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A posteriori analysis of finite element discretizations

of a Naghdi shell model

by Christine Bernardi!, Adel Blouza?, Frédéric Hecht!, and Hervé Le Dret!

Abstract: We consider two finite element discretizations of the Naghdi equations which
model a thin three-dimensional shell. Both of them are derived from a mixed formulation
of these equations, and a penalty term is added in the second one. The a posteriori analysis
of the discrete problems leads to the construction of error indicators which satisfy optimal
estimates. We describe a mesh adaptivity strategy relying on these indicators and we
present some numerical experiments that confirm its efficiency.

Résumé: Nous considérons deux discrétisations par éléments finis des équations de
Naghdi qui modélisent une coque tridimensionnelle de faible épaisseur. Les deux problémes
discrets sont construits & partir d’une formulation mixte de ces équations, avec un terme de
pénalisation supplémentaire dans le second. L’analyse a posteriori de ces problémes méne
a la construction d’indicateurs d’erreur qui satisfont des estimations optimales. Nous
proposons une stratégie d’adaptation de maillage basée sur ces indicateurs et présentons
quelques expériences numériques qui confirment son efficacité.
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1. Introduction.

Naghdi’s equations model linearly elastic shells. In their classical formulation, they
constitute a system of linear second-order partial differential equations which is elliptic
when the shell is clamped on part of its boundary: The unknowns are the covariant
components of the displacement of the shell and of its rotation. A further constraint
is enforced on the rotation which must be tangent to the shell; this constraint is easily
expressed in covariant components. However, such a formulation does not accomodate
curvature discontinuities on the shell midsurface.

The formulation of Naghdi’s model which is used here was introduced by Blouza [7] and
Blouza and Le Dret [10]. It relies on the idea of using a local basis-free formulation in which
the unknowns are described in Cartesian coordinates instead of covariant or contravariant
components as is usually done in shell theory, see for example [2]. Such a formulation
is able to handle shells with a W2*-midsurface. In particular, midsurface curvature
discontinuities are allowed. Moreover, in view of the discretization and as first proposed
in [8], a Lagrange multiplier can be introduced to handle the tangency requirement on the
rotation. This leads to a well-posed mixed variational problem.

The literature on finite element approximation of two-dimensional shell models is
large. Let us mention a few approaches. Concerning conforming methods, the Ganev and
Argyris triangles provide interpolation by polynomials of degree 4 and 5, with high order
convergence in ch?* when the solution is smooth enough. These elements are used for ex-
ample to study the linear Koiter model for ¢’3-shells in the classical covariant formulation,
see [1, Part. II, Chap. 1]. Such methods are also applied to approximate geometrically
exact shell models in [11]. The Argyris elements are used in [18] for numerical analysis of
Koiter’s model with little regularity in the Cartesian formulation proposed in [9]. We also
mention the 3-dimensional shell element approach, see [13]. Still in the context of shells
with little regularity, i.e., when the midsurface is of W2-regularity, a non conforming
DKT (discrete Kirchhoff triangle) element is used in [21] to approximate Koiter model.
Other works [19][20] concern the finite element discretization of shell problems with domain
decomposition.

In this work, we are interested in two other finite element discretizations relying on
the mixed formulation and already studied in [8]. In the second one, a penalty term is
added to the mixed formulation as standard for saddle-point problems, see [16, Chap. I,
§4.3], which leads to an efficient algorithm for solving the resulting linear system. The
convergence of both discretizations is proved in (8], where a complete a priori analysis is
performed and numerical tests are presented.

A posteriori analysis is now an important tool for improving the efficiency of the
discretization and, up to our knowledge, has not yet been performed for the discretization
of shell models (we refer to [12] for a first work in this direction concerning a plate model).
Its first aim is mesh adaptivity. Indeed, a much smaller number of degrees of freedom is
needed to obtain a given accuracy when the final mesh is adapted to the solution, and the
construction of such a mesh relies on error indicators which only depend on the discrete
solution, hence can be computed in an explicit and most often non expensive way. A
posteriori estimates prove that these indicators provide a good representation of the local
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error, see [22] for a detailed presentation of all this. So we perform the a posteriori analysis
of the first discretization and prove upper and lower bounds for the error as a function of
residual type indicators.

In the case of penalty methods such as described in [16, Chap. I, §4.3] for instance,
it has been proved in [5] that a posteriori analysis also provides an evaluation of the error
issued from the addition of a penalization term (see [4] for another application). This
requires two kinds of error indicators: One indicator is linked to the penalization and
a family of “local” indicators to the finite element discretization. The main idea of this
approach is to uncouple as much as possible the evaluation of the errors stemming from the
penalization and from the finite element discretization and to choose the penalty parameter
in order that the two errors are of the same order. In this case also, we prove optimal
estimates for the error.

In a final step, we describe the strategy which is used in both cases for adaptivity.
Numerical experiments are in good agreement with the analysis. They justify our choices
of discretization and lead to a comparison of the two methods that we propose.

An outline of the paper is as follows.
e In Section 2, we recall the geometry of the midsurface and Naghdi’s equations. Next,
we write the mixed formulation and recall its well-posedness.
e Section 3 and 4 are devoted to the description and the a posteriori analysis of the finite
element discretizations without and with addition of a penalty term, respectively.
e The adaptivity strategy and numerical experiments are presented in Section 5.



2. Presentation of the model.

As standard in the present context, Greek indices and exponents take their values
in the set {1,2} and Latin indices and exponents take their values in the set {1,2,3}.
Unless otherwise specified, the summation convention for repeated indices and exponents
according to this set of values is assumed (but does not apply to h and p).

Let w be a bounded connected domain of R? with a Lipschitz—continuous boundary
Ow. We consider a shell whose midsurface is given by S = ¢(@w) where ¢ is a one-to-one
mapping in W%%(w)3 such that the two vectors

aq(z) = (Gap)(x)
are linearly independent at each point x of @. Thus,

a1(x) A az(z)
lai(z) A az(z)|

as(z) =

is the unit normal vector on the midsurface at point ¢(x). The vectors a;(x) define
the local covariant basis at point ¢(z). The contravariant basis a'(z) is defined by the
relations a; - @’ = §] where 67 is the Kronecker symbol. In particular as(x) coincides with
a?(x). Note that all these vectors belong to W1*°(w)3. The first and second fundamental
forms of the surface are given in covariant components by

Gap = Qg - Qg and bag = a3z - Oga,.

We set a(z) = |ai(x) A az(x)|? so that 1/a(x) is the area element of the midsurface in
the chart . Similarly, the length element £ on the boundary dw is given by \/a®f7,73,
the a®® = a® - a® being the contravariant components of the first fundamental form and
(71, T2) being the covariant coordinates of a unit vector tangent to dw. We also denote by
e the thickness of the shell.

Let a®?7? denote the contravariant components of the elasticity tensor. We consider
here the case of a homogeneous, isotropic material with Young modulus £ > 0 and Poisson
ratio v, 0 < v < %, where these components are given by

E

a®Bro — 01 7) (a*aP? + a*°aPP) +

v
— a®*Par?, (2.1)

We note that each component of the elasticity tensor belongs to L*(w). Moreover, this

tensor satisfies the usual symmetry properties and is uniformly strictly positive: There
exists a positive constant cg such that, for all symmetric tensors 7 = (74g) in R2%2,

a®PP? (2)To5Tos > co |T|? for a.e. ¢ € w. (2.2)
In this context, the covariant components of the change of metric tensor read
1
Yap(u) = i(aau cag + 0pgu - a,q), (2.3)
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the covariant components of the change of transverse shear tensor read
1
daslar)= i(auu caz+7T-ag), (2.4)
and the covariant components of the change of curvature tensor read
1
Xap(u,T) = 5(80:” - dgas + Ogu - Opaz + Oa1 - ag + g7 - A4 ), (2.5)

see [7] and [10]. Note that all these quantities make sense for shells with little regularity,
and are easily expressed with the Cartesian coordinates of the unknowns and geometrical
data.

We assume that the boundary dw of the chart domain is divided into two parts: g
on which the shell is clamped and the complementary part 4; = dw \ 7yp on which the shell
is subjected to applied tractions and moments. From now on, we suppose that - has a
finite number of connected components and a strictly positive 1-dimensional measure. To
take into account the boundary conditions, we define the space

H) (w)={pn€ H'(w); p=00n}. (2:6)

Let us now consider the function space, introduced in [7] and [10], which is appropriate in
the context of shells with little regularity

V(w) ={V = (v,s) € H} (w)’ x H} (w)*; s-a3 = 0 in w}. (2.7)

This space is endowed with the natural Hilbert norm

1/2
IVivew) = (Il wys + 1811 ys) " (2.8)

We now recall the variational formulation of the problem corresponding to the linear
Naghdi model for shells with little regularity. For data (f, N, M) in L?(w)? x L2(7;)? x
L?(;)3, it reads

Find U = (u,r) in V(w) such that
YW eV(w), a(U,V)=L(V), (2.9)

where the bilinear form a(-,-) is defined by

o(U.V) = [ {6 [raa w)pm @) + E5xas(0)xn (V)]

. (2.10)
2o Vaaﬁaﬁ(U)csgg(V)}ﬁ da,
and the linear form £(-) is given by
L(V)=/f-v\/ada:+/(N-'v-i—M-s)Ed.’T. (2.11)
w it
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The data f, N and M represent a given resultant force density, an applied traction density
and an applied moment density, respectively. In the above formulas, the thickness e of the
shell is assumed to be constant and positive.

The form L is clearly continuous on V(w) and its norm satisfies, with obvious notation,

1L < e (I f 2wy + 1NN L2(ry)s + 1M 22¢y0)2)- (2.12)

We refer to [7] and [10] for the proof of the following ellipticity property: There exists a
constant ¢, > 0 such that

WeVw), a(V,V) eVl (2.13)

All this leads to the next statement (which is still valid for slightly less regular data, see
[3, Thm 2.2], however we have no application for that).

Theorem 2.1. For any data (f,N,M) in L?*(w)? x L?(y1)® x L?*(11)?, problem (2.9)
admits a unique solution U in V(w). Moreover this solution satisfies

1Ullv(w) < ell£]l- (2.14)

In order to describe the discrete problem, we observe that the tangency constraint
s - a3 = 0 which appears in the definition of V(w) clearly cannot be implemented in a
standard way for a general shell. So the approach used in [8] consists in handling this
constraint via the introduction of a Lagrange multiplier. Let us consider the relaxed

function space
X(w) = x'lqul,o(u))3 X H;o (w)3, (2.15)

still equipped with the norm defined in (2.8) which is now denoted by || - [|x(.). We also
set M(w) = H) (w). Obviously, the forms a(-,-) and L(-) defined in (2.10) and (2.11),
respectively, are also defined (and continuous) on X(w) x X(w) and X(w). We consider the
variational problem

Find (U,v) in X(w) x M(w) such that

YV € X(w), a(U,V)+b(V,¢)=L(V),

(2.16)
Vx € M(w), b(U,x) =0,
where the bilinear form b(-,-) is now defined by
BV, x) = f B liici Pl . (2.17)
w

Since a3 belongs to W1:°°(w)3, the form b(-, -) is continuous on X(w)xM(w). Moreover,
the following characterization holds

V(w) ={V = (v, s) € X(w); Vx € M(w), b(V,x) = 0}. (2.18)
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The following inf-sup condition on the form b(-, -) is easily derived by taking V = (0, xas):
There exists a positive constant ¢y such that the following inf-sup condition holds

b(V,
Vx € M(w), sup bVix) > ¢ |1l i1 (w)- (2.19)

vexw) IV Ixw)
Combining all this with the ellipticity property (2.13) leads to the next result.

Theorem 2.2. For any data (f, N, M) in L?*(w)® x L?(v;)® x L?(y)?, problem (2.16)
admits a unique solution (U,) in X(w) x M(w). Moreover this solution satisfies

1Ullxw) + [1¥ll 1) < ell£, (2.20)
and its part U is the solution of problem (2.9).

Remark 2.3. Since we are aiming for simplicity of implementation, we have made no
attempt to make the duality term intrinsic. In fact, it does depend on the chart, whereas
the other terms do not. This could arguably be considered to be a poor choice, especially
if a chart is used that gives much more weight to one part of the shell compared to the
rest. An intrinsic choice that obviously works is

bV, x) = / a®P0,(s - a3)dpx Va d. (2:21)

Remark 2.4. It can also be noted that the quantity a(U, V) can be written in another
form which seems more appropriate for the implementation, since it uncouples the two
components v and s of the test function V. Indeed, we introduce the contravariant com-
ponents of the stress resultant

nf? (u) = ea®PP? y,5(u), (2.22)
of the stress couple
m(U) = 087 xop(U), (2.23)
and of the transverse shear force
tPU)=e : = Va“ﬁ Sa3(U). (2.24)

We also observe that
: 1
Xpo (V) = 0p(v) + Ypo (), with 6, (v) = 5(3,91} - Osa3 + 0,v - Jpaz). (2.25)

Thus, a(U,V) is equal to

o(UV) = [ (0o 0) + M 0)a (0) + 2 (0)350 - 05) V d
w (2.26)
-I-/ (m”"(U)fypa(s) +8(U)s - ag) Va dz,
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where the first integral only involves v and the second one only involves s. By using this
new form, together with the symmetry properties n?? (u) = n??(u) and m*°(U) = m??(U),
it is readily checked that problem (2.16) is equivalent to the following system of partial
differential equations (here, v = (v1, ;) denotes the unit outward normal vector to w)

( —Bp((np"(u)aa +mPo (U)8,a3 + t"(U)ag)\/E) = Pl S
—8,(m*?(U)ay+/a) +t¥(U)ag va — dppthaz = 0 in w,
r-az3=>0 in w,

{u=r=0 on 7y, (2.27)
=0 on 7,
vy (w)ay +mP? (U)dyas + t#(U)ag)ya = N ¢ on 1,

( Vp(mP? (U)ag/a+ 8, as) = M E on ;.

When the form b(-,-) is replaced by the intrinsic form b(-,-) defined in (2.21), the term
in 9 in the second line of this system is replaced by —a38,(a”°8,v+/a), hence involves
the Laplace-Beltrami operator on the shell midsurface. The Lagrange multiplier acts as
a normal force in the flexural equation. This force prevents pinching, which in this case
would correspond to 7 - a3 # 0. A similar classical formulation of the boundary value
problem for the Koiter model in covariant components can be found in [14, Chap. VII,
§7.1] for instance.

The two discretizations that we intend to study are constructed by the Galerkin
method from problem (2.16), with addition of a penalty term for the second one. Note
that a stabilization term can also be added in the first line of problem (2.16); we refer to
[8, §5.1] for the analysis of the corresponding discretization that we do not consider in this
work.



3. A posteriori analysis of the first discrete problem.

From now on, we assume that w is a polygon. We introduce a regular family (7)s of
triangulations of w (by triangles), in the usual sense that:
e For each h, w is the union of all elements of 73;
e The intersection of two different elements of 7}, if not empty, is a vertex or a whole edge
of both of them;
e The ratio of the diameter hx of any element K of 7; to the diameter of its inscribed
circle is smaller than a constant ¢ independent of hA.
We make the further non restrictive assumption that 7, is the union of whole edges of
elements of 7. As is standard, h denotes the maximum of the diameters hy, K € 7. In
what follows, ¢, ¢, ... stand for generic constants which may vary from line to line but are
always independent of h.

For each nonnegative integer k and any element K of 73, let Pr(K) denote the space
of restrictions to K of polynomials with total degree < k. We thus define the basic discrete

space
My, = {xn € H'(w); YK € Th, xnjx € P1(K)}, (3.1)

next the spaces that are involved in the discrete problem
3 3
M) =M, NH (w), Xp=(MP)" x (M) (3.2)
Indeed, applying the Galerkin method to (2.16) leads to the problem
Find (Up,¥n) in Xp, x M° such that

VVi € Xny  a(Un, Vi) + 0(Vh, ¥1) = L(V),

(3.3)
VXh € Mzoy b(Uh’ Xh) = 0.

We refer to [8, Thm 5.3 & Prop. 5.8] for the following results of a priori analysis.

Proposition 3.1. There exists hg > 0 such that, for all h < hg and for any data (f, N, M)
in L?(w)3x L?(~1)3 x L?(11)3, problem (3.3) admits a unique solution (U, ) in Xp x M]°.
Moreover, this solution satisfies

1Unllx(w) + 1¥nllmrw) < cll£ll, (3.4)

and, if the solution (U, ) of problem (2.16) belongs to (H%(w)® x H?(w)3) x H?(w), the
following a priori error estimate holds

”U - Uh”X(w) =} ”¢ - d’h”Hl(w) = C(U': 1/«’) h') (3'5)
for a constant ¢(U, 1) only depending on the solution (U, ).
The a posteriori analysis of problem (3.3) relies on the residual equations

YW e X(w),YVi € Xn, a(U — Un, V) +b(V, ¥ — tp)
= E(V - Vh) - G(Uh, V- Vh.) - b(V - Vhawh)a (36)
Vx € M(w),Vxn € M}°, (U — Un,x) = —b(Un, X — xn)-
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As usual for this type of problem, see [22, Chap. 3], the construction of error indicators
from these equations requires approximations of the data and of the coefficients.

APPROXIMATION OF THE DATA. Let &} denote the set of edges of elements of 7;, which
are contained in ¥;. From now on, we consider an approximation f, of f in Z; and
approximations Ny, and My of N and M in Z}l, where the spaces Zy and Z} are defined
by

Zy = {gn € L*(w)% VK € Ty, gn i € Po(K)?}, 37)
Z,ll E— {Ph S Lg("n)s; Ve € E;, Ph.|e (S 'Po(e)s}. ’

APPROXIMATION OF THE COEFFICIENTS. For reasons that will appear later on, we intro-
duce approximations of the scalar coefficients a®?, a®?P? | \/a and ¢ in the space My, that
we denote by azﬁ , ag‘g P7 (a)n and £, respectively. We make the further assumption
(which is usually satisfied for Lagrange finite elements, see [6, Th. IX.1.5] for instance)
that, if g denotes any of these quantities and gy, its approximation,

lgnllz= () < cllgllwr.o@)- (3.8)

Similarly, we consider approximations a} of the vectors aj, and d” of the 8, a3 in the space

(Mh)s. We also agree to denote by 7/ 5(-), 623(-) and x[5(-) the components of the tensors
introduced in (2.3) to (2.5) where all coefficients are replaced by their approximations. For
instance, 725(-) is given by

1
Vog(u) = E(aau -af + pu - af). (3.9)

This leads to the definition of an approximate linear form
Ly(V) =/ I -'U(\/a)h dx 4 (Np, -v+ M, - s) ¢y, dr. (3.10)
w m
and also of approximate bilinear forms

an(U,V) = / {eaﬁﬁ o [vg,e(um‘a(v)+%x2g(U)xﬁa(V)]

w

+ 2e

14 Vazﬁ533(U)533(V)}(\/a)h de, (3.11)

be(V,x) =f(8as-a§ +5-dl)0ax dz.

To go further, we recall some standard notation.

Notation 3.2. For each element K of 73,
(i) £k denotes the set of edges of K which are not contained in %, and £} the set of
elements of £x which are contained in 7;;
(ii) for each e in £k, v = (v1, 1) is a unit vector normal to e, with the further assumption
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that, when e belongs to £%, v is outward to w;

(iii) for each e in g, h. stands for the length of e;

(iv) for each e in £k \ £k, []e denotes the jump through e (making its sign precise is
needless);

(v) wk is the union of triangles of 7, that share an edge with K;

(vi) Ak is the union of triangles of 7, that intersect K.

We also recall from [6, Th. IX.3.11 & Cor. IX.3.12] the existence of a Clément type
operator R, which maps H), (w) into M}}° and satisfies, for all functions x in H} (w), each
K in 7, and each edge e of K which is not contained in 7y,

X — Rexllz2(x)y + hi [x — Rexlar k) < chi xllarag), fir10]
1 .
Ix — Raxllzae) < ché |Ixllar(ax)-
Indeed, the idea is now to take Vj, equal to (Rpv, Rps) and xp equal to Rpx in (3.6).
The next three lemmas are devoted to the evaluation of the error stemming from the
approximation of the data and the coefficients.
Lemma 3.3. The following estimate holds for any V in X(w) and with V;, = (Rpv, Ris),
|(£ = Lr)(V — Vi)

=i (( Z (Wi If — TullZaxys + Z he ([N — Nh”iz(e)s + ]| M = Mh“%ﬂ(e)a)))
KeT, ecEl

+ (hIvVa = (Va)ullpoe(wy + B 1€ - gh”L‘”(‘Tl))HEH) VI x(w)-

B

(3.13)

Proof: We have
(L= Lp)(V — V)

- / F - (v~ Raw) (Va — (V) da + f (f - ) - (v — Raw) (Va)nda
+f (N - (v—Ryw) + M - (s — Rps)) (€ — &) dr

+/ (N-Nh)-(v—th)Ehdr+/ (M — My,) - (s — Ri8) £r dr.

So the desired estimate follows from Cauchy—Schwarz inequalities combined with (3.8) and
(3.12).

Lemma 3.4. The following estimate holds for any V in X(w) and with Vs, = (Ryv, Rps),

(@ = an)(Un, V = Vi)l < ¢ (IIVa — (Va)llzow)

afpo _ ,ofpc

+ su a —a () +  SU a®? — 0% 100,
p | n e+ sup | b 2= (w) (3.14)

1<, 0,p,0<2

+ sup |lak — afllpe(w)z + sup [[Gaas — dﬁ”bm(w)e') L1V || xw)-
1<k<3 1<a<2

10



Proof: We only give an abridged proof of this technical result. We use estimate (3.4) and
observe from (3.12) that ||V — Vi ||x(.) is bounded by a constant times ||V||x(.). Next:

1) By the same arguments as in the previous proof and (3.8), the difference between
a(Un,V — V3) and this same form with the coefficients /a, a®?? and a®? replaced by
their approximations is bounded by

c(lvVa— (Vaallzow) +  sup  [[a®*7 —aPP7 | ooy
1<a, 3,p,0<2

+ sup [a®® - afP|| Lo ) 11 IV I1)-
1<a,3<2

2) We use the triangle inequality
7as (wn) Va5 (ur)llL2@w) < |8atinllL2(wysllas—ahll Lo wye +185unll 12 @)s ]| @a—a | oo s

and similar ones with uy, replaced by v — vi, va5(un) replaced by xas(Us) and so on.
Combining all this and using (3.4) lead to the desired estimate.

Lemma 3.5. The following estimates hold
(i) for any V in X(w) and with V;, = (Rpv, Rps),

(b= ba)(V ~ Vi, )| < ¢ (llas — @}l zoo(wys + [10aas — @2l oo wys) L] |V IIxw)s (3-15)
(ii) for any x in M(w) and with xp, = Ry,
(b= br) (U, x — xn)| < c(llas — a3l oo (w)s + 183 — dill L (wys) L] x|l (). (3.16)

Proof: Owing to the definition (3.11) of by (-, ), we have the expansion

6=5)(V2) = [ (Ous (as —al) + 5 - (daas ) dux da-

w

Combining this with (3.4) yields (3.15) and (3.16).

From these lemmas, we now define the quantities linked to the local approximation
error on the data: For each K in 7p,

1
efd =hic|f — Fullzegoe + Y B2 (IN = Nullpaey + |M — Mill2ep)s  (3.17)
eES}c

and also to the global approximation error on the coefficients:

1 affpo
e = (IVa = (Va)hllzm ) + b 16— thlloay t s (16— g
<a,8,p,0<

+ sup ||ﬂaﬁ—aﬁﬁ||m(w)+ sup ||ak—ﬂ«2||Lw(u)3
1<a,8<2 1<k<3

+ sup_[|0aas — dhflzeuye ) £
1<a<2
(3.18)

a1k



We are now in a position to prove the a posteriori error estimate. In order to state it,
we introduce the error indicators. For simplicity, we use Remark 2.4 to write a(U, V') and
observe that a smular form holds for a,(U, V'), with obvious notation for the quantities

nf?(-), m2°(-), t2(-) and 0 ",() (in comparison with (2.22) to (2.25), all coefficients are
replaced by thelr approx1mat10ns) For each K in 7y, the error indicator ng is defined by

Nk =K1+ N2 + Tk3, (3.19)
with

nK1 = hi “fh(\/—)h"‘a ((nf? (wn)al + mb? (Un)dl + ¢, (Un)a%) (vVa)n) | L2 (k)

+ 3 RE([np(f (wn)al + mf (Ul + 88 (Un)ak) (VA llzaep
GESK\El

+ 3 hE | N3 £, — vp(nf7 (un)al + m” (Uy)d® + 5 (Un)al) (Va)l oeye,

eef},

(3.20)
k2 = hi |0,(mf7 (Un)al(Va)s) — th (Un)a (Va)u + 8, (ah0,tn) — ddptbnll L2 i)

+ 3 R [y (Un)ak(Va +vpBpnal] e

ecEx\EL
% po h h
+ Z hé “Mheh — Vpmy, (Uh)a'or(\/a)h '_Vpap":bha’3||L2(e)3:
eES}(
(3.21)
Nks = hi |8a(Garh - @k + 7 - d2)| L2y
1 1
+ > hE0u(rn - ab)ellzae + Y hE 18u(r - aB)]lL2e)-
CEEK\E}( eEE}(
(3.22)

Note that these indicators are easy to compute since they only involve polynomial functions.
All of them are of residual type: Indeed, when suppressing all the indices and exponents
h in their definitions and looking at system (2.27), we observe that they cancel.

Theorem 3.6. For any data (f, N, M) in L*(w)3 x L%(y1)® x L%(11)3, the following
a posteriori error estimate holds between the solution (U,) of problem (2.16) and the
solution (Up,vy) of problem (3.3)

1 = Unlixy + 19 =l <e (3 @R+ +2). (3.29)
KGTh

Proof: Standard arguments combined with the ellipticity property (2.13) and the inf-sup
condition (2.19) yield that the error is bounded by a constant times the norm in X(w)’ of
the right-hand side of the first line in (3.6) plus the norm in M(w)’ of the right-hand side
of the second line. We then use triangle inequalities combined with Lemmas 3.3 to 3.5 to
replace L(V — V) by Lp(V — V), a(Un,V — V) by ap(Up,V — V},) and the same for the

12



two terms involving the form b(-,-). So it remains to bound the three quantities

Eh(v = ’Rh'v 0) == ah(Uh, ('U S th 0))

Ay = sup
veH] (w)? vl 1 (s
Ao — Lr(0,5 — Rp8) — ap(Un, (0,8 — Rp8)) — bp((0,8 — Rps), ¥n)
2= sup
s€H1 (w)? lIsll e (w)e>
br(Un, x —
P p—— h(Un, X ’th)‘
X EM(w) ”X”Hl(w)

(note indeed that by ((v,0),y) is zero).
1) Setting w = v — Ryv and using once more the symmetry properties of the nf° (-) and
mb? (-), we have

Lp(v — Rpv,0) — ap(Up, (v — Rpv,0)) = / fn-w(Va), dz +/ Ny, - wépdr
w 71

- / (7 (1) B0 -l + ml” (Un) By - d2) + £(U )0 - o ) (V) de

By cutting the integrals on w into the sum of integrals on the K in 73 and integrating by
parts on each K, we derive

ﬂh(vﬁRh‘U,O)—ah(Uh,(’U—th,O))=/fh-w(\/a)hd$+] Ny -wlpdr

!

+ > ( f 17 (un)al + mf7 (Un)d? + 15 (Un)ak) (Va)s) - wdz (3.24)

KeTy,

—f vo(nh? (up)al + mf (Uh)dg+t2(Uh)a§)(\/a)h"U-’dT)
oK

Using Cauchy-Schwarz inequalities combined with (3.12) leads to

2) Setting t = s — Ry s, we also have

Lr(0,5 — Rps) — an(Up, (0,8 — Rps)) — bp((0,8 — Rps), 9¥n)
My, -t &, dr — f (mﬁ"(Uh)apt cal + (Ut - ag)(ﬁ)h dz

T w

_ f (Bat - al +t - dl)Oatn da.
The same integrations by parts as previously and (3.12) thus lead to

A2 SC( Z T’_%{Q)%

KeT,
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w=

3) Finally, deriving that A3 < ¢ () e 7ks)” is obvious when compared with the two

previous steps.

As is standard, see [22, §1.2], the converse estimate relies on inverse inequalities and
involve local norms defined in an obvious way by restriction.

Theorem 3.7. For any data (f,N,M) in L?(w)® x L?(71)® x L?(m)3, the following
bound holds for all indicators ng defined in (3.19) — (3.22),

nkx <c (HU — Unllx(s) + 1¥ = ¥l ey + (D €92)% + ng))- (3.25)

rCwgk

Proof: We only give an abridged proof of the estimate for ng;. We first write it in the
more compact form

1 1
ni1 = b | Fallzy + Y hEN[Ghlellzzey + D, hZ [ Nuln — GhllLa(eps-
ecEk\EL ecEl

Next, we observe that equation (3.24) still holds with Ry v replaced by 0 and we first take
in this equation v equal to

| Fyyg on K,
7o onw)\K,

where 1Y g denotes the bubble function on K. Thus, all the terms in the right-hand side
of (3.24) vanish but the integral on K. Now, since F} is a polynomial of degree < 3,
appropriate inverse inequalities [22, Lemma 3.3] combined with Lemmas 3.3 to 3.5 lead to

hi | Frllz2xys < ¢ (||U — Unllxx)y + e + 5516))'

Similarly, for any edge e shared by two elements K and K', we take v in (3.24) equal to

_ { Lex([Ghlewe) onke{K,K'},
0 onw\ (KUK'),

where 1), is the bubble function on e and L., is a lifting operator from polynomials
on e vanishing on Je into polynomials on K vanishing on 0K \ e constructed by affine
transformation from a fixed lifting operator on the reference triangle. This leads to a
bound for the second term of nk. Finally, for each e in £}, we take v in (3.24) equal to

o Lew((Nnln —Gr)pe)  on K,
0 onw\ K,

and this gives the bound for ng;.

It follows from Theorems 3.6 and 3.7 that, up to the terms EE?) and sgf), the full

error is equivalent to the (3 xcr ?ﬁ{)%. So the estimates that we have proved are fully

}? ff) for a regular shell are most

optimal. Moreover the quantities € ) for smooth data and ¢

often negligible. Finally, estimate (3.25) is local, up to the term e,(lc) (and this is only for
simplicity). So it can be thought that the nx provide a good representation of the local
error and thus form an efficient tool for adapting the mesh.

14



4. A posteriori analysis of the second discrete problem.

We keep the notation of the previous section. Following now the approach in [8, §5.1],
we introduce a penalty parameter €, 0 < €, < 1, and define the bilinear form c(-,-) by

(%) = f Bath ux . (4.1)

Thus we consider the following discrete problem, constructed by adding to (3.3) a penal-
ization term

Find (U}, 97) in X x M}° such that

VVh € Xp, G(U;I:,Vh) =+ b(Vha ¢£) = E(Vh)a

4.2
Vin € M®,  B(UZ, x4) = €5 c(t?, Xn). (42)

The main and well-known advantage of this problem, see [16, Chap. I, §4.3] for instance,
is that it allows for uncoupling the two unknowns U and 1, and so solving only the
equation of Uy, which is less expensive than problem (3.3). Indeed, let II; denote the
orthogonal projection operator from H%u (w) onto M)° associated with the scalar product
c(+,+). Then, the second line of problem (4.2) can be written equivalently

1
’!f)g = E_ Hh('l"z . G3). (43)
p

Inserting this last equation in the first line of (4.2) leads to the problem

Find U! in X}, such that

1
VWi € Xp, a(UF, Vi) + = c(IIh(ri -a3),p (s - 0.3)) = (Vi) (4.4)
P

To prove the well-posedness of problem (4.2), we recall the following ellipticity prop-
erty from (8, Lemma 3.3]: There exists a constant ¢ > 0 such that

YW = (v,s) € X(w), a(V,V)+c(s-a3z,s-a3)>c |]V||,2{(w). (4.5)

To go further, we need a technical result which involves the Lagrange interpolation operator
T, at the vertices of all elements of 7}, with values in M, (note that this operator preserves
the nullity on vp).

Lemma 4.1. Assume that the function a3 belongs to H®(w)3, for a real number s > 2.
The following estimate holds for any sy, in (M?;o)a ;

ISh iy — Ih(sh . a.3)|H1(w) < ch Ish’Hl(w)3~ (4.6)

Proof: We recall from [6, Lemme IX.1.2] for instance the estimate, for all K in 7p,
|8k - @3 — Zn(sh - a3)|mr (k) < chi |sh - aslu2(k)-

15



We observe that, since sy, is affine on K,
(aag(sh . ag))lK = OuSh - 3,30.3 + Bﬁsh - Jaas + Sy - aagag.

Combining the two previous lines yields that, for any pair of positive real numbers (g, ¢*)
such that % + q% = %,

|sh - @3 —Zn(sn - a3)|m (k) < chie ([sullm gz llasllwre )z + 1sallLe (g llasllwzaxys)-
Summing the square of this inequality on the K and using a Holder inequality give

|sh - @3 — Tn(sh - as)| gy < ch (|Isnllm wpllasllwreowys + ISkll et w)sl@sllwzaq)s)-
Using the imbedding of H*(w) into W (w), choosing ¢ such that H*(w) is imbedded
in W29(w) and using the imbedding of H'(w) into the corresponding L9 (w) lead to the
desired estimate.

By noting that
c(TTn(sp - as),In(sh - a3)) — c(sh - as, s - a3)
= c((ﬂh - Id)(sh -az — Ih(sh 3 33)), Sp - 33)

we derive from (4.5) and Lemma 4.1 that

VVh = ('Uh, Sh) € Xh, G(Vh, Vh) + c(IIh(sh - (13), Hh(sh 2 (13)) 2 (C - C’h) HVh”%(w), (47)

so that this form is elliptic for & small enough. We also recall from [8, Thm 5.7] the inf-sup
condition: There exists a constant ¢ > 0 independent of h such that

Vxn € M]°, sup mb(vh’Xh)
vieXn [Vallxcw)

> c|lxnll 1 w)- (4.8)
Combining all this with [16, Chap. I, Thm 4.3] leads to the well-posedness result.

Proposition 4.2. Assume that the function az belongs to H*(w)3, for a real number
s > 2. There exists h, > 0 such that, for all h < h, and for any data (f,N,M) in
L?(w)® x L2(y1)3 x L*(71)3, problem (4.2) admits a unique solution (UL, 4}) in Xp x M}°.
Moreover, this solution satisfies

1UF — Unllx(w) + ¥} — ¥rllarw) < cep £ (4.9)

Remark 4.3. Writing a more sophisticated version of Lemma 4.1 yields that, when s > 1,
inequality (4.7) can be replaced by

a(Vi, Vi) + ¢(IIn(sh - @3),In(sp - @3)) > (c— dhh ||Vh||§(w).

16



Thus Proposition 4.2 still holds when a3 belongs to H*(w)?, for a real number s > 1,
however for a lower value of h,.. So the previous result applies to piecewise regular shells
with curvature discontinuities.

To perform the a posteriori analysis of problem (4.2), we introduce the next problem:
Find (UP,¢P) in X(w) x M(w) such that

YV e X(w), a(UP,V)+b(V,yP) = L(V),

Vx € M(w), bU?P,x) = epc(¥?, x), (4.10)

It follows from (4.5) and (2.19) that it admits a unique solution. Thus, following the
approach of [5, §3.3], we prove an upper bound for the error in two steps, relying on the
triangle inequalities

IU = U llx(w) < IIU = UP|lxqw) + IUP = UF llx(w) (4.11)
1Y = Yrllw) < 1 — Pl ) + 197 — il w)-

To estimate the penalization error, we observe that the following residual equations
are satisfied

W eX(w), a(U-UP,V)+b(V,9p—4P)=0,

4.12
Vx € M(w), bU —U?,x) = —&pc(¥*,x), (a2

So we are led to define the error indicator
n° = &p Y5 | i1 (w)- (4.13)

Theorem 4.4. There exists a constant ¢ independent of p and h such that the following a
posteriori error estimate holds between the solutions (U, 1) of problem (2.16) and (U?, )
of problem (4.10)

IU — UPllxu) + 19 = 9Pl w) < e (1P +ep 197 — Yillnwy) - (4.14)

There exists a constant ¢’ independent of p and h such that the following bound holds for
the indicator n? defined in (4.13)

n° < U = UPllx) + & 197 — ¥4l a2 w)- (4.15)
Proof: Using (2.13) and (2.19), we easily derive from (4.12) (see [16, Chap. I, Cor. 4.1])

that
U - UP|Ixw) + 1Y — Pl g1 () < cep 9P| 1 (w)-

On the other hand, taking x equal to ¥? in (4.12) yields
ep [¥Pla1(w) < c|lU = UP|lx(w)-
Estimates (4.14) and (4.15) are then easily derived thanks to triangle inequalities.
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To estimate the discretization error, using once more the ideas in [5, §3.3|, we introduce

the space
Y(w) = X(w) x M(w), (4.16)

and the bilinear form defined on Y(w) x Y(w) by

Ap(U, 45V, x) = a(U, V) + b(V,9) + b(U, X) — &p c(th, X)- (4.17)

Lemma 4.5. There exists a constant p > 0 such that the following inf-sup condition holds

Ap(U, % Vi x)
WU EEE)y R . Z 1 (IUllxw) + 1¥llmre)- (418
S wvoeYw) IV Ixw)y) + Ixll o) (IVlxw) + 1l m @) (418)

Proof: For any (F,G) in the dual of Y(w), it can be checked from (4.5) and (2.19) that
the problem: Find (W, €) in Y(w) such that

YV e X(w), a(W,V)+bV,€) =F(V),

(4.19)
VX € M(w): b(W’ X) —€p C(f: X) = g(X)1
has a unique solution. Moreover, using (2.19) in the first line of (4.19) yields
e l€ll ) < clWllxqw) + I1F llxw) - (4.20)
We now proceed in two steps.
1) Owing to the inf-sup condition (2.19), there exists a Wy in X(w) such that
Vx € M(w), b(Wo,x) =¢epcl(€,x) +G(x)
and
¢t [Wollxw) < &p €l @) + 191 12, wy- (4.21)

The function W — W, now belongs to V(w) and satisfies
YW e V(w), a(W—-Wy,V)=FV)-aWyV).
Using the ellipticity property (2.13) of a(-,-) on V(w) thus yields
W — Wollxw) < e(IFllxewy + Wollxw))-
Combining this estimate with a triangle inequality, (4.21) and next (4.20) gives
Wlixew) < eUlFlxwy + 191 a1, @)) +c"ep ||W||X(w)~

Setting £* = min{1, 2—i;} (note that £* only depends on ¢y and the norm of a(:,-)), we
derive that, for all g, < &,

IWllxw) < e(1Fllxewy + 1G]z, @) )- (4.22)
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2) On the other hand, denoting by R the Riesz isomorphism from HJ (w)’ onto H} (w)
and setting W = (w,t), we observe that the second line in (4.19) can equivalently be
written as

1
&= —(t-a3—RG).
€p
Combining this equation with the first line in (4.19) leads to
1 1
YW e X(w), a(W,V)+ - c(t-as,s-az) =F(V)+ . c(RG, s - a3).
P P

In the case e* < g, < 1 (so that 1 < 21; < Ei), estimate (4.22) also follows from the
ellipticity property (4.5) and the positivity of ¢(s - a3, s - a3).
In both cases e, < €* and €* < g, < 1, inserting (4.22) into (4.20) yields that

1€l @) < e (I Fllxewy + 1G]z () )- (4.23)

It thus follows from (4.22) and (4.23) that the operator: (F,G) — (W, £) is an isomorphism
from Y(w)" onto Y(w). So standard arguments [16, Chap. I, Lemma 4.1] give the inf-sup
condition (4.18).

The residual equation for problem (4.2) can be written as

V(V,x) € Y(w),V(Va, xn) € X x M}°,
AP(UP - U]I:? Tvbp - 'lwb}’;a V? X) = E’(V - Vh) - a’(UfTs LS Vh) - b(V - th wz) (424)
—b&UE, x — xn) +&pc(VF, X — Xn)-

So it is very similar to (3.6), except for the last term in the right-hand side.
We now define the error indicators: For each K in 7p,
Nk = fjk1 + k2 + ks, (4.25)

where 7y and 7x2 are defined as ng; and nk2 by (3.20) and (3.21) but with (Up,n)
replaced by (U?,v?%) while 7jx3 involves a further term:

fiks = hi |0a(Bar} - asn + 75 - dit — &, Oati)| L2 (k)
1 I
+ Z he [[[8u(rn - a — ep¥D)lellzagey + > hE 18y (rn - @ — ep ¥])llL2(e)-

ek \EL eef},
(4.26)
We do not give the proof of the next theorem. Indeed, thanks to the inf-sup condition
(4.18), it reduces to the evaluation of the right-hand side of (4.24), which is performed
exactly as for Theorem 3.6.

Theorem 4.6. For any data (f, N, M) in L?(w)® x L%(y;)® x L?(7)3, the following a
posteriori error estimate holds between the solution (UP,1?) of problem (4.10) and the
solution (U}, 9}) of problem (4.2)

107~ UBllxo) + 197 = WEllncoy < (3 (i +e@)F +60).  @2n)
KeTy,
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Similarly, bounding the 7jx relies on appropriate choices of the pair (V,x) in (4.24)
(with (Vh, xn) equal to zero), combined with usual inverse inequalities, see [22, §1.2].

Theorem 4.7. For any data (f,N,M) in L?(w)® x L?(v1)3 x L%(v1)3, the following
bound holds for each indicator 7y defined in (4.25),

'1' C
i < ¢ (0P = Uty + 197 = Wl + (3 €@)¥ +607). (428)

KCwWg

(d)

When combining Theorems 4.4, 4.6 and 4.7, we observe that, up to the terms ¢ and

e the full error
Epn = U = UPllxw) + 1U? = URllxw) + 1% — 9Pl 2wy + 1197 — i),

is equivalent to the quantity

(S

ﬂph:np+(z fl'%() s
KETh

with equivalence constants independent of €, and h. So these estimates are fully optimal.
Moreover it appears in the next section that, even though the two parts of the error are
not completely uncoupled in (4.14) and (4.15), the 7 are a very efficient tool to adapt
the mesh independently of the value of €, (analogous properties can be found in [5, Figs.
1 & 2] for a different problem).
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5. The adaptivity strategy and numerical experiments.

We now describe how the error indicators exhibited in Sections 3 and 4 can be used
to adapt the mesh for each discrete problem. Next, we apply these strategies to some
numerical experiments.

5.1. Adaptivity strategy for the first discrete problem
This strategy is very simple and consists of two steps. We fix a tolerance n* > 0.

MESH INITIALIZATION STEP. We choose a triangulation 7,0 such that the quantity

(Y 92 40, (5.1)
KeTy,

is smaller than n* (we recall that the s;g) and ng) are defined in (3.17) and (3.18), respec-
tively). This induces a refinement of the mesh where the data (f, N, M) are singular and
also near the curvature discontinuities, which seems very natural.

MESH ADAPTATION STEP. Assume that the triangulation 7, is known. We compute
the discrete solution of problem (3.3) corresponding to this triangulation, and the error
indicators ng defined in (3.19) to (3.22). Let also 7, denote the mean value of the ng.
The triangulation 7, is then refined and coarsened according to the next criterion: The
diameter of a new element contained in K or containing K is proportional to hg times the
ratio 7" /nx. This gives rise to the new triangulation T+1, We refer to [15, Chap. 21] for
the processus leading to the construction of such a triangulation.

i
The mesh adaptation step is then iterated either until the quantity (3 KeTr nk)>
becomes smaller than n* (when possible) or a finite number of times.

5.2. Adaptivity strategy for the second discrete problem

A strategy aimed to simultaneously optimize the penalty parameter and adapt the
mesh is proposed in [5, §5]. However, in the present situation, first computations show
that the main part of the solution, i.e., (up,Tr — (T4 - @3)as), is nearly independent of the
choice of g, so that applying this strategy seems impossible. Thus, we now describe a
simpler algorithm. We fix two tolerances n* and 7°, with 7® much larger than n* (typically,
n* is equal to 107 and 7° is equal to 1072).

MESH INITIALIZATION STEP. It is the same as in Section 5.1.

PENALTY INITIALIZATION STEP. An initial value £° is also chosen. Then, we make a first
computation for this value of €° and the triangulation 7,2, and also compute n? and the

MK - If
"
<0 (Y nk)?,

KeT?
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we take £, equal to €° and go to the next step. Otherwise, we divide £° by the ratio

1
n?/n° (3 KeT? n%)? and make a new computation.

MESH ADAPTATION STEP. It is exactly the same as in Section 5.1 and is iterated until
1

the quantity (Z KeTn 7]12[{) ?> becomes smaller than n* (when possible) or a finite number

of times.

5.3. Numerical experiments

The numerical experiments that we now present have been performed on the finite
element code FreeFem++, see [17]. In order to check the efficiency of our adaptivity
strategy, we have decided to present numerical experiments for the same geometries and
data as in [8, §6.2 & 6.3].

As standard for problems in elasticity and more specifically for shell models (see [1,
§3.1] for instance), both problems (3.3) and (4.2) result into very ill-conditioned linear
systems. This is due to the physical parameters of the model and, among them, to the
small thickness of the shell. For these reasons, we have decided to use the direct solver
UMFPACK relying on the LU factorizatrion of the global sparse matrix, see [17] for more
details.

We first consider a hyperbolic paraboloid shell. The reference domain w is the square
w = {(z,y); 2l + ly| < bV2}, (5.2)

as illustrated in [1, §1.3.3 & 2.4.2], and the chart ¢ is defined by

(P((E, y) = (33, Y 5;;5(372 - yz))T‘ (53)

We choose here
b = 50cm, &= 1{lem; (5.4)

The thickness of the shell is e = 0.8 cm. We assume that the shell is clamped on the whole
boundary, i.e. 79 = Ow, and that it is subjected to a uniform pressure. The mechanical
data are

E =2.8 x 10° Pa, v=0.4. (5.5)

Note that the symmetry properties of the domain and the data allow us to solve the
discrete problem only on the triangle w’ with vertices (0,0)7, (bv/2,0)T and (0,bv/2)T. We
refer to [8, §6.2] for the artificial conditions issued from the symmetry conditions.

Figure 1 presents the initial mesh. We then take €, equal to 10~L. Figure 2 presents
the final adapted meshes according to the strategy described in Sections 5.1 and 5.2,
without penalization (left part) and with penalization (right part). Figure 3 presents the
“over-deformed” shell, namely the surface ¢(x) + 1000 u(x), = € W, where the solution is
computed with penalization, seen from the top and bottom sides.
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Figure 1: The initial mesh

Figure 2: The adapted meshes without and with penalization

Figure 3: The “over-deformed” shell

23



Next, we consider a plane-cylinder W2>-shell: The shell consists of a plane part and
a cylindrical part with a %1-join; see Figure 4. The reference domain w of the midsurface
is given by

w =] — R, R[X] _LvL[a (56)
and the chart ¢ is defined by
( (z;5,0)F ., if z <0, i
¢lz,y) = (R sin(z/R),y, R(1 — cos(a:/R))) if-2 > 0. )
We take here
R =:18am, L=T7.5m. (5.8)

The thickness of the shell is e = 7.5 cm. In Figure 4, “transported triangulation” means
(7).

Figure 4: The geometry of the shell and its initial transported triangulation

The mechanical data are
E =21 x 10" Pa, p e (5.9)

There also, the shell is submitted to a uniform downward pressure. Concerning boundary
conditions, we consider the case of hard clamping on two edges

Yo {—R}X] i L:L[ U {R}X] - L1 L[a (510)
and the shell is free on its remaining edges.

Figure 5 presents the final meshes
e without penalization on the left part, where “transported triangulation” here means
(¢ + 10un)(Tr),
e with penalization on the right part, for e, = 1073 and where “transported triangulation”
means (o + 10 u})(73).
Figure 6 presents the isovalue curves of the first and third Cartesian components u}, and
ub, of the displacement obtained by the discretization with penalization (g, = 1073); note
however that its analogue obtained without penalization is exactly the same.
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Figure 6: The Cartesian components u}, and u}, of the displacement

We have not presented the component u}, of the dislacement since it is nearly zero.
In fact, both horizontal displacements are very small (< 107° ¢m) in comparison with the
vertical one (of order 1.5cm); this is in good agreement with the physics of the problem
since the force applied to the shell is vertical.
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