P. Nissen, J. Hansen, N. Ban, P. B. Moore, and T. A. Steitz, The Structural Basis of Ribosome Activity in Peptide Bond Synthesis, Science, vol.289, issue.5481, pp.920-930, 2000.
DOI : 10.1126/science.289.5481.920

M. Krupkin, A vestige of a prebiotic bonding machine is functioning within the contemporary ribosome, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.2, issue.9, 2011.
DOI : 10.1101/cshperspect.a003483

A. Bashan and A. Yonath, The linkage between ribosomal crystallography, metal ions, heteropolytungstates and functional flexibility, Journal of Molecular Structure, vol.890, issue.1-3, pp.289-294, 2008.
DOI : 10.1016/j.molstruc.2008.03.043

A. Yonath, Large facilities and the evolving ribosome, the cellular machine for genetic-code translation, Journal of The Royal Society Interface, vol.102, issue.52, pp.575-585, 2009.
DOI : 10.1073/pnas.0508234102

E. Zimmerman and A. Yonath, Biological Implications of the Ribosome's Stunning Stereochemistry, ChemBioChem, vol.314, issue.1, pp.63-72, 2009.
DOI : 10.1002/cbic.200800554

N. Fischer, A. L. Konevega, W. Wintermeyer, M. V. Rodnina, and H. Stark, Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy, Nature, vol.143, issue.7304, pp.329-333, 2010.
DOI : 10.1038/nature09206

URL : http://hdl.handle.net/11858/00-001M-0000-000F-9EDE-5

J. Frank and R. K. Agrawal, A ratchet-like inter-subunit reorganization of the ribosome during translocation, Nature, vol.406, issue.6793, pp.318-322, 2000.
DOI : 10.1038/35018597

B. S. Schuwirth, Structures of the Bacterial Ribosome at 3.5 A Resolution, Science, vol.310, issue.5749, pp.827-8341117230, 2005.
DOI : 10.1126/science.1117230

J. Noeske, High-resolution structure of the Escherichia coli ribosome, Nature Structural & Molecular Biology, vol.3, issue.4, pp.336-341, 2015.
DOI : 10.1186/1471-2105-3-2

L. H. Horan and H. Noller, Intersubunit movement is required for ribosomal translocation, Proceedings of the National Academy of Sciences, vol.104, issue.12, pp.4881-4885, 2007.
DOI : 10.1073/pnas.0700762104

A. Yonath, The Search and Its Outcome: High-Resolution Structures of Ribosomal Particles from Mesophilic, Thermophilic, and Halophilic Bacteria at Various Functional States, Annual Review of Biophysics and Biomolecular Structure, vol.31, issue.1, pp.257-273, 2002.
DOI : 10.1146/annurev.biophys.31.082901.134439

K. Y. Sanbonmatsu, Computational studies of molecular machines: the ribosome, Current Opinion in Structural Biology, vol.22, issue.2, pp.168-174008, 2012.
DOI : 10.1016/j.sbi.2012.01.008

P. Chacon, F. Tama, and W. Wriggers, Mega-Dalton Biomolecular Motion Captured from Electron Microscopy Reconstructions, Journal of Molecular Biology, vol.326, issue.2, pp.485-492, 2003.
DOI : 10.1016/S0022-2836(02)01426-2

Y. Wang, A. J. Rader, I. Bahar, and R. L. Jernigan, Global ribosome motions revealed with elastic network model, Journal of Structural Biology, vol.147, issue.3, pp.302-314005, 2004.
DOI : 10.1016/j.jsb.2004.01.005

J. Trylska, V. Tozzini, and J. A. Mccammon, Exploring Global Motions and Correlations in the Ribosome, Biophysical Journal, vol.89, issue.3, pp.1455-1463058495, 2005.
DOI : 10.1529/biophysj.104.058495

Z. Zhang, K. Y. Sanbonmatsu, and G. A. Voth, 70S Ribosome Revealed by Coarse-Grained Analysis, Journal of the American Chemical Society, vol.133, issue.42, pp.16828-16838, 2011.
DOI : 10.1021/ja2028487

M. T. Zimmermann, K. Jia, and R. L. Jernigan, Ribosome Mechanics Informs about Mechanism, Journal of Molecular Biology, vol.428, issue.5, 2015.
DOI : 10.1016/j.jmb.2015.12.003

G. Zaccai, Ecology of Protein Dynamics, Current Physical Chemistry, vol.3, issue.1, pp.9-16, 2013.
DOI : 10.2174/1877946811303010004

URL : https://hal.archives-ouvertes.fr/hal-01326144

F. Gabel, Protein dynamics studied by neutron scattering, Quarterly Reviews of Biophysics, vol.35, issue.4, pp.327-367, 2002.
DOI : 10.1017/S0033583502003840

X. Hu, The dynamics of single protein molecules is non-equilibrium and self-similar over thirteen decades in time, Nature Physics, vol.15, issue.2, pp.171-174, 2016.
DOI : 10.1038/nphys3553

M. Tehei, Adaptation to extreme environments: macromolecular dynamics in bacteria compared in vivo by neutron scattering, EMBO reports, vol.5, issue.1, pp.66-707400049, 2004.
DOI : 10.1038/sj.embor.7400049

G. Schiro, Translational diffusion of hydration water correlates with functional motions in folded and intrinsically disordered proteins, Nature Communications, vol.53, issue.6490, pp.10-1038, 2015.
DOI : 10.1016/S0921-4526(01)00492-6

URL : https://hal.archives-ouvertes.fr/hal-01162282

C. Mikl, Softness of Atherogenic Lipoproteins: A Comparison of Very Low Density Lipoprotein (VLDL) and Low Density Lipoprotein (LDL) Using Elastic Incoherent Neutron Scattering (EINS), Journal of the American Chemical Society, vol.133, issue.34, pp.13213-13215, 2011.
DOI : 10.1021/ja203679g

J. Peters, M. T. Giudici-orticoni, G. Zaccai, and M. Guiral, Dynamics measured by neutron scattering correlates with the organization of bioenergetics complexes in natural membranes from hyperthermophile and mesophile bacteria, The European Physical Journal E, vol.44, issue.7, pp.2013-13078, 2013.
DOI : 10.1140/epje/i2013-13078-y

V. Marty, Neutron scattering: a tool to detect in vivo thermal stress effects at the molecular dynamics level in micro-organisms, Journal of The Royal Society Interface, vol.411, issue.2, 2013.
DOI : 10.1042/BJ20071502

URL : https://hal.archives-ouvertes.fr/hal-01326140

F. Natali, Y. Gerelli, C. Stelletta, and J. Peters, Anomalous proton dynamics of water molecules in neural tissue as seen by quasi-elastic neutron scattering. Impact on medical imaging techniques, AIP Conf. Proc. 1518, pp.10-1063, 2013.
DOI : 10.1063/1.4794632

J. Harms, High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium, Cell, vol.107, issue.5, pp.679-688, 2001.
DOI : 10.1016/S0092-8674(01)00546-3

F. Bonnete, D. Madern, and G. Zaccai, Stability against Denaturation Mechanisms in Halophilic Malate Dehydrogenase "Adapt" to Solvent Conditions, Journal of Molecular Biology, vol.244, issue.4, pp.436-4471741, 1994.
DOI : 10.1006/jmbi.1994.1741

G. Zaccai, Hydration shells with a pinch of salt, Biopolymers, vol.244, issue.10, pp.233-23822154, 2013.
DOI : 10.1002/bip.22154

URL : https://hal.archives-ouvertes.fr/hal-01326142

J. Fitter, R. E. Lechner, G. Buldt, and N. A. Dencher, Internal molecular motions of bacteriorhodopsin: hydration-induced flexibility studied by quasielastic incoherent neutron scattering using oriented purple membranes., Proceedings of the National Academy of Sciences of the United States of America 93, pp.7600-7605, 1996.
DOI : 10.1073/pnas.93.15.7600

M. C. Bellissent-funel, Hydration in protein dynamics and function, Journal of Molecular Liquids, vol.84, issue.1, pp.39-52, 2000.
DOI : 10.1016/S0167-7322(99)00109-9

M. Ginzburg, L. Sachs, and B. Ginzburg, Ion Metabolism in a Halobacterium: I. Influence of age of culture on intracellular concentrations, The Journal of General Physiology, vol.55, issue.2, pp.187-207, 1970.
DOI : 10.1085/jgp.55.2.187

M. Tehei, Neutron scattering reveals extremely slow cell water in a Dead Sea organism, Proceedings of the National Academy of Sciences, vol.104, issue.3, pp.766-771, 2007.
DOI : 10.1073/pnas.0601639104

M. Tehei, D. Madern, C. Pfister, and G. Zaccai, Fast dynamics of halophilic malate dehydrogenase and BSA measured by neutron scattering under various solvent conditions influencing protein stability, Proceedings of the National Academy of Sciences, vol.98, issue.25, pp.14356-14361, 2001.
DOI : 10.1073/pnas.251537298

Z. Q. Li, Structure of phenylalanine-accepting transfer ribonucleic acid and of its environment in aqueous solvents with different salts, Biochemistry, vol.22, issue.19, pp.4380-4388, 1983.
DOI : 10.1021/bi00288a006

H. Schober, An introduction to the theory of nuclear neutron scattering in condensed matter, Journal of Neutron Research, vol.17, pp.109-357, 2014.

K. Wood, U. Lehnert, B. Kessler, G. Zaccai, and D. Oesterhelt, Hydration Dependence of Active Core Fluctuations in Bacteriorhodopsin, Biophysical Journal, vol.95, issue.1, pp.194-202, 2008.
DOI : 10.1529/biophysj.107.120386

F. X. Gallat, Dynamical Coupling of Intrinsically Disordered Proteins and Their Hydration Water: Comparison with Folded Soluble and Membrane Proteins, Biophysical Journal, vol.103, issue.1, pp.129-136027, 2012.
DOI : 10.1016/j.bpj.2012.05.027

D. Herschlag, B. E. Allred, and S. Gowrishankar, From static to dynamic: the need for structural ensembles and a predictive model of RNA folding and function, Current Opinion in Structural Biology, vol.30, pp.125-133, 2015.
DOI : 10.1016/j.sbi.2015.02.006

G. Zaccai and S. Xian, Structure of phenylalanine-accepting transfer ribonucleic acid and of its environment in aqueous solvents with different salts, Biochemistry, vol.27, issue.4, pp.1316-1320, 1988.
DOI : 10.1021/bi00404a034

B. Furtig, J. Buck, C. Richter, and H. Schwalbe, Functional Dynamics of RNA Ribozymes Studied by NMR Spectroscopy, Methods in molecular biology, vol.848, pp.185-199, 2012.
DOI : 10.1007/978-1-61779-545-9_12

J. Buck, NMR Spectroscopic Characterization of the Adenine-Dependent Hairpin Ribozyme, ChemBioChem, vol.113, issue.12, pp.2100-2110, 2009.
DOI : 10.1002/cbic.200900196

A. M. Stadler, Thermal fluctuations of haemoglobin from different species: adaptation to temperature via conformational dynamics, Journal of The Royal Society Interface, vol.87, issue.3, pp.2845-2855, 2012.
DOI : 10.1529/biophysj.104.042085

URL : https://hal.archives-ouvertes.fr/hal-01498101

G. Caliskan, Dynamic Transition in tRNA is Solvent Induced, Journal of the American Chemical Society, vol.128, issue.1, pp.32-33, 2006.
DOI : 10.1021/ja056444i

V. Réat, Dynamics of different functional parts of bacteriorhodopsin: H-2H labeling and neutron scattering, Proceedings of the National Academy of Sciences, vol.95, issue.9, pp.4970-4975, 1998.
DOI : 10.1073/pnas.95.9.4970

J. A. Langer, D. M. Engelman, and P. Moore, Neutron-scattering studies of the ribosome of Escherichia coli: A provisional map of the locations of proteins S3, S4, S5, S7, S8 and S9 in the 30 S subunit, Journal of Molecular Biology, vol.119, issue.4, pp.463-485, 1978.
DOI : 10.1016/0022-2836(78)90197-3

J. Ollivier, M. Plazanet, H. Schober, and J. C. Cook, First results with the upgraded IN5 disk chopper cold time-of-flight spectrometer, Physica B: Condensed Matter, vol.350, issue.1-3, pp.173-177, 2004.
DOI : 10.1016/j.physb.2004.04.022

B. Frick and M. Gonzalez, Five years operation of the second generation backscattering spectrometer IN16???a retrospective, recent developments and plans, Physica B: Condensed Matter, vol.301, issue.1-2, pp.8-19, 2001.
DOI : 10.1016/S0921-4526(01)00492-6

D. Richard, M. Ferrand, and G. J. Kearley, Analysis and visualisation of neutron-scattering data, Journal of Neutron Research, vol.4, issue.1, pp.33-39, 1996.
DOI : 10.1080/10238169608200065

J. C. Smith, Protein dynamics: comparison of simulations with inelastic neutron scattering experiments, Quarterly Reviews of Biophysics, vol.10, issue.03, pp.227-291, 1991.
DOI : 10.1103/PhysRevLett.65.1080

A. Rahman, K. S. Singwi, and A. Sjo?lander, Theory of Slow Neutron Scattering by Liquids. I, Physical Review, vol.126, issue.3, pp.986-996, 1962.
DOI : 10.1103/PhysRev.126.986

G. Zaccai, Neutron scattering perspectives for protein dynamics, Journal of Non-Crystalline Solids, vol.357, issue.2, pp.615-621, 2011.
DOI : 10.1016/j.jnoncrysol.2010.06.060

S. Magazu, F. Migliardo, and A. Benedetto, Mean square displacements from elastic incoherent neutron scattering evaluated by spectrometers working with different energy resolution on dry and hydrated (H2O and D2O) lysozyme. The journal of physical chemistry, pp.9268-9274, 2010.

D. Vural, L. Hong, J. C. Smith, and H. Glyde, Motional displacements in proteins: The origin of wave-vector-dependent values, Physical Review E, vol.91, issue.5, p.52705, 2015.
DOI : 10.1103/PhysRevE.91.052705

K. Wood, Dynamical Heterogeneity of Specific Amino Acids in Bacteriorhodopsin, Journal of Molecular Biology, vol.380, issue.3, pp.581-591, 2008.
DOI : 10.1016/j.jmb.2008.04.077

URL : https://hal.archives-ouvertes.fr/hal-00518913

G. Zaccai, How Soft Is a Protein? A Protein Dynamics Force Constant Measured by Neutron Scattering, Science, vol.288, issue.5471, pp.1604-1607, 2000.
DOI : 10.1126/science.288.5471.1604

A. Contributions, G. Z. , and A. Y. , initiated the study, organized sample and experimental design, wrote the manuscript with input from all authors performed and analyzed the neutron experiments with help from