o of late rice sites and 19% of single

rice sites (Fig. 5).

We found that 66% of the early rice sites experenearlier transplanting date during
1991-2012 (Fig. S8). From the difference betweedeter LGP in simulation SO and S1, we
infer that the earlier shift of the transplantingitel (-2.0+4.8 day/decade) alone, has
lengthened the LGP of early rice by 1.3+5.5 dayddec(Fig. 4). But earlier transplanting
practice have not been adopted widely for late aied single rice sites, and the observation
sites showing positive and negative trends in pkmding dates are of similar proportion for
late rice and single rice (Fig. S8b and c). The mitage of the average trend in transplanting
date is also small for these two types of rice3&8.4 day/decade for late rice and 0.1+4.1
day/decade for single rice), which has minor impamt the simulated LGP change in the
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S0-S1 difference (-0.1+£5.0 day/decade for late and -0.1+1.7 day/decade for single rice,
Fig. 4). Therefore, the earlier shift of transpilagtdate is the dominant factor contributing to
the trend of LGP at 17% of early rice sites (Fig),5and a minor driver of LGP trends for

other rice types, being dominant at only 7% ofl#te rice sites (Fig. 5b) and 2% of the single

rice sites (Fig. 5¢).
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Fig. 5. Spatial distribution of the controlling factors azthange in the length of growing
period (LGP) for (a) early rice, (b) late rice, ar{d) single rice. Green color indicates LGP
change is primarily driven by climate change, btator indicates LGP change is primarily
driven by transplanting date change, and red cahalicates LGP change is primarily driven

by other management. Intermediate colors indicate@minance by more than one factor.

On average across sites, the role of other managegmactices (OM), inferred from the
residual trend not explained by transplanting datd climate change, is found to be the
predominant factor for LGP change for early andgleinrice. OM are identified to be
responsible for a lengthening of LGP by 2.1+3.9/dagade for early rice and 2.8+£7.6
day/decade for single rice (Fig. 4). A great ma&yodf the early rice sites (71%) and single
rice sites (64%) show positive contributions of @&nds. Over 20% of early rice sites sand
27% of single rice sites, the OM induced LGP trendgtatistically significant (P<0.05, Fig.
S7d-f). On the contrary, OM contributes to a shurtg of LGP for late rice by -0.8+5.8
day/decade (Fig. 4), with a significant LGP sharngnin Hunan, Jiangxi, Guangdong and
Fujian provinces (Fig. S7e). The dominant role d¥l @s prevalent in southern China
provinces, such as Guangdong, Guangxi and Yunnabdih early rice and late rice (Fig.
5a-b). For single rice sites, OM is the predomirdimter of the LGP trend from the northeast

to the southwest at 78% of the sites (Fig. 5c¢).

4. Discussion

Our analyses of a large network of rice phenoldgatsservations with more than 100
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long-term stations across rice growing area in €hmlicate that the LGP of single rice has
become longer over the past two decades, whichnsistent with a recent study focused on
Northeast China and Yangtze River basin during 18810 (Taoet al, 2013). Although
site-to-site variations are large, all three rigpes exhibit an average trend towards longer
LGP. The ORCHIDEE-crop model optimized upon obseért&P was run using factorial
simulations, with either climatological (fixed) observed transplanting dates, and variable
climate. The results suggest that the primary factiviving the LGP trends are not the same

among the three rice types.

We found that recent climate change consideredsasgée driver in the model, shortened
the LGP of early rice (Fig. 4 & Fig. S7j), which wonsistent with previous statistical
modelling (Zhanget al, 2013) and process modeling based on four sitesdilal, 2012).
For late rice, climate change appears to have gdllittle change or a lengthening of LGP,
which is different from early rice (Liet al, 2012, Taoet al, 2013) and from some other
temperate crops (Lobetit al, 2012). This is because the optimized parameteesandicate
a lower optimum temperature (23.4 + 6@®) for phenology development of late rice than for
early rice. Late rice sites are mainly located auteern China where temperature after
transplanting (around July and August) is highantkthis optimal temperature of phenology
development of late rice (Li et al., 2010). Thusttier warming beyond the temperature
optimum will not accelerate the phenology developtaand cause a lengthening of LGP (Fig.
S1, Yin, 1994). It should be noted that the optimi@mperature that we determined from

PFSIR is consistent with statistical analyses @ phenology observations in southern China
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(Xie et al, 2008) and with the incubation study (Summerfietdal, 1992), but lower than
that used in previous models (L&t al, 2012, Zhanget al, 2014b), parameters of which may
have originally derived from earlier studies basmd assumptions or rice varieties in
Southeast Asia (e.g. Krop#t al, 1993). Our capability to further assess this ipater is
rather limited since field trials determining theptimum temperature of phenology
development are rarely available, requiring moreadmd future studies to refine this key
parameter in order to more accurately project démzhange impacts on LGP change. It
should also be noted that, although high tempezattress did not necessarily shorten LGP, it
may still adversely affect rice yields as it stessphotosynthesis (Yin & Struik, 2009), and

thus reduce biomass accumulation for the harvest.

By comparing the simulations driven by fixed trdasping dates (S1) and by variable
transplanting dates (S0), we can separate theilsotiom of transplanting date trends on LGP
trends. Although an earlier transplanting date agmatic autonomous adaptation through
which farmers adapt to climate change (Oleseal, 2011), its effect on the regional trends
of LGP was not separated by previous statisticalete(Tacet al, 2013, Zhangt al, 2013),
probably due to its co-variations with climate (Tetoal, 2006). It may also be related with
the linear assumption of previous statistical asegdy(e.g. Taet al, 2013; Zhangpt al, 2013),
which can be improved using recent progressesatisstal analyses including non-linear or
threshold like equation (e.g. Burke & Emerick, 20$6lomon, 2016). We found that changes
in transplanting date were widespread over the2@syears for early rice sites in southern

China, and that they contributed to lengthen LGRen@as climate change has the opposing
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effect of shortening LGP. This suggests that thepadn of earlier transplanting date has
partly mitigated climate change impacts on earbe rgrowth over the past two decades.
However, the same adaptation strategy is probatypassible for late rice because earlier
transplanting and lengthening of LGP nearly compenfor each other for early rice, leaving
no more time during the season available for earamsplanting of late rice (MOA, 2014). In
addition, advancing transplanting dates for late rio mitigate climate change will have
limitation due to frost risk and photo-period caastts in the autumn. The same reason may
also explain why single rice sites show large ®tsite variations on the sign of change in

transplanting date (Fig. S8).

Other management practices were found to be thandomndriver of LGP trends for
early rice and single rice across the country (5)gwhich is about one magnitude larger than
the contribution of transplanting date and climagmds for early rice and single rice, though
with large site-to-site variations (Fig. 4). Prawsostudies usually interpreted this residual
contribution not explained by climate change as ¢batribution of cultivar change, in
particular the adoption of long-duration cultivétsu et al, 2012, Tacet al, 2013, Zhanget
al.,, 2013), which was supported by the empirical assest of change in thermal
requirements (Zhanget al, 2014b). This hypothesis is reasonable, since ake
longer-duration cultivars is one of the most commarsed practices to achieve higher yields
and mitigate the impacts of climate change (Aggadaall, 2002, Porteret al, 2014).
However, there are other management practicesciald also impact LGP trends. For
example, foliage nitrogen fertilizer spraying oaflén the late growing season, can also lead
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to increase of leaf longevity and the growing seaf®ussellet al, 1990). Future studies
should account for these effects with spatially émmporally explicit datasets in order to
more accurately attribute and project LGP changaddition, OM trends may not necessarily
induce longer LGP. Local agronomists in China hbhgen studying and recommending the
combination of rice varieties with shorter-duratiand longer-duration cultivars in order to
improve yield and to minimize risk of exposure tionate extremes (e.g. At al, 2010; Mao

et al, 2015; Liet al, 2016) Shorter-LGP induced by OM seems to be widaesl for late rice

in southern China. These efforts were taken likedgause shorter LGP for late rice can have
the advantage to avoid the damage induced by celther events during anthesis and grain
filling, known as the “cold dew wind” (Huo & Wan@009, Wuet al, 2014). The risk of
late rice exposure to cold damage can be more30@%mfor some regions in southern China
according to (Wuwet al, 2014), and warming over past decades does rediatk the risk of
the weather events and reduce late rice produetioen it occurs (Huo & Wang, 2009,

Ministry Of Agriculture, 2014).

Unlike previous studies identifying climate changs the dominant driver of rice
phenology change, using field trials (De Vretsal, 2011), statistical models (Zhamg al,
2013) or crop model simulation (Yaet al, 2007), our analyses combining phenology
observations and optimized crop model simulatiomdicate that management practices
(including both change in transplanting date andnges of OM) probably outweigh the
impact of climate change on LGP change for eadg and single rice in China during the
past two decades. However, we are only able torgepthe effects on LGP trends of trends
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transplanting date from other management practsgs) as cultivar change, due to limited
data on spatio-temporal variations of other managgnpractices. On the other hand,
attribution of LGP trends to OM has the largestartainty in this analysis since the role of
OM s inferred from the misfit of model runs drivdsy climate change and observed
transplanting date and the observations. Errothenattribution of LGP trends to climate or
transplant date trends, depends largely on the moagiel used, a structural bias in this model,
and non-unified observational error across sited yars will translate into an erroneous
attribution to OM. Through the Bayesian optimizatioramework (particle filter with
sequential importance resampling), we optimized @RCHIDEE-crop model to fit the
spatio-temporal variations of LGP for the threerigpes across China. The optimized model
not only can reproduce the phenology of the sitssdufor optimization, but also remains
robust when applied to validation sites (Fig. 3hefiefore, the optimized model provides
some confidence in the attribution, compared to el®dot optimized for rice croplands in
China (e.g. Liuet al, 2012). Indeed, the posterior model largely d€fgsom the prior model

in the estimated climate change impacts on LGP gindRig. S6), further highlighting the
necessity of optimizing crop models for regionaldses. Admittedly, the optimized model
simulations still cannot perfectly reproduce spataporal variations in LGP, which may
introduce uncertainties in the attribution of LGEnds to climate trends, but this should not
largely impact our conclusions because we foundigoificant correlation between trend in
the residual LGP (difference between observatiomd simulation SO) and the trend in
growing season temperature (Fig. S9). This indgcdlat the trend attributed to OM is
probably not biased by climate trend unexplainedBRCHIDEE-crop. On the other hand, in
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addition to optimizing the parameters of a singledel against observations to reduce
parameter uncertainties, recent studies indicaterttultiple models can perform better than
one model (Liet al, 2015, Martreet al, 2015), due to the consideration of structural
uncertainties. Although there are many difficultie€oordinating multiple models, promising

future studies using model ensembles with the gamog@col can improve our understanding
regarding the structural uncertainties (e.g. Ellettal, 2015). It should also be noted that
almost all current rice models, including ORCHIDE®p predict phenology development
based on variations in temperature. The physiokbgimpacts of non-temperature drivers
should be further explored in future studies. Hypadbservational error may also play an
important role in the attribution to OM, which halergely been neglected both in our
modelling study and previous statistical attriboti¢e.g. Zhang et al., 2013). Since the
observation over all the stations followed the sgmo¢ocol (CMA, 1993), it is often assumed
that the observational error is uniform acrosssséed years. Thus, it would not impact the
trend estimates and therefore attribution of thePLtEends. Although the assumption is
reasonable, the reliability of this assumption remauncertain. For better data-model
integration, we recommend future data collectiofored to further report the error term

together with the observations, which will help mmize potential biases in model

parameterization and attribution efforts.

Conclusions
In this study, we calibrated ORCHIDEE-crop model represent spatio-temporal
variations of rice LGP for three different typesrizle in China, and applied this model forced
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by historical change in climate and transplantiagedo attribute the trend in rice LGP. On
one hand, we showed that, technically, 1) usingeBdyased particle filter, a generic
process-based crop model can be objectively paesinetl to represent spatio-temporal
variations in rice LGP over China and 2) attribatiof LGP trend based on calibrated model
provides an alternative to statistical attributfreviously used. On the other hand, through
factorial simulations, we found that LGP change didferent rice types show contrasting
dominant drivers. Managements outweighs climatengbain affecting LGP of early and
single rice, but not for late rice. This suggestat tfuture modelling efforts at global and
regional scale should consider various types & goown and time-varying management
practices. Since large uncertainties still remairumderstanding change in LGP, improving
documentation of management practices in addibdnansplanting date, better description of
observational error and ensemble crop modelling 6@amher reduce uncertainties in

attributing climate change impacts in future stadie

Appendix: Particle filter with sequential importance resampling

The basic idea of the particle filter is to reprasthe probability distribution function
(PDF) of the parameters through an ensemble ofnpeteas, each set of which is called a
particle. At each step of the particle filter, tieéative importance of the particle, or weig (
is given by Eq. Al:

p(|x;)

Vool AV

i =

whereN is the number of particleg,is the observation anuy|x) is probability density of the

observations given the simulation with the parti¢l@1(x;)) following Eq. A2:
32



590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

_(y=M(x))?
p(ylx) = e 282 (Eq.A2)

where o is the observation error. In this study, we assurbservational error is uniform
across sites and years, since the observationstioganetwork were made by trained staff
following the same protocol (CMA, 1993), which atesigned to unify and minimize the
observational error across the network. Theordyicdlis possible to analytically have the
PDF of the particles by putting all observation®ithe equation in one time. However, in
practice, over a large number of sites/time stigpsguires a large number of particles to well
sample the entire parameter space and computdyionafficient by wasting time in barely
possible particles. Therefore, the Markov proce#ser) to realize recursive Bayesian
theorem is applied here (Eq. A3):

p(x™V) = pQN ") peNTHEN ) Lp(x®|xt)  (Eq.A3)
wherex'N is the particle afteN iterations. This Markov process makes the entiteutation
iterative. When there is no observation in sitte Markov process can still evolve by adding
a random term to the particle in sité, but what we aim is to obtain final posterior PPDBf

the parameters given the observations dusites ¢*"):
1:N|x1:N)p(x1:N)
p(ytN)

Using Eq. A3 to further break down Eg. A4, we obtag. A5:
pMxMp(M) pON XN PN p(ytx)p(xt)
p(N) pON 1) T pOH)
Applying Eq. A2 to Eg. A5, we obtained the numergalution for all terms from 1 to N. For

xl:N |y1:N) — p(y

p( (Eq.A4)

p(xl:N |y1:N) —

(Eq.A5)

each step, importance resampling is taking place to randomigraw a new ensemble of
particles from the weighted old ensemble to represg!), which leads to disregard particles
that have very small weights and thus refine theestble. Sometimes the importance
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resampling may disregard some locally low probadaiticles but having global significance.
Therefore, we usually perform twice of the entireSIR process with different re-order
observations to test its convergence in order t@mize the potential error due to this. More
details and illustration of the particle filter céwe found in van Leeuwen (2010). To adapt
ORCHIDEE-crop model to different cropping systesiagle rice and double rice (early rice
and late rice) in China, we adapted particle filteth sequential importance resampling (van

Leeuwen, 2009) separately for the three rice typable 1).

Prior parameters of the ORCHIDEE-crop was obtaiinech (Irfan, 2013). The range of
prior parameters were obtained from Sanchez ef2@lL4), which synthesized experiment
knowledge on the range of basal, optimal and maminmamperature thresholds of rice
development, and Valade et al. (2014), which costanodeller’s prior knowledge for the
range of the parameters. Since we knew little albloeitprior probability distribution of the
parameters, we assumed the prior parameter eqiiatlyouted within its range in order to
guarantee a well sampling of the entire paramepaces Another issue may limit the
capability of PFSIR is the error in the observatiata. Unfortunately, accuracy description of
the phenology observations are not available exttegitobservations were made following
the same standard protocol. However, the datasbeiigy treated as reliable data source

without the need to do further filtering (e.g. Taaal., 2013; Zhang et al., 2013).
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