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Padé-Jacobi Approximants

J.S. Hesthaven† and S.M. Kaber‡

December 14, 2016

Abstract

We discuss projection based Padé-Jacobi approximants in general and
present in particular an exact rational approximation to the Sign function.
This serves as vehicle to analyze the behavior of Padé-Jacobi approximants
for discontinuous functions. The analysis shows that the Padé-Jacobi ap-
proximant is superior in several ways to classic polynomial approximations
of discontinuous functions, provided the parameters in the approximations
are chosen carefully. Guidelines for this is obtained through the analysis.

1 Introduction

The nonuniform pointwise convergence, known as the Gibbs phenomenon,
of polynomial approximations to discontinuous function is a well known
and much studied phenomenon, see e.g. [10] and references therein.
Among the consequences of the Gibbs phenomenon is the lack of con-
vergence at the jump with an overshoot of approximately 9% of the jump
size, a global O(N−1) convergence rate in mean, and a steepness of the
approximation right at the jump being proportional to the length, N , of
the polynomial expansion.

The literature is rich with methods trying to reduce or even elimi-
nate these problems. The perhaps simplest approach is that of modal
filtering, essentially relying on forcing the expansion to converge more
rapidly [20, 10, 13]. An alternative approach is physical space filtering us-
ing mollifiers [11, 19], yielding similar behavior. Both methods, however,
do not overcome the lack of convergence at the point of discontinuity.
To achieve this, information about the shock location is needed. With
this, the Gibbs phenomenon can be completely resolved [10], albeit this
approach has considerable practical problems.

In this work we shall discuss the use of rational functions, Padé-Jacobi
approximants, for the representation of discontinuous functions. As ratio-
nal functions are richer than simple polynomial expansions, one can hope
that the impact of the discontinuity will be less severe and, further, that
one could use this as a postprocessing tool to reduce the impact of the
Gibbs phenomena in polynomial expansions.

To study the fundamental behavior of Padé-Jacobi approximants of
discontinuous functions, we present a family of exact rational approxi-
mations to the Sign function, considered as a prototype of discontinuous
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functions. This enables a complete analysis of the behavior of this ap-
proximation as characterized by the maximum size of the overshoot and
the achievable steepness at the point of discontinuity. As we shall show,
the use of a rational approximation allows one to dramatically reduce the
overshoot and increase the steepness while recovering high order accuracy
away from the jump.

There has been some recent activity in the exploration of Padë-forms
for the reconstruction of Gibbs oscillations. In particular, work for the
Fourier case can be found in [8, 6, 4], for the Chebyshev in [16], and for
the Legendre approximations in [5, 12]. However, much of this has been
of a qualitative character and for special polynomial families only.

In Sec. 2, we recall some properties of the Jacobi polynomials and the
Padé-Jacobi problem. Section 3 is devoted to the derivation of an exact
solution of the Padé-Jacobi approximation problem for the Sign function.
In Sec. 4, we consider the optimization of the Padé-Jacobi solution by
varying several of the free parameters. Section 5 contains a few remarks.

2 Jacobi Polynomials and Padé-Jacobi Ap-
proximations

In the following we shall recall various definitions and properties of Jacobi
polynomials and expansions, as well as define exactly what we mean by
Padé-Jacobi approximations in this work.

2.1 Jacobi Polynomials and Expansions

For α > −1, the symmetric Jacobi polynomials, P
(α)
n (x), also known as the

ultraspherical polynomials, are defined as the polynomial eigenfunctions
to the singular Strum-Liouville problem

AαP (α)
n (x) = λαnP

(α)
n (x) , x ∈ [−1, 1] , (1)

where

Aαϕ = − 1

ωα

(
ωα+1ϕ

′)′ ,
with the weight function

ωα = (1− x2)α ,

and the eigenvalue
λαn = n(n+ 2α+ 1) .

One easily proves that the Jacobi polynomials are the unique polynomial
solution [18] to Eq.(1), once a normalization is chosen. The standard
choice, also used here, is

P (α)
n (1) =

Γ(n+ α+ 1)

Γ(n+ 1)Γ(α+ 1)
,

where Γ(x), x ≥ 0 represents the classic Euler Gamma function. Recall
that Γ(n+ 1) = nΓ(n) = n!.
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We introduce the Pochhammer symbol

(z)n =
Γ(z + n)

Γ(z)
= (z + 1)(z + 2) . . . (z + n− 1) ,

and note that (1)n = n! and (z)1 = z. Recall also that for k ∈ N

∀n ≥ k + 1 : (−k)n = 0 . (2)

An important property of the Pochhammer symbol is expressed in the
Saalchütz’s formula [7]

3F2(−n, a, b; d, 1 + a+ b− d− n; 1) =
(d− a)n(d− b)n
(d)n(d− a− b)n

, (3)

with 3F2(−n, a, b; d, 1+a+b−d−n; 1) being the hypergeometric function
defined as

3F2(a, b, c; d, e; z) :=

∞∑
k=0

(a)k(b)k(c)k
(d)k(e)k

1

k!
zk .

Well known examples of ultraspherical polynomials are the Chebyshev
polynomials (α = −1/2) and the Legendre polynomials (α = 0). The
ultraspherical polynomials have a number of important properties which
we shall exploit. In particular, all the polynomials are mutually orthogonal
in the inner product

(u, v)α =

∫ 1

−1

u(x)v(x)ωα dx, (4)

with the associated weighted L2
α norm

‖u‖2α = (u, u)α .

The normalization is given by

γαn =
(
P (α)
n , P (α)

n

)
α

=
22α+1

2n+ 2α+ 1

Γ(n+ α+ 1)2

Γ(n+ 1)Γ(n+ 2α+ 1)
. (5)

Another important property of the ultraspherical polynomials is their
even-odd characteristics

P (α)
n (x) = (−1)nP (α)

n (−x) . (6)

We also recall the special value at x = 0 as

P
(α)
2n (0) = (−1)n2−2n

(
2n+ α
n

)
(7)

and zero otherwise due to Eq.(6).
Finally we shall need the relation [18]

d

dx
P (α)
n (x) =

1

2
(n+ 2α+ 1)P

(α+1)
n−1 (x) . (8)

If we now consider functions, u(x) ∈ L2
α, i.e., for which ‖u‖α <∞, we can

seek polynomial approximations as
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u(x) =

∞∑
n=0

ûnP
(α)
n (x) , ûn =

1

γαn

(
u, P (α)

n

)
α
,

by orthogonality.
Let us consider the truncated expansion

u
(α)
N (x) =

N∑
n=0

ûnP
(α)
n (x), (9)

i.e., u
(α)
N ∈ PN where PN is the space of algebraic polynomials of degree

less than or equal to N . The orthogonality of the Jacobi polynomials
implies

∀p ∈ PN :
(
u− u(α)

N , p
)
α

= 0.

It is well known that the polynomial expansion is convergent in the mean
but not uniformly. In particular, if the smoothness is measured in the
Sobolev space Hp

α of functions u and their derivatives up to order p in L2
α,

there exists a constant cp such that

‖u− u(α)
N ‖α ≤ cpN

−p‖u‖Hpα .

For a smooth function, i.e., p large, this provides an accurate approxima-
tion and the approximation error decreases rapidly to zero as N goes to
infinity. This is one of the main motivations for using spectral methods
for solving partial differential equations with regular solutions. We refer
the reader to [1].

However, for problems with discontinuous solutions, the expansion ex-
hibits non-uniform convergence and a phenomenon known as the Gibbs
phenomenon [14] as illustrated in Fig. 1 where the truncated (N = 20
and N = 100) Legendre expansion, i.e., for α = 0, of the Sign function
is displayed. One observes the oscillations, especially near the disconti-
nuity. If the parameter N is increasing, the size of the oscillations de-
crease everywhere except near the discontinuity where O(1) oscillations
(overshoot/undershoot) remain. Furthermore, the global nature of the
oscillations limits the pointwise accuracy to first order away from x = 0.

One of the objectives of this work is to consider Padé-Jacobi approxi-
mations of the Sign function and attempt to answer the question of which
one among this family would be best suited to approximate the Sign func-
tion. As measures of success we shall consider

• the overshoot/undershoot of the approximation at the point of dis-
continuity as characterized by the Gibbs constant of the expansion.

• the ability to reproduce the discontinuity characterized by the steep-
ness of the approximation.
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Figure 1: Legendre approximations of the Sign function: N = 20 (dashed) and
N = 100 (solid).

2.2 Padé-Jacobi Approximants

We shall consider the Padé-Jacobi approximation to u in a Galerkin sense,
i.e., find P ∈ PN and Q ∈ PM such that

(Qu− P, p)α = 0, ∀p ∈ PK , (10)

with K ≤ M + N . This shall be used to define the linear Galerkin type
Padé-Jacobi approximation of order (N,M) to u as the rational function

RN,M (x) =
P(x)

Q(x)
,

where (P,Q) satisfies Eq.(10).

Remark 2.1 For M = 0 and K = N , the pair (Q ≡ 1,P = u
(α)
N ) defined

in (9) is a solution of the Padé-Jacobi approximation problem.

It is important for practical purposes that the complete knowledge of u
is not needed to solve the problem (10), only u

(α)
N+M is required. In Eq.

(10) we take p = P
(α)
k with k = N + 1, . . .K, to get

(̂Qu)
(α)

k = 0, ∀k = N + 1, · · · ,K.

This is a linear system of K − N equations and M + 1 unknowns (the
coefficients of Q in a basis of PM ). Once a non trivial solution of this sys-
tem is found (such a solution always exists if K ≤ N+M), the numerator
P ∈ PN is simply computed by

P̂(α)
k = (̂Qu)

(α)

k , ∀k = 0, · · · , N.

Hence the main problem is the determination of the denominator.
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3 Analysis of the Sign-Function

Let us now return to a more thorough analysis of the behavior of the
Padé-Jacobi approximation for the most basic discontinuous function –
the Sign function

u(x) =

{
−1 x < 0

1 x > 0
. (11)

3.1 An Exact Solution

For the purpose of analysis, we shall seek the approximation to the Sign
function using

P(x) =

N∑
n=0

p̂α2n+1P
(α)
2n+1(x) ∈ P2N+1 ,

and

Q(x) =

M∑
m=0

q̂α2mx
2m ∈ P2M ,

where we have used the parity of the problem and Eq.(6) to reduce the
complexity of the problem.

We must now seek P ∈ P2N+1 and Q ∈ P2M to satisfy Eq.(10), i.e.,(
Qu− P, P (α)

2k+1

)
α

= 0 , ∀k ≤ K ,

where we have again utilized the parity of the problem to reduce the
complexity.

Orthogonality of the Jacobi basis immediately yields(
Pu, P (α)

2k+1

)
α

=
(
Qu, P (α)

2k+1

)
α

= γα2k+1(̂Qu)
α

2k+1 = 0 N < k ≤ K ,

which is a linear system of (K −N)× (M + 1), with the unknowns being
the coefficients of the denominator Q, i.e., q̂α2m. Clearly for K ≤ N + M
this linear system will always have at least one nontrivial solution. In
what remains we shall restrict ourselves to the special case

K = N +M .

To compute the numerator, we observe that

p̂α2k+1 − (̂Qu)
α

2k+1 = 0 , 0 ≤ k ≤ N, (12)

i.e., once Q, and hence, Q̂u
α

2k+1 is computed, the numerator follows im-
mediately.

Let us thus focus on the computation of the denominator, or rather
its coefficients, satisfying

(̂Qu)
α

2k+1 =

M∑
m=0

q̂α2m
1

γα2k+1

(
x2mu, P

(α)
2k+1

)
α

= 0 .
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We shall need the following results. Define for the integers k and m

Iαm,k =

∫ 1

0

x2mP
(α)
2k+1ωα dx and J αm,k =

∫ 1

0

x2m+1P
(α)
2k+1ωα dx, (13)

Lemma 3.1 For m ≥ 1 and k ≥ 0

Iαm,k = Iα0,k
m!(1/2)m

(−k + 1/2)m(k + α+ 2)m

with

Iα0,k =
k + α+ 1

λα2k+1

P
(α+1)
2k (0) =

(−1)k

2k + 1

1

22k+1

1

k!

Γ(2k + α+ 2)

Γ(k + α+ 2)
.

For m < k, J αm,k = 0 and

∀j ∈ N : J αk+j,k =
(k + 1)j

j!

(k + 3/2)j
(2k + α+ 5/2)j

J αk,k (14)

with

J αk,k =
1

2

γ
(α)
2k+1

θ
(α)
2k+1

and θαj the coefficient of xj in P
(α)
j (x).

Proof: Using Eq.(1) we have

λα2k+1Iαm,k =

∫ 1

0

x2mAαP (α)
2k+1ωα dx = −

∫ 1

0

x2m
(
ωα+1

(
P

(α)
2k+1

)′)′
dx.

Recalling the singular nature of ωα, integration by parts twice yields

λα2k+1Iαm,k = 2m

∫ 1

0

x2m−1ωα+1

(
P

(α)
2k+1

)′
(x) dx

= −2m

∫ 1

0

(
ωα+1x

2m−1)′ P (α)
2k+1 dx

= −2m(2m− 1)Iαm−1,k + 2m(2m+ 2α+ 1)Iαm,k.

From this, we recover the recurrence

Iαm,k =
−2m(2m− 1)

λα2k+1 − 2m(2m+ 2α+ 1)
Iαm−1,k =

−m(2m− 1)

(2k − 2m+ 1)(k +m+ α+ 1)
Iαm−1,k.

We finally note that

λα2k+1Iα0,k = −
∫ 1

0

(
ωα+1

(
P

(α)
2k+1

)′)′
dx = −

[
ωα+1

(
P

(α)
2k+1

)′]1
0

=
(
P

(α)
2k+1

)′
(0) = (k + α+ 1)Pα+1

2k (0).

Combining Eq.(7) with the above result yields

Iαm,k =
m(m− 1/2)

(−k +m− 1/2)(k +m+ α+ 1)
Iαm−1,k

= Iα0,k
m!(1/2)m

(−k + 1/2)m(k + α+ 2)m
.
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Concerning J αm,k, we observe that P
(α)
j (x) = θ

(α)
j xj+q

(α)
j with q

(α)
j ∈ Pj−1

:

J αk,k =
1

2

∫ 1

−1

P
(α)
2k+1 − q

(α)
2k+1

θ
(α)
2k+1

P
(α)
2k+1ωα dx =

1

2

γ
(α)
2k+1

θ
(α)
2k+1

, θαj =
1

2j
1

j!

Γ(2j + 2α+ 1)

Γ(j + 2α+ 1)
.

The proof of (14) follows the same lines. � Thus, to find a Padé-Jacobi

approximant to the Sign function, we must seek a solution to

M∑
m=0

q̂α2m
m!(1/2)m

(−k + 1/2)m(k + α+ 2)m
= 0. (15)

One non-unique solution is given in the following

Proposition 3.2 The coefficients, q̂α2m, defined for m ∈ [0,M ] as

q̂α2m =
(−M)m(A)m(−A+M + α+ 3/2)m

(m!)2(1/2)m
,

is a solution to Eq.(15) with

A = −(N + 1/2) .

Proof: Inserting the above result into Eq.(15) yields

M∑
m=0

(−M)m(A)m(−A+M + α+ 3/2)m
m!(−k + 1/2)m(k + α+ 2)m

.

Using Eq.(3) this can be written as

(k + α+ 2−A)M (k −M − 1/2 +A)M
(k + α+ 2)M (k −M − 1/2)M

.

Recalling Eq.(2) we immediately get two solutions to Eq.(15) from each
of the two terms in the numerator

A = M +N + α+ 2 , A = −N − 1/2 .

In both cases, we have (k −M − N)M which vanishes for all k ∈ (N +
1,M +N). � Thus, the denominator takes the form

Q(x) =

M∑
m=0

(−M)m(−N − 1/2)m(N +M + α+ 2)m
(m!)2(1/2)m

x2m

= 3F2(−M,−N − 1/2, N +M + α+ 2; 1, 1/2;x2) . (16)

Before we continue with the development of the Padé-Jacobi approxima-
tion, let us consider a few properties of Q(x).

Lemma 3.3 Provided N + 3/2 > M we have

∀m ∈ [0,M ] : q̂2m > 0,

and, hence,
Q(x) ≥ Q(0) = q̂0 = 1 .
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Proof: Consider

q̂2m =
(−M)m(−N − 1/2)m(N +M + α+ 2)m

(m!)2(1/2)m
.

Clearly,

(−M)m = −M(−M+1)(−M+2) . . . (−M+m−1) = (−1)m
M !

(M −m)!
,

and

(−N − 1/2)m = (−N − 1/2)(−N + 1/2)(−N + 3/2) . . . (−N − 3/2 +m)

= (−1)m
Γ(N + 3/2)

Γ(N + 3/2−m)
.

Asm ∈ [0,M ], (−M)m(−N−1/2)m > 0 provided only thatN+3/2−M >
0, hence completing the proof. � Thus all

roots of Q(x) are complex, ensuring that the Padé-Jacobi approximation
to the Sign-function always exists.

The location of the roots can be specified a bit more

Lemma 3.4 Assume that N �M , α fixed, and z ∈ C be a root of Q(x).
Then

1

2M
≤ N2|z|2 ≤M3.

For a proof of this Lemma, see Proposition 4.7 of [16]. As we shall see
shortly, this results also gives some indications of how well one can ex-
pect the to approximate the Sign function since there is a direct relation
between the position of the poles and the ability of the approximation to
reproduce the discontinuity.

The sharpness in N can be realized by considering the limit of large
N in which case

(−N − 1/2)m(N +M + α+ 2)m ' (−1)mN2m ,

such that

Q(x) = 3F2(−M,−N−1/2, N+M+α+2; 1, 1/2;x2) ' 1F2(−M ; 1, 1/2;−N2x2) .

However, since the 1F2(a1; b1, b2; z) is independent of N , the roots of Q(x)
can not decay faster than N−1. It is worth emphasizing that this result
assumes that M is fixed, i.e., making M ∝ N and/or α ∝ N may yield
qualitative differences in the approximation as we shall indeed see shortly.

Let us now return to the determination of the numerator,

P (x) =

N∑
n=0

p̂2n+1P
(α)
2n+1(x). (17)

The coefficients of this polynomial are given in the following
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Lemma 3.5 The coefficients p̂α2n+1 in (17) are defined for n ∈ [0, N ] as

p̂α2n+1 = 2
Iα0,n
γα2n+1

(N + n+ α+ 5/2)M (n−N −M)M
(n+ α+ 2)M (n+ 1/2−M)M

,

where Iα0,n is given in Lemma 3.1.

Proof: From the definition of the Padé-Jacobi approximation and the
orthogonality of the Jacobi polynomials, we immediately recover from
(12)

γα2n+1p̂
α
2n+1 = 2

M∑
m=0

q̂2mIαm

= 2Iα0,n
M∑
m=0

(−M)m(−N − 1/2)m(N +M + α+ 2)m
m!(1/2− n)m(n+ α+ 2)m

= 2Iα0,n
(N + n+ α+ 5/2)M (n−N −M)M

(n+ α+ 2)M (n+ 1/2−M)M
,

where the last reduction follows from the Saalchütz’s formula (3). �

Using the identity (n −N −M)M = (−1)M (N − n + M)!/(N − n)!, one
can express the coefficients p̂α2n+1 in the form

p̂α2n+1 = 2(−1)M
Iα0,n
γα2n+1

(N + n+ α+ 5/2)M (N − n+M)!

(n+ α+ 2)M (n+ 1/2−M)M (N − n)!
. (18)

In (16), the denominator was written in a geometric form. Now we seek
the numerator in the form : P(x) = xSαN,M 3F2(., ., .; ., .;x2), with SαN,M
being the steepness, i.e., the value at x = 0 of the derivative of the rational
approximation R(x) = P(x)/Q(x). The following Proposition allows us
to recover the numerator on a hypergeometric form.

Proposition 3.6 The numerator, P(x), for the Padé-Jacobi approxima-
tion to the Sign function, Eq.(11), takes the form

P(x) = xSαN,M 3F2(−N,−M + 1/2, N +M + α+ 5/2; 3/2, 3/2;x2).

where the steepness, SαN,M is given as

SαN,M =
4√
π

M !

N !

Γ(N + 3/2)Γ(N +M + α+ 5/2)

Γ(M + 1/2)Γ(N +M + α+ 2)
.

Proof: Let us compute the Jacobi coefficients of T ∈ P2N+1 defined by

T (x) = xSαN,M 3F2(−N,−M + 1/2, N +M + α+ 5/2; 3/2, 3/2;x2).

For n = 0 · · · , N

γα2n+1

SαN,M
t̂α2n+1 =

∫ 1

−1

x3F2(−N,−M + 1/2, N +M + α+ 5/2; 3/2, 3/2;x2)P
(α)
2n+1(x)ωα(x)dx

= 2

N∑
k=0

(−N)k(−M + 1/2)k(N +M + α+ 5/2)k
(3/2)k(3/2)k

1

k!
Jk,n
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with J αk,n defined in (13). Using Lemma 3.1, we get

γα2n+1

SαN,M
t̂α2n+1 = 2

N−n∑
p=0

(−N)n+p(−M + 1/2)n+p(N +M + α+ 5/2)n+p

(3/2)n+p(3/2)n+p(1)n+p

Jn+p,n.

By the identity (z)n+p = (z)n (z + n)p, we get

t̂α2n+1 = 2Xα
N,M,n

N−n∑
p=0

(−N + n)p(−M + 1/2 + n)p(N +M + α+ 5/2 + n)p
(3/2 + n)p(3/2 + n)p(1 + n)p

Jn+p,n

with

Xα
N,M,n =

SαN,M
γα2n+1

(−N)n(−M + 1/2)n(N +M + α+ 5/2)n
(3/2)n(3/2)n(1)n

.

Using (14), we get

t̂α2n+1 = Y αN,M,n

N−n∑
p=0

(−N + n)p(−M + 1/2 + n)p(N +M + α+ 5/2 + n)p
(3/2 + n)p(2n+ α+ 5/2)p

1

p!

with Y αN,M,n = 2Xα
N,M,nJ αn,n. By use of the Saalchütz’s formula (3), we

obtain

t̂α2n+1 = Y αN,M,n
(M + 1)N−n(−N −M − α− 1)N−n

(3/2 + n)N−n(−N − n− α− 3/2)N−n

= Y αN,M,n
Γ(n+ 3/2)Γ(2n+ α+ 5/2)

Γ(N + 3/2)Γ(N + n+ α+ 5/2)

Γ(N +M − n+ 1)Γ(N +M + α+ 2)

Γ(M + 1)Γ(n+M + α+ 2)
.

with

Y αN,M,n =
π

4θα2n+1

(−N)n(−M + 1/2)n(N +M + α+ 5/2)n
n!Γ(3/2 + n)2

SαN,M

=
√
π

(−1)n

θα2n+1

Γ(N + 3/2)

n!Γ(n+ 3/2)2 (N − n)!

= ×Γ(M + 1)Γ(−M + 1/2 + n)

Γ(M + 1/2)Γ(−M + 1/2)

Γ(N +M + n+ α+ 5/2)

Γ(N +M + α+ 2)

=
1√
π

(−1)n

θα2n+1

Γ(N + 3/2)

n!Γ(n+ 3/2)2 (N − n)!

× (−1)M
Γ(M + 1)Γ(−M + 1/2 + n)

Γ(N +M + α+ 2)
Γ(N +M + n+ α+ 5/2).

The last simplification follows from the reflection formula the reflection
formula

Γ(z)Γ(1− z) =
π

sin(πz)
.

Finally

t̂α2n+1 =
1√
π

(−1)n

θα2n+1

Γ(2n+ α+ 5/2)

n!Γ(n+ 3/2)(N − n)!Γ(N + n+ α+ 5/2)

× (−1)MΓ(−M + 1/2 + n)Γ(N +M − n+ 1)Γ(N +M + n+ α+ 5/2)

Γ(n+M + α+ 2)
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This is to be compared with the coefficients p̂α2n+1 given by Lemma 3.5
(see also (18)):

p̂α2n+1 = 2
Iα0,n
γα2n+1

Γ(n+ α+ 2)

(N − n)!Γ(n+ 1/2)Γ(N + n+ α+ 5/2)

× (−1)M
Γ(N +M + n+ α+ 5/2)(N +M − n)!Γ(n+ 1/2−M)

Γ(n+M + α+ 2)

The ratio of the two coefficients is

t̂α2n+1

p̂α2n+1

=
1

2
√
π

(−1)nγα2n+1

Iα0,nθα2n+1

Γ(2n+ α+ 5/2)

n!Γ(n+ 3/2)

Γ(n+ 1/2)

Γ(n+ α+ 2)

=
1

2
√
π

(−1)nγα2n+1

Iα0,nθα2n+1

Γ(2n+ α+ 5/2)

n!(n+ 1/2)Γ(n+ α+ 2)
.

Straightforward computations give

γα2n+1

Iα0,nθα2n+1

= (−1)n24n+2α+3n!(2n+ 1)Γ(n+ α+ 2)
Γ(2n+ α+ 2)

Γ(4n+ 2α+ 4)

By the Legendre duplication formula1, we have

Γ(2n+ α+ 2)

Γ(4n+ 2α+ 4)
=

√
π

24n+2α+3

1

Γ(2n+ α+ 5/2)

and
γα2n+1

Iα0,nθα2n+1

= (−1)n
√
πn!(2n+ 1)

Γ(n+ α+ 2)

Γ(2n+ α+ 5/2)
.

Hence t̂α2n+1 = p̂α2n+1, which means the equality of the two odd polynomi-
als, T and P. � Lemma 3.6 and Eq. (16) gives the main

result in the form of a hypergeometric representation of the Padé-Jacobi
approximation of Eq.(11)

Theorem 3.7 For all integers N and M ,

RαN,M (x) = SαN,M x
3F2(−N,−M + 1/2, N +M + α+ 5/2; 3/2, 3/2;x2)

3F2(−M,−N − 1/2, N +M + α+ 2; 1, 1/2;x2)
,

with the steepness SαN,M defined in Proposition 3.6, is a Padé-Jacobi ap-
proximation of order (N,M) to the Sign function, Eq.(11).

Note in particular that for the special case of M = 0, this includes the
Jacobi polynomial approximation of a step function and, thus, enables the
general analysis of the Gibbs phenomenon for this case also.

Let us first consider two extremal cases: M = 0 (polynomial approxi-
mation) and N = 0 (reciprocal polynomial approximation).

1. Polynomial (Jacobi) approximation.

RαN,0 = SαN,0x 3F2(−N, 1/2, N + α+ 5/2; 3/2, 3/2;x2)

RαN,0 is nothing but the orthogonal projection (with respect to the
inner product (4)) of the Sign function onto P2N+1 defined in (9).

1Legendre duplication formula:
√
πΓ(2z) = 22z−1Γ(z)Γ(z + 1/2)
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It has been shown in [15] that for all Jacobi approximants SαN,0 '
4N/π. We give here the precise value of the steepness

SαN,0 =
4

π

Γ(N + 3/2)

N !

Γ(N + α+ 5/2)

Γ(N + α+ 2)
' 4

π
N.

2. Reciprocal polynomial approximation.

Rα0,M (x) = Sα0,Mx
1

3F2(−M,−1/2,M + α+ 2; 1, 1/2;x2)

with the steepness

Sα0,M = 2
M !

Γ(M + 1/2)

Γ(M + α+ 5/2)

Γ(M + α+ 2
' 2M.

4 Optimized Approximations

Let us consider in a bit more detail the question of the Gibbs phenomena
and attempt to understand whether it is better behaved in the Padé-Jacobi
approximation as compared to the classical polynomial approximations
above.

We shall in particular consider the questions of steepness of the Padé-
Jacobi approximation and the size of the overshoot as measured by the
Gibbs constant, GαN,M .

We consider five cases

1. Case 1. The classic polynomial case, M = 0, with the Gibbs con-
stant denoted Gα. ,0.

2. Case 2. The reciprocal polynomial case, N = 0, with the Gibbs
constant denoted Gα0, ..

3. Case 3. The case of M going to infinity with N , however constrained
such that M = cNs and fixed c > 0 and s > 0. In this case we shall
denote the Gibbs constant as Gα., c,s.

4. Case 4. The case of M fixed ( 6= 0) with the Gibbs constant denoted
Gα. ,M .

5. Case 5. The case of N fixed ( 6= 0) with the Gibbs constant denoted
GαN, ..

4.1 Optimize the steepness

If we first consider the steepness of the Padé-Jacobi approximation, then
this is defined as

d

dx
RN,M (0) = P ′N (0) = SαN,M ,

due to the symmetry of the problem, i.e., the steepness measures the
ability to reproduce the discontinuity.

Cases 1, 4. From Lemma 3.6 we immediately get for a fixed M

P ′N (0) = SαN,M '
4√
π

Γ(M + 1)

Γ(M + 1/2)

√
N(N +M + α) ' 4√

π

Γ(M + 1)

Γ(M + 1/2)
N ,

13



for large N and fixed M and α. Hence, in this case there is no qualitative
difference between the pure polynomial case (M = 0) and a fixed value
of M . All polynomials behave, asymptotically, as the Legendre case of
α = 0.

Cases 2, 5. For a fixed N (and M → +∞), the steepness grows like

4√
π

Γ(N + 3/2)

N !
M.

Case 3. If M ∝ N , we get a more interesting result. For M = cN , with
positive constant c

SαN,cN '
4√
π

√
c(c+ 1)N3/2

which improve drastically the steepness in comparison with the polyno-
mial case. It is important to note that M = N is not needed to recover
this improved steepness, simply that M ∝ N . In the case M = cNs, the
steepness is

SαN,cNs '
4√
π
csN

s+1/2,

with cs = c except for s = 1: c1 =
√
c(c+ 1).

We remind the reader of Lemma 3.4 which reflects these steepness
results in a sligthly different way, i.e., for s = 1 we can not hope for better
than SαN,cN ' N−3/2 as reflected in how quickly the poles approach zero.

4.2 Optimize the Gibbs constant

Let us now also consider the Gibbs constant, defined as the maximum
overshoot of the Padé-Jacobi approximation. We proceed as in [17] for the
Chebyshev approximation and seek an η > 0 such that the error function
x ∈ [0, 1] 7→ RN,M (x) − 1 takes its maximum at the point x = η/Nβ as
N goes to infinity (β is a fixed real number to be made precise shortly).
We shall call this limit the Gibbs constant, GαN,M .

Case 1. (M = 0). We seek η > 0 such that the error function takes its
maximum at the point x = η/N as N goes to infinity. In this case, we
have

1 +Gα. ,0 = lim
N→+∞

RN,0(
η

N
)

=
4

π
η lim
N→+∞

3F2(−N, 1/2, N + α+ 5/2; 3/2, 3/2; (
η

N
)2)

=
4

π
η 1F2(1/2; 3/2, 3/2;−η2).

η is determined as the smallest positive solution of

d

dη

η∑
k≥0

(1/2)k
(3/2)k(3/2)k

1

k!
(−η2)k

 = 0.
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Using the identities (1/2)k = 1
22k

(2k)!
k!

and (3/2)k = (2k + 1)(1/2)k, we
obtain

0 =
d

dη

η∑
k≥0

22k

(2k + 1)2

(−η2)k

(2k)!

 =
1

2

d

dη

∑
k≥0

(−1)k

2k + 1

(2η)2k+1

(2k + 1)!


=

1

2η

∑
k≥0

(−1)k
(2η)2k+1

(2k + 1)!
=

sin(2η)

2η
.

Hence η = π/2 and the Gibbs constant is

Gα. ,0 = −1 +
4

π

∫ π/2

0

sin(2t)

2t
dt = −1 +

2

π
Si(π) ' 0.178 979 744

with Si(z) =
∫ z

0
sin s
s
ds being the Sine integral. This is a classic result in

Fourier and Chebyshev approximations (see e.g. [9]). It has also been
shown for general Jacobi approximations in [15] using properties of or-
thogonal polynomials.

Case 2. (Case N = 0). The right scaling is x = η/M as M goes to infinity.
Using the same arguments as before, we obtain

1 +Gα0,. = lim
M→+∞

RM,0(
η

M
) = 2η

1

1F2(−1/2; 1, 1/2;−η2)
.

η is determined as the smallest positive solution of the equation

d

dη

[
1

f(η)

]
= 0, f(η) =

1F2(−1/2; 1, 1/2;−η2)

η
.

We observe that f ′(η) = J0(2η)/η2 with J0(t) being the Bessel function
of the first kind of order 0. Thus, 2η equals j0,1, the first zero of J0, as

2η = j0,1 ' 2.404 825 557 8,

and the Gibbs constant

Gα0,. = −1 + j0,1
1

1F2(−1/2; 1, 1/2;−(j0,1/2)2)
' 0.051 356 067.

Here again all the Jacobi approximants give the same Gibbs constant,
the one given in [17] for the Chebyshev case, α = −1/2. An example of
reciprocal polynomial approximation in Fig.2.

Case 3. (M = cNs). Consider now the case M = cNs with fixed c > 0
and s > 0. In this case the steepness grows like 4√

π
csN

s+1/2 and we

seek η > 0 that maximizes the error function x = η/Ns+1/2 as N goes to
infinity. Defining GαN, c,s = GαN, cNs we have

1 +Gα., c,s =
4√
π
csη

lim
N→+∞

3F2(−N,−cN + 1/2, (1 + c)N + α+ 5/2; 3/2, 3/2; ( η

Ns+1/2 )2)

3F2(−cM,−N − 1/2, (1 + c)N + α+ 2; 1, 1/2; ( η

Ns+1/2 )2)

= f∗(csη),
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Figure 2: Padé-Jacobi approximations: N = 0, α = −1/2, M = 20 (dashed),
M = 40 (solid).

with f∗(z) =
4√
π
z

0F2(; 3/2, 3/2; z2)

0F2(; 1, 1/2; z2)
.

The unknown ηc,s is determined as the smallest positive solution of
the equation d

dη
[f∗(csη)] = 0. This equation shows that ηc,s does not

depend on the Jacobi parameter α and

ηc,s =
η∗

cs
,

with η∗ the first positive zero of f∗. The Gibbs constant Gα., c,s = −1 +
f∗(η∗) is independent of α, c > 0 and s.

Numerical experiments, finding the location of the first maximum of
the analytic expression, yields the approximations

ηc̃ ' 1.344 947, Gα., c,s ' 0.008 149 .

This is the value given in [17] for the special case α = 0, c = 1 and s = 1.
Examples of this type of approximation in shown in Fig.3 and Fig.4

Case 4. (M 6= 0). We seek η > 0 such that the error function takes its
maximum at the point x = η/N as N goes to infinity. In this case, we
have

1 +Gα. ,M =
4√
π

Γ(M + 1)

Γ(M + 1/2)
η

× lim
N→+∞

3F2(−N,−M + 1/2, N +M + α+ 5/2; 3/2, 3/2; ( η
N

)2)

3F2(−M,−N − 1/2, N +M + α+ 2; 1, 1/2; ( η
N

)2)

=
4√
π

Γ(M + 1)

Γ(M + 1/2)
η

1F2(−M + 1/2; 3/2, 3/2;−η2)

1F2(−M ; 1, 1/2;−η2)
.

ηM (independent of α) is determined as the smallest positive solution of
the equation d

dz
[fM (z)] = 0 with
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Figure 3: Padé-Jacobi approximations: N = 10, α = 0, M = 5 (dashed),
M = 10 (solid).

M 0 1 5 10 20 50 100 200
ηM 1.5708 1.0144 0.56 0.4098 0.2951 0.1888 0.134 0.095
Gα. ,M 0.1789 0.0302 0.012 0.01 0.009 0.00851 0.0083 0.00823

Table 1: Computational evidence for the scaling of the Gibbs constant for values
of fixed M
.

fM (z) =
4√
π

Γ(M + 1)

Γ(M + 1/2)
z

1F2(−M + 1/2; 3/2, 3/2;−z2)

1F2(−M ; 1, 1/2;−z2)
.

The Gibbs constant Gα. ,M = −1 + fM (ηM ) is likewise independent of α.
We have not been able to complete the analysis of this function. In

Table 1 we show results for numerically finding, by seeking the position
of the first maximum of the analytic expression, ηM and Gα. ,M for fixed
values of M .

Based on these computations we conjecture that

lim
M→+∞

√
M ηM = η∗ = 1.344947

and

lim
M→+∞

Gα. ,M = −1 + lim
M→+∞

fM (ηM ) = −1 + f∗(η∗) = Gα. ,M ' 0.008 149

The effect of changing N for fixed M can be seen by comparing Fig.3 and
Fig.4.

Case 5. (N 6= 0). In this case the steepness grows like 4√
π

Γ(N+3/2)
N !

M and

1 +GαN, . =
4√
π

Γ(N + 3/2)

N !
η

1F2(−N ; 3/2, 3/2;−η2)

1F2(−N − 1/2; 1, 1/2;−η2)
.
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ηN (independent of α) is determined as the smallest positive solution of
the equation d

dz
[gN (z)] = 0 with

gN (z) =
4√
π

Γ(N + 3/2)

N !
z

1F2(−N ; 3/2, 3/2;−z2)

1F2(−N − 1/2; 1, 1/2;−z2)
.

The Gibbs constant GαN, . = −1 + gN (ηN ) is also independent of α and

lim
N→+∞

gN (η/
√
N) = f∗(η∗) ,

based on computational experimentation as for Case 4.

–1

–0.5

0.5

1

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

Figure 4: Padé-Jacobi approximations: α = 0, N = 30, M = 10.

5 Concluding Remarks

We have derived an exact rational Galerkin approximation RαN,M of the
Sign function based on Jacobi expansions and investigated its ability to
reduce the Gibbs phenomenon. The analysis contains the cases for M or
N fixed, including the classic polynomial results, the case where both go
to infinity with M = cNs. The latter case is superior in terms of the
Gibbs constant and steepness.

• The steepness of the approximation grows, asN → +∞, like 4√
π
csN

s+1/2

(in the case c > 0 and s > 0). Recall that in the polynomial case,
the steepness is ' 4

π
N .

• The Gibbs constant is about 22 times less than that of a polynomial
approximation.

One case we have not considered in detail is the one where α is a function
of N and/or M . Although the analysis indicates that this could be inter-
esting, it is less practical and unlikely to behave well numerically for high
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values of α as also observed for Gibbs reconstruction methods based on
Gegenbauer expansions [10, 2]. Nevertheless, we intend to consider this
in more detail later. Furthermore, the rate of convergence of RαN,M to the
Sign function (the acceleration of convergence problem) remains open, yet
is important to understand the value of Padé-Jacobi approximations for
postprocessing. Some partial results on this can be found in [16] for the
Padé-Chebyshev case and we hope to generalize these in the near future.
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