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Abstract

The key feature of wireless sensor networks is to aggregate data collected by individual
sensors in an energy efficient manner. We consider two techniques to save energy. The
first one is to avoid collisions due to simultaneous transmissions among neighboring
nodes. Second, when a node receives data from multiple neighbors, it aggregates these
with its own data. Then, one transmission is sufficient to transmit all consolidated data
to another neighbor. If the overall delay has to be kept as low as possible, scheduling
sensors to avoid collisions while aggregating data becomes challenging.

The contribution of this paper is threefold. First, we give tight bounds for the com-
plexity of data aggregation in static networks. In more details, we show that the problem
remains NP-complete when the graph is of degree at most three. As it is trivial to solve
the problem in static graphs of degree at most two, our result implies that the problem
is intrinsically difficult for any practical setting. Second, we investigate the complexity
of the same problem in a dynamic network, that is, a network whose topology can evolve
through time. In the case of dynamic networks, we show that the problem is NP-complete
even in the case where the graph is of degree at most two (and it is trivial to solve the
problem when the graph is of degree at most one). Third, we give the first lower and
upper bounds for the minimum data aggregation time in a dynamic graph.

We observe that even in a well-connected evolving graphs, the optimal solution cannot
be found by a distributed algorithm or by a centralized algorithm that does not know the
future. Thus we finally give the first approximation algorithm (centralized that knows
the future) whose approximation factor is T (n − 1) if there exists a bound T such that
there is a journey (a path in a dynamic graph) for all pairs of nodes in every time interval
[t, t+ T ].
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1. Introduction

The growing number of sensor nodes with sensing, computing and communication ca-
pabilities, was made possible by recent technological advances. This growth was encour-
aged by a variety of applications and contributes to the widespread interest in practical
and theoretical aspects of wireless sensor networks. Sensor nodes should be inexpensive,
small and sustainable in order to be easily deployed in a dangerous area, inside a human
body or in vehicles, generally for monitoring applications. They generate data that have
to be retrieved by an end-user or a base station. However, the environment and the
lack of networking infrastructure does not permit direct transmission to the end user,
but only transmissions between sensors that are close to one another. This raises various
challenges, such as energy (sensors are battery powered) and delay efficiency (information
is relevant for a short period of time only).

In a wireless sensor network (WSN), sensor nodes can communicate through a wireless
ad hoc network. Then, there exists a communication link between two nodes if the
Euclidean distance between them is smaller than their communication range. Since we
assume all sensors to be identical, they have the same communication range and the
communication graph can be modeled as a unit-disk graph1 [1]. Sensor nodes typically
generate data from their environment, such as temperature, number of vehicles on a road,
or number of passenger in a bus. The end-user, called sink node, wants to extract this
information. To do so, a node can send its data directly to the sink node if it is located
within its communication range, or, if it is far from the sink, can use intermediate nodes
to relay the data to the sink node.

In this paper we investigate the problem of retrieving data from a WSN whose data
transmissions are constrained by two rules: avoiding collisions, and allowing data aggre-
gation. In more details, the time is discretized and, at each time slot, a node is able
to send its data to all of its neighbors (i.e., all nodes within its communication range).
Now, if two or more nodes send their data in the same time slot, their common neigh-
bors do not receive any data, due to interference. Whenever a node successfully receives
data, it aggregates the data with its own and stores the result as its new data. This
process ensures energy-efficiency of the protocol. Indeed, n transmissions are sufficient
to retrieve the data from n sensors to the sink node (compared to possibly Ω(n2) without
the capability to aggregate data). The problem of aggregating data from all nodes in
the network in a minimum amount of time slots (delay-efficiency), assuming that a node
sends its data at most once (energy-efficiency) is known as the minimum data aggrega-
tion time (MDAT) problem [2]. A solution to this problem consists of a transmission
schedule, meeting the communication constraints, with minimum duration.

In this paper we also introduce the dynamic version of the MDAT problem, where
individual sensors are now mobile entities. This could model cars evolving in a smart
city, medical devices in a body area network, or mobile devices monitoring an area. A
WSN whose topology evolves with time is modeled as a dynamic unit-disk graph, i.e.,
a sequence of static unit-disk graphs. In this setting, the communication constraints
hold at each time slot, and a solution of the MDAT problem consists of a transmission
schedule with minimum duration.

1We suppose here that the area is a two dimensional plane, but our results naturally extend to greater
dimensions
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When sensor nodes have fixed positions, the maximum distance (in hops) from the
sink node to any other node is a lower bound for the minimum data aggregation time [2].
Indeed, if no collision occurs, the data from the farthest node can be sent through a
shortest path. Each avoided collision increases the duration of the schedule by one time
slot. However, if we suppose the nodes are moving, avoiding collisions can intuitively
have a much greater impact. Indeed, if a collision occurs and we delay the transmission
of a node by one time slot, the node may not be able to transmit again (maybe the
node remains isolated thereafter). In other terms, the existence of a journey (a path in
a dynamic graph) from every node to the sink node is not sufficient to guarantee the
existence of a collision-free schedule.

Related Work. The data aggregation problem we consider here was first studied by Ana-
malai et. al. [3]. The authors assume that a fixed number of channels is available for a
transmission, and a collision occurs at a receiver whenever two of its neighbors transmit
on the same channel at the same time. The authors propose an algorithm that constructs
a collision free convergecast tree that can also be used for broadcasting. Then, Chen et.
al. [2] present a well-defined model for the study of the MDAT problem in wireless sensor
networks. The problem is equivalent to the convergecast problem defined by Anamalai
et al. with a unique channel. In the same paper, Chen et al. prove that the problem is
NP-complete, even in graphs of degree at most four (more precisely they restricted the
problem to networks whose topology is a sub-graph of the grid, which cannot be con-
sidered directly as a wireless sensor network). They also gave a (Δ − 1)-approximation
algorithm (where Δ is the maximum node degree of the graph).

After the work of Chen et. al. [2], a variety of papers proposed centralized and
distributed approximation algorithms using geometric aspect of the MDAT problem to
improve the data aggregation delay. Yu et. al. [4] give a distributed algorithm with an
upper bound at 24D + 6Δ + 16 (where D is the diameter, and Δ the maximum degree
of the graph). Xu et. al., in [5] and Ren et. al. in [6] propose centralized algorithms
with upper bounds at 16R + Δ − 14 and 16R + Δ − 11, respectively (where R is the
radius of the graph). The best known bound is due to Nguyen et al. in [7], as they give
a centralized algorithm that takes at most 12R+Δ− 11 time slots to aggregate all data.

Related problems such as in-network aggregation [8] focus on an orthogonal perspec-
tive. They assume that collisions are handled by the MAC layer, and aim to find routes
that minimize the delay. So, those works actually differ significantly from the MDAT
problem.

On the other hand, dynamic graphs have received a lot of interest recently and ef-
forts have been done in order to standardize the underlying model [9, 10, 11]. Various
problems have been studied in a distributed setting, such as designing foremost, fastest,
and shortest broadcast algorithms [12, 13]. For each problem, sufficient and necessary
conditions on the (dynamic) graph are given. The opposite problem of data dissemi-
nation (or flooding) has also received a lot of attention in random dynamic networks.
Clementi et al. [14] gave an almost tight bound for any random dynamic graphs includ-
ing edge-markovian evolging graphs and geometric graphs (where nodes follow a random
walk or a random waypoint). A conclusion of their work is that increasing the dynam-
icity of the graph (for instance by increasing the speed of the nodes) implies faster data
dissemination, even if the network is at each instant very sparse (due to a short com-
munication range). Most related to our concern are two previous attempts that consider
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collecting data in dynamic networks [15, 16], however they use a much more powerful
communication model where no collision occurs. In more details, continuous aggregation
[15] assumes that data have to be aggregated, and that the result of the aggregation is
then disseminated to all participating nodes. The main metric is then the delay before
aggregated data is delivered to all nodes, as no particular node plays the role of a sink.
The alternative problem considered by Cornejo et al. [16] aims to minimize the number of
nodes that owns data (or partially aggregated data) assuming unicast communications.
In this work [16], the time is finite and no particular node plays the role of sink node as
any node can retrieve the data from any other node. To summarize, no previous work
considers the data aggregation problem in dynamic networks allowing collisions.

Our Contribution. The contribution of this paper is threefold. First, in order to compare
the complexity of the data aggregation in static and dynamic WSN, we give a tight bound
for the complexity of the MDAT problem in static WSN. In more details, we show that,
in a static WSN, the problem remains NP-complete when the graph is a partial grid of
degree at most three (a particular case of WSN topology). As it is trivial to solve the
problem in static graphs of degree at most two, our result implies that the problem is
intrinsically difficult for any practical setting. This result closes the complexity gap in
the static case.

Second, we introduce an extension of the MDAT problem in dynamic WSNs, and
we prove that the dynamic MDAT is NP-complete in a dynamic partial grid of degree
at most two (and it is trivial to solve the problem if the graph is of degree at most
one). As our result does not use the geometric properties of the graph, it remains valid
for arbitrary dynamic graphs whose degree is greater than one. We also show that
allowing simultaneous transmissions to the same node is not intrinsically helpful as it
only delays the complexity wall: we show that the problem remains NP-complete if a
node can correctly receive up to K > 1 simultaneous packets from different neighbors,
if the maximum node degree of the graph is K + 2 in the static case (and K + 1 in the
dynamic case).

Third, we give the first lower and upper bounds for the dynamic MDAT problem.
More precisely, we define the notion of the foremost convergecast tree to the sink node as
a convergecast tree to the sink node, with the earliest arrival time. Then, the minimum
time to aggregate all data in a dynamic network is greater than the duration of a foremost
convergecast tree (this result is valid in any graph, and for any degree Δ, there exists
a dynamic graph such that the bound is attained) and is smaller than the duration of
n − 1 independent foremost convergecast trees (this later bound is valid for any graph,
but actually obtained for dynamic graphs of degree n − 1). If we restrain the class
of dynamic graphs to those of degree smaller than n − 1, we prove that the upper
bound is greater or equal to the duration of l independent foremost convergecast trees
(with l = (Δ− 1) logΔ (n (Δ− 1) + 1)−Δ+ 2), which prevents previous approximation
algorithms for the static case to be extended to the dynamic case. Finally, we observe
that, even in periodic graphs, optimal solutions cannot be computed by an algorithm that
is unaware of the future of the graph or by a distributed algorithm (even if each node
knows its own future). This motivates our simple approximate algorithm presented in
section 6 to be centralized with full knowledge (yet, it does not assume that the graph is a
dynamic WSN in the sense that it can perform on arbitrary graphs). The approximation
factor is T (n − 1) if there exists a bound T such that there is a journey between every
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(a) node u does not receive data

v v′
u u′

(b) node u receives data
from v and u′ from v′

Figure 1: Communication constraints

two nodes in every time interval [t, t+ T ].

2. Model and Preliminaries

Wireless sensor networks (WSNs) containing n nodes with transmission range nor-
malized to 1, are modeled by unit disk graphs [1] i.e., intersection graphs of n equal-sized
circles. Each vertex corresponds to a circle of radius 1/2, and an edge exists between
two vertices when the corresponding circles intersect (tangent circles are assumed to
intersect).

We model a dynamic WSN as a discrete-time-varying graph [10]. According to this
model, we consider a discrete lifetime T = N with a constant latency function ρ that
equals one for every edge at any time (messages can travel at most one hop at a given
time). Under those assumptions, a dynamic graph is seen as an evolving graph i.e., a
sequence of snapshots, where each snapshot is a static graph that represents the evolving
graph at a given time t ∈ N. The maximum node degree of a dynamic graph, denoted Δ,
is the maximum node degree among all its snapshots. We recall that in dynamic graphs,
an edge is a pair ((u, v), t), where u and v are two nodes that are connected at time t.

Definition 1. A dynamic wireless sensor network G is a dynamic graph (V, (Et)t∈N)
where V is the set of vertices and (Et)t∈N a sequence that represents the edges of the
graph over the time, such that for each t, (V,Et) is a unit-disk graph.

Data Aggregation Schedule. The time is discrete and at each time round, called time slot,
communications are constrained by the following rule. Sensor nodes can send or receive
data, but cannot do both at the same time. Moreover, if two nodes send their data
simultaneously, all their common neighbors do not receive anything, due to interference
(see figure 1). A node can aggregate a received data with its own data, according to a
given aggregation function (simple examples of aggregation functions include maximum
and addition). The aggregation is supposed to be atomic, and the resulting data can be
sent like the original data i.e., in one time slot.

Let G = (V, (Et)t∈N), A ⊆ V , and B ⊆ A. We say that data is aggregated from A to
B at time t, denoted by (G,A, t) → (G,B, t + 1), if nodes in A \ B transmit their data
simultaneously and all the data is received by at least one node in B. Formally if:

∀u ∈ A \B, ∃v ∈ B, ∀u′ ∈ A \B \ {u} :
(u, v) ∈ Et ∧ (u′, v) /∈ Et
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A dynamic data aggregation schedule to s of duration l is a decreasing sequence of
sets V = R0 ⊇ R1 ⊇ . . . ⊇ Rl = {s} satisfying the following condition:

∀i s.t. 0 ≤ i < l, (G,Ri, i)→ (G,Ri+1, i+ 1)

Dynamic Minimum Data Aggregation Time Problem. An instance of the dynamic MDAT
problem is a pair (G, s), where G = (V, (Et)t∈N) models a dynamic WSN, and s ∈ V de-
notes the sink node. A solution of an instance (G, s) is a dynamic data aggregation sched-
ule to s with minimum duration. The minimum duration is denoted by MDATOpt(G, s).

Remark 1. The dynamic minimum data aggregation time problem may have no solution,
even in a dynamic WSN G connected over time (i.e., such that for all u, v ∈ V , there
exists a journey from u to v). Indeed, consider a set of edges defined as follow: E0 =
V × V and ∀i 
= 0, Ei = ∅. Then, the graph is connected, but only one node can send its
data to the sink node at time 0, and the other nodes are never able to send their data. A
simple sufficient (but not necessary) assumption that ensures the existence of a solution
is that the graph is recurrent connected (see our algorithm GDAS in the sequel).

3. NP-Hardness

3.1. Static grid graphs of degree at most three

A grid graph is a unit disk graph where all disks have centers with integer coordinates
and radius 1/2 i.e., an induced sub-graph of the grid. However, a sub-graph of the grid
(not necessarily induced, called partial grid) is not necessarily a grid graph.

Chen et. al. prove in [2] that finding the minimum data aggregation time is
NP−hard, even when the network is restricted to partial grid (with maximum degree
Δ = 4). On the other side, if the maximum degree of a static graph is Δ = 2, the graph
is either a line or a cycle and the minimum data aggregation time is easy to compute.
Let ε be the eccentricity of the sink node and n the number of nodes. If n is odd and
ε = (n−1)/2 (the graph is either a cycle or a line with the sink node in the middle) then
the MDAT is ε+ 1. Otherwise the MDAT is ε.

In this section we close the complexity gap of the MDAT problem in static networks by
proving that the MDAT is NP−hard, even when restricted to grid graphs with maximum
degree Δ = 3.

We use a construction that is similar to that of Chen et al. [2] with some improvements
about the topology (grid graph instead of partial grid) and about the maximum node
degree (3 instead of 4). We first state a lemma slightly different from their lemma 2 [2],
and follow with our first theorem.

Lemma 1. Let H be a planar graph with n > 6 nodes and maximum degree Δ ≤ 4, there
exist an orthogonal planar embedding of H such that each edge has the same length. This
embedding can be computed in time polynomial in n.

Proof. From [17], we know that there exists an orthogonal embedding of H in a grid g
of size n where each edge has at most 2 bends (so each edge has length smaller than
3n). Let gi be the grid g where the unit has been divided by 4i, of size 4in. We consider
the corresponding embedding of H in gi (so that the coordinates of vertices has been
multiplied by 4i). In gi, the maximum length of an edge is 12in.
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of length 3 by an edge of
length 5

safe
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v

w
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v

w

(c) both edges have the same
length

Figure 2: Construction of the orthogonal embedding

We can increase the length of an edge by 2 by replacing a piece of edge between two
points with integer coordinates by a new piece of edge, like in figure 2a. This is possible
if there are no other edges around.

By choosing i ≥ 48n, there is enough space in a subgrid (2i − 2) × (2i − 1), called
safe box, to contain an edge of length 3 × 4in. So that, if i ≥ 48n, since all the length
are even, we can lengthen all the edges to make them have a length 12in. Indeed, we
can lengthen a given edge in the first (2i− 2)× (2i− 1) subgrid of an end point, in the
anticlockwise direction (see figure 2).

Before stating our first theorem, we recall the definition of the restricted planar 3-
SAT [18]. Let ϕ be a 3−SAT formula composed by a set C of m clauses c1, . . . , cm
over a set V of n variables v1, . . . , vn. We define the corresponding formula graph Gϕ =
(V ∪ C,E1 ∪ E2), where E1 = {(xi, cj) : xi ∈ cj or x̄i ∈ cj} and E2 = {(xi, xi+1) : 1 ≤
i ≤ n−1}∪{(xn, x1)}. ϕ is said to be planar if the formula graph Gϕ is planar. ϕ is said
to be restricted if (i) each variable appears in at most three clauses, (ii) both negated
and unnegated forms of each variable appears at least once, and (iii) clauses drawn on
the same side of the cycle E2 must share the same literal if they share the same variable
(i.e., at a variable vertex in Gϕ, incident edges from one side correspond to the same
literal). It is known that restricted planar 3-SAT is NP-complete [18].

Theorem 1. The MDAT problem restricted to grid graphs of degree at most three is
NP-complete.

Proof. The proof is by reduction from restricted planar 3−SAT. Let ϕ be an instance of
the restricted planar 3 − SAT on n variables and m clauses. From the planar formula
graph Gϕ, we construct a planar graph G with maximum degree Δ = 3. The idea
behind the construction is that, in order to have a fast data aggregation, the schedule
must “choose” between two sides (i.e., the data are aggregated along one of two possible
paths) representing the true or false instantiation of a variable. The aggregation is fast
if all clauses are connected to the correct side of at least one variable. First we construct
the sub-graph Xi that represents the variable xi (see figure Fig. 3.1).

Xi is composed of a cycle of nodes ei, li, ri, si, oi, s̄i, r̄i, l̄i. Then, we connect to
li (resp. l̄i) a line Li (resp. L̄i) of length 5i − 3. Thus li cannot sends its data before
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ei

li ri si

oi

s̄ir̄il̄i

oi−1

Xi

ei+1

Li

L̄i

Fig. 3.1: sub-graphs Xi, Li and L̄i

X1 X2 X3

X4
X5

e

c1

c2

c3 c4

Ψ1,3

Ψ2,3

Ψ3,3

Fig. 3.2: example for ϕ = (x1 ∨ x2 ∨ x̄5) ∧
(x3 ∨ x̄4 ∨ x̄5)∧(x̄1 ∨ x̄2 ∨ x̄3)∧(x̄3 ∨ x4 ∨ x5)

aggregating data from Li i.e., before 5i − 3 timeslots. For 1 ≤ i < n we connect oi to
ei+1 and we connect to e1 a new node e0.

Each clause cj is represented by a single node and for each variable xi (resp. negation
x̄i) in clause cj , we connect cj to ri or si (resp. r̄i or s̄i) by a line Ψi,j of length (5i− 2)

to ri (resp. r̄i) or (5i − 1) to si (resp. s̄i). Let G =
⋃1≤j≤m

1≤i≤n

(
Xi ∪ Li ∪ L̄i ∪Ψi,j

)
(see

figure Fig. 3.1 and Fig. 3.2).
In order to use the previous lemma we need to be able to change the distance between

nodes. So we define GT obtained from G by replacing every edge by a line of length T
i.e., by adding T −1 nodes between two connected nodes, and by adding a pending node
e connected to e0.

In the next three Claims we show that there exists a T such that GT is a grid graph (of
degree at most 3) and that the minimum time to aggregate data from GT to on is 5nT+1
if and only if ϕ is satisfiable. Then, the theorem follows from the NP-completeness of
restricted planar 3−SAT [18].

Claim 1. There exists a T such that GT is a grid graph.
From Lemma 1 we deduce that G has an orthogonal embedding such that every edge

has the same length l ≥ 1 in a grid of size s. We divide the unit by 4 so that the
embedding is in a grid of size 4s and every edge has length 4l (every vertex has their
coordinates multiplied by 4). Then, we replace, in its embedding, each node by a disk
of radius 1/2, and every edge by a chain of 4l − 1 disk of radius 1/2, centered at integer
coordinates along the edge. Finally, we add a disk of radius 1/2, centered at integer
coordinates, at distance 1 from e0 and at distance greater than 1 from other disks. The
corresponding unit disk graph (that is also a grid graph) is exactly G4l.

Claim 2. For all T ≥ 1, if ϕ is satisfiable, then the minimum time to aggregate data
from GT to on is 5nT + 1.

First of all, we remark that the distance between e and on is 5nT +1, so that 5nT +1
is a lower bound for the minimum data aggregation time.

Now suppose that ϕ is satisfiable and let I be an interpretation of the truth-functional
propositional calculus satisfying ϕ. Let i ∈ [1..n] and suppose I(xi) = true. Suppose
that ei has aggregated at time (5i−4)T +1 data from previous nodes Xk∪(Ψk,j − {cj}),
k < i and from clauses cj containing for every j < i, xj if I(xj) = true, and x̄j otherwise.
As we said before, li (resp. l̄i) can aggregate all data from Li (resp. L̄i) at time (5i−3)T .

At the negative side of Xi, l̄i can also aggregate all data of the T − 1 nodes between
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ei and l̄i before time (5i − 3)T . If r̄i is connected to a clause cj , it can receive all data
from nodes between r̄i and cj (cj excluded) at time (5i − 2)T − 1. Then r̄i can receive
all data from l̄i at time (5i − 2)T . If s̄i is connected to cj , it can receive all data from
nodes between s̄i and cj (cj excluded) at time (5i− 1)T − 1. Then s̄i can aggregate all
data from r̄i at time (5i− 1)T . Thus oi can aggregate all data from s̄i at time 5iT .

On the other side of the cycle, li has to wait time (5i− 3)T + 1 to receive data from
ei. Again, if ri is connected to cj , it can receive all data from nodes between ri and cj
(cj included) at time (5i−2)T . Then ri can receive all data from li at time (5i−2)T +1.
If si is connected to cj , it can receive all data from nodes between si and cj (cj included)
at time (5i− 1)T . Then si can aggregate all data from ri at time (5i− 1)T +1. Finally,
oi can aggregate all data from si at time 5iT + 1.

If i = n, then it’s over, otherwise oi can start transmitting to the next block Xi+1 and
ei+1 can aggregate data from oi at time (5(i+1)− 4)T +1, the data includes data from
clauses containing xi. If I(xi) = false, the schedule on the positive and negative side of
the cycle are exchanged in order to aggregate data from clauses containing x̄i instead of
xi. Recursively, since all clauses are connected to a variable xi with I(xi) = true or to
x̄i with I(xi) = false, on aggregates all data at time 5nT + 1.

Claim 3. For all T ≥ 1, if the minimum time to aggregate data from GT to on is
5nT + 1, then ϕ is satisfiable.

Suppose that all data from GT are aggregated to on at time 5nT + 1. Since e is at
distance 5nT +1, its data is sent directly through a shortest path i.e., there is a shortest
path P from e to on such that, when a node in P receives at time t a data from e (an
aggregation that contains e’s data) it sends the aggregation to the next node in the path
at time t + 1. There are 2n shortest paths from e to on, indeed, at each block Xi, the
path can use the positive or the negative side, and implicitly choose to interpret xi as
true or false. Let i ∈ [1..n], and suppose P uses the positive side of Xi. As we saw before,
data from Li and Ψi,j for clauses cj that contain xi can be aggregated to li, ri and si
before the data from e. The first observation is that oi receives data from e, Li and Ψi,j

for clauses cj containing xi at time 5iT +1 and has to send the aggregation just after (it
cannot receive data after time 5iT + 1).

On the other side, l̄i can start sending at time (5i−3)T (because it must receive data
from L̄i first), and its data must be aggregate through a path to on of length smaller
than or equals to 5nT +1− (5i−3)T . Because of its length, this path must pass through
oi, by the negative side of Xi. Thus data from l̄i must be aggregate through a path to
oi of length smaller than or equals to 3T + 1 (the maximum length of the path minus
the minimum distance from oi to on). Adding this to the first observation, we know that
data from l̄i must be received by oi at time 5iT (and cannot be received before, because
l̄i and oi are at distance 3T ).

Thus, data from l̄i cannot be delayed (except by oi) i.e., if a node receives a data
from l̄i at time t, it must send the aggregation to the next node at time t + 1. Thus
r̄i and s̄i can receive data from other nodes only before time (5i − 2)T and (5i − 1)T ,
and so this data cannot include data from a connected clause cj (only from Ψi,j −{cj}).
Since all paths from a clause cj to on passing trough Xi contain a node ri, r̄i, si or s̄i, a
connected clause can send its data through Xi only if it contains xi.

The same thing happens if P uses the negative side of Xi: a connected clause can
send its data through Xi only if it contains x̄i.

For a shortest path P from e to on used to aggregate e’s data, we say a variable xi
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is true if P uses the positive side of Xi, and x̄i is true otherwise. We have shown that if
the data of a clause cj is received by on on time (before time 5nT + 1), then cj contains
a true literal.

Finally, if data from all clauses is received on time, then every clauses contains at
least one true literal, and the formula is satisfiable.

An interesting extension can be to investigate the case when a constant number K
of simultaneous transmissions are feasible. Let K ∈ N∗, we define the MDATK problem
as the MDAT problem, with the additional assumption that nodes can simultaneously
receive up to K messages from K different neighbors. Note that simultaneously receiving
K+1 or more messages still results in a collision. We now revisit the previous result with
K > 1. We show that allowing one more simultaneous transmission results in increasing
by one the maximum node degree of the graph for the problem to be NP-complete. This
may seems obvious at first sight, but the fact that the problem concerns unit-disk graphs
makes the proof slightly technical. Indeed, every time we want to create a collision, to
force the algorithm to make a choice, we have to create a node of degree K + 2, and
in a unit-disk graph, if K is large enough, such a node must have two neighbors that
are connected. So that we cannot connect an arbitrary amount of lines to a node while
keeping the whole network as a unit-disk graph. The idea of the proof is as follow. For
each node where we need a collision (see proof of theorem 1), we add a single special line
of nodes. The resulting graph has now a maximum node degree of 4 and still have an
embedding in the grid. Then, after replacing each edge in the embedding by nodes to
create a unit-disk graph, we replace each special line by a unit-disk graph that creates
the desired collision.

Theorem 2. The MDATK problem restricted to graphs of degree at most K + 2 is
NP-complete.

Proof. Let ϕ be an instance of the restricted planar 3 − SAT with n variables and m
clauses. From the planar formula graph Gϕ, we construct a graph G as in the proof of
Theorem 1, with 5 additional lines C1, C2, C3, C4, C5 connected to nodes ri, li, r̄i, l̄i,
and oi. We connect C1 (resp. C2) of length 5i − 2 to ri (resp. r̄i), C3 (resp. C4) of
length 5i− 1 to li (resp. l̄i), C5 of length 5i+ 1 to oi. As in the proof of Theorem 1 we
define GT obtained from G by replacing every edge by a line of length T i.e., by adding
T − 1 nodes between two connected nodes, and by adding a pending node e connected
to e0. G has a maximum node degree of 4, so it has an orthogonal embedding such that
every edge has the same length l ≥ 1 in a grid of size s (see Lemma 1). We divide the
unit distance by 4 so that two edges are at distance at least 4 from each other. Then,
we divide the unit distance by 2(K − 1).

Let ε > 0 and K ′ = K − 1. For each line C ∈ {C1, C2, C3, C4, C5} of length d in
the embedding (d is a multiple of 8K ′), we split the line in small parts of length 2K ′

at the two extremities, and length 4K ′ otherwise (see Figure 3). Each small part is
either a straight line or two orthogonal straight lines. The goal is to replace each part
by a unit-disk graph Ĉ such that, when aggregating all the data from Ĉ, K ′ nodes then
want to transmit simultaneously at time d their data to the node that connects Ĉ to the
remaining of the graph.

Each straight line of length 4K ′ is replaced by K ′ × 4K ′ disks of radius 1/2 spread
across a grid of size K ′ × 4K ′, that is constrained in a rectangular area of width 4K ′,
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u
u

Figure 3: The replacement of a line connected to node u ∈ {ri, r̄i, li, l̄i, oi} by graphs containing K′ =
K − 1 lines of length 2K′ − 1 for the part connected to u, and 4K′ for the parts not at an extremity.

height ε, and centered at the middle of the initial line. This implies that the intersection
graph of those disks (see Figure 3) is composed of 4K ′ cliques of sizeK ′ that are connected
by K ′ lines of length 4K ′. This graph has the property that the distance between two
nodes located at distinct extremities is either 4K ′ if the nodes are in the same line, or
4K ′ + 1 otherwise. We repeat the same process for the parts at the extremities, using
only K ′ × (2K ′ − 1) disks for the part connected to the remaining of the graph, and
K ′ × 2K ′ disks for the part at the other extremity.

Similarly, each part composed by two lines at a right angle is replaced by K ′ × 4K ′

disks of radius 1/2 in such a way that the intersection graph contains K ′ lines of length
4K ′ (connected with some additional edges), and has the same property as the previous
intersection graph (see Figure 3). This implies that the intersection graph produced by
all the disks of all the small parts contains K ′ lines of length d such that the distance
between two nodes at distinct extremities is d if they are in the same line, or d + 1
otherwise.

All the disks are slightly translated toward the node u ∈ {ri, r̄i, li, l̄i, oi} that connects
C to the remaining of the graph, so that the K ′ disks at the extremity of the line are at
distance at most 1 from u. Also, ε is chosen sufficiently small so that disks that replace
Line C do not intersect with other disks, located in the remaining of the graph.

Finally, as in the previous proof, we replace in the remaining of the embedding each
node by a disk of radius 1/2, and every edge by a chain of 8K ′l − 1 disks of radius 1/2,
centered at integer coordinates along the edge. Finally, we add a disk of radius 1/2,
centered at integer coordinates, at distance 1 from e0. The obtained graph is G8K′l,
where each line Ci is replaced by a subgraph Ĉi such that, to aggregate all data from Ĉi

without delaying the data aggregation in the whole graph, the node u that connects Ĉi

to the remaining of the graph has to aggregate the K− 1 neighbors in Ĉi simultaneously
at time d, which equals the length of Ci. Then, only one other neighbor of u can transmit
its data to u at time d. This simulates the constaint that no two neighbors of u could
transmit at time d without interference in the previous setting. So, we can apply the
same proof as the case K = 1 on the transformed graph.

One can observe that the problem is easy to solve in static graphs of degree at most
K + 1. Indeed, when aggregating data along the shortest path tree, no collision occurs,
except maybe at the sink node. Any schedule, for the transmissions of the neighbors of
the sink, that avoid collisions is optimal.

3.2. Dynamic graphs of degree at most two

In a dynamic network we prove that, even when the maximum degree is two, the
dynamic MDAT problem is NP-hard. This result is optimal since the problem is easy to
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Figure 4: Node Configurations (clauses are blue and literals are red).

solve in a graph of degree at most one (where no collision occurs).

Theorem 3. The dynamic MDAT problem is NP-complete even in a dynamic wireless
sensor network of degree at most two.

Proof. The proof is by reduction from 3-SAT. Given any 3-SAT instance ϕ of n variables
v1, . . . , vn and m clauses c1, . . . , cm, we construct the dynamic grid graph Gϕ(V,E) as
follow:

Nodes are composed of one sink node, literals, clauses, and copy of clauses:

V = {s}
⋃

1≤i≤n

{vi} ∪ {v̄i}
⋃

1≤i≤m

{ci} ∪ {c′i}

Let tf = 3n+2m. We decompose the time interval [1, tf ] in three periods T1, T2 and T3

(see figure 4):

• During T1 = [1, 2n], we have for all i ∈ [1, n]:

E2i−1 = {(vi, s)}, E2i = {(v̄i, s)}

• During T2 = [2n+ 1, 2n+ 2m] we have for all j ∈ [1,m]:

with {a, b, c} = cj , E2n+2j−1 = {(cj , c′j)}, E2n+2j = {(c′j , a), (cj , b), (cj , c)}

• During T3 = [2n+ 2m+ 1, 2n+ 2m+ n] we have for all i ∈ [1, n]:

E2n+2m+i = {(vi, s), (v̄i, s)}

The remaining of the dynamic graph (after time tf ) can contain for instance composed
only empty snapshots, or be such that the graph is periodic. This does not change the
proof, but can be used to analyze the best approximation ratio for this problem (see
remark 2).

During T3, either a variable or its negation can send its data to the sink node s, but
not both, so that the set of literals that send data can be seen as an interpretation of a
truth-functional propositional calculus.

During T1, variables that does not send their data during T3 can send their data
directly to the sink node.

12



During T2, there is a link between a clause ci and its copy c′i so that either ci or c′i
can send both data. Since all clauses can send their data only once to all the literals it
contains, the data is successfully sent to the sink node if and only if at least one literals
it contains sends its data in T3 i.e., is true.

Thus, if the interpretation chosen in T3 satisfies the formula ϕ, then each clause
contains a literal that transmits during T3, and the minimum data aggregation time is
exactly tf . Otherwise, some clauses must send their data before t = 1, and the minimum
data aggregation time is greater than tf .

So that the 3-SAT instance ϕ is satisfiable if and only if the minimum data aggregation
time ending before tf is tf .

Remark 2. Theorem 3 raises the question of the best approximation ratio achievable by
an approximation algorithm. We observe that using time as a complexity measure is not
relevant in the dynamic case. Contrary to the static case, where good approximation ratios
have been found, the problem is not approximable in the dynamic case using the duration
of the solution as a measure of complexity. Indeed, the dynamic graph constructed in the
proof of Theorem 3, with empty snapshots when time is greater than tf , only contains
the optimal solution. So, if an approximation algorithm finds an approximate solution,
it actually finds the optimal solution, which is not possible in polynomial-time (unless
P = NP ). Even when restricted to smaller classes of graphs, such as periodic dynamic
graphs, the approximation ratio (with respect to duration) can be made arbitrary large by
increasing the period. The approximation ratio can be bounded in periodic graphs, but
only when the period is itself bounded (or in time-bounded recurrent connected graphs
with fixed bound, as defined in Section 5). This remark justifies (i) our use of Foremost
Convergecast Trees, defined in Section 4, as a complexity measure to establish upper and
lower bounds, and (ii) the approximation ratio of our approximate algorithm, presented
in Section 6, when restricted to time-bounded recurrent connected graphs.

As in the static case, we show that when K simultaneous transmissions are allowed
without collisions, the problem is similar. Here, the geometric constraints do not hold,
giving a more straightforward proof.

Theorem 4. The dynamic MDATK problem restricted to evolving graphs of degree at
most (K + 1) is NP-complete.

Proof. In the dynamic case, there is a simpler way to apply the same trick as in the static
case. From a 3-SAT instance, we create the same evolving graph as in Theorem 3, but
with (K − 1) × n additional nodes (r11, r

1
2, . . . , r

n
K−1), and where edges in the period T3

are defined as follow: for all i ∈ [1, n],

E2n+2m+i = {(vi, s), (v̄i, s)} ∪
K−1⋃
j=1

{(rij , s)}

So, in order for the data aggregation to terminates at time tf = 3n + 2m, all nodes rij
have to transmit during T3. This implies, like in the proof of Theorem 3, that either a
variable or its negation can transmit during T3.
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Figure 5: An example of foremost convergecast tree.

4. Upper and Lower Bounds

In this section, we introduce the notion of foremost convergecast trees. Then we
propose the first upper and lower bounds for the dynamic MDAT problem, given in
terms of foremost convergecast tree duration.

A journey from a node u to node a v is a sequence of edges ((e1, t1), . . . , (er, tr)) such
that (e1, e2, . . . , er) is a path from u to v in the static graph (V,∪i∈NEi) and

∀i ∈ [1..r − 1], ti < ti+1 ∀i ∈ [1..r], ei ∈ Eti

For a journey J , we denote by departure(J) the starting time t1 and by arrival(J)
the arrival time tr + 1 of the journey. The arrival time corresponds to the time of
the existence of the last edge plus the latency to travel along the last edge. Then,
duration(J) = arrival(J) − departure(J) denotes the duration of the journey. We

denote by J(u,v) the set of journeys from u to v and by J [ts,te]
(u,v) the subset of journeys

that start and end between ts and te.

Definition 2. Let G(V,E) be a dynamic graph. A convergecast tree to node s is a pair
(T, c), where T (V, Tedges) is a tree rooted at s, and c is a function c : Tedges → N that
satisfies: if u is a descendant of v in T and (e1, e2, . . . , er) is the path from u to v in T ,
then

((e1, c(e1)), (e2, c(e2)) . . . , (er, c(er)))

is a journey in G called the journey from u to s induced by T . The departure (respectively,
the arrival) of the convergecast tree is the departure of the first journey in T (respectively,
the arrival of the last journey in T ):

departure(T, c) = min
e∈Tedges

c(e) and arrival(T, c) = max
e∈Tedges

c(e) + 1

Definition 3. Let G(V,E) be a dynamic graph. A foremost convergecast tree (abbre-
viated as FCT) to node s starting at time ts is a convergecast tree (T, c) to s such that
departure(T, c) ≥ ts with minimum arrival time.

FCT (G, s, ts) denotes the set of foremost convergecast trees of G to node s starting
after time ts. The common duration of foremost convergecast trees starting after ts is
denoted FCTD(G, s, ts).

In dynamic WSNs, a foremost convergecast tree plays the same role as a shortest
path tree in static WSNs. Indeed it gives the same lower bound as in the static version
of the problem. Figure 5 shows an example of the unique foremost convergecast tree to
the sink node s starting at time 0 of a simple dynamic graph (for the sake of simplicity,
the position of the nodes do not change with time).

14



t ≡ 0 mod 2 t ≡ 1 mod 2 Foremost Convergecast Tree

s

1

2

3

4

5

6

s

1

2

3

4

5

6

s

1

2

3

4

5

6 0
0

0
0

1

1

Figure 6: Creation of a perfect binary FCT.

Lemma 2. Let G be a dynamic graph, we have:

MDATOpt(G, s) ≥ FCTD(G, s, 0)

Proof. Let G be a dynamic graph, s be a sink node, and S = {St}t be a data aggregation
schedule to s of duration l = MDATOpt(G, s).

Let x0 be a node different from the sink. We know that there exists i is such that
x0 ∈ Si and x0 /∈ Si+1. Since (G,Si, i)→ (G,Si+1, i+ 1), there exists a node x1 ∈ Si+1

such that (x0, x1) ∈ Ei. We can apply the same argument to x1 if it is different from the
sink.

Recursively we have x1, x2, . . ., xp = s and t1 < t2 . . . < tp < l such that for all
1 ≤ i ≤ p, (xi−1, xi) ∈ Eti . Thus J = {((xi−1, xi), ti) | 1 ≤ i ≤ p} is a journey from
x0 to s ending before l. We can do this with every nodes in V − {s}, which proves
FCTD(G, s, ts) ≤ l.

In a static WSN, the same shortest path tree can be used to avoid collisions. But in
a dynamic WSN, a FCT T1 that exists at a given time may not exists thereafter. If we
delay the transmission of a node, to avoid a collision, another FCT T2 is then used to
retry a transmission. In order to be sure that T2 can be used by all delayed nodes, it
has to start after the end of T1. In this case we say that (T1, T2) is a 2-time-independent
FCT.

Definition 4. A l-time-independent FCT of G to s starting at time ts is a sequence of
l foremost convergecast trees of G to s ((T1, c1), . . . , (Tl, cl)) such that:

• (T1, c1) is a FCT starting at ts.

• for all 1 < i ≤ l, (Ti, ci) is a FCT starting at arrival(Ti−1, ci−1).

Its duration is the sum duration of all FCT in the sequence and also equals to
tarrival(T1, c1)−ts. The set of l-time-independent FCT of G to s starting at ts is denoted
FCT l(G, s, ts). The common duration of all l-time-independent LTJs in FCT l(G, s, ts)
is denoted LTJDl(G, s, ts).

This definition is used to give lower and upper bounds for the minimum data aggre-
gation time in a dynamic graph G with n nodes as follow:

FCTDn−1(G, s, 0) ≥MDATOpt(G, s) ≥ FCTD(G, s, 0)

15



s

1

2

3

4

5

6

s

1

2

3

4

5

6

s

1

2

3

4

5

6

Figure 7: Optimal data aggregation schedule when FCTs are complete binary trees.

Where the right-hand inequality comes from lemma 2 and the left-hand inequality comes
from the fact that a node can send its data during a FCT, so that n − 1 foremost
convergecast trees are sufficient to aggregate the data of every nodes.

The lower bound and the upper bound are tight in the sense that there exists a graph
that reaches the lower bound (any graph of degree at most one) and a graph that reaches
the upper bound (for instance a graph whose sink node is of degree n− 1 at each time).

If we consider only graphs with a given maximum node degree Δ, the lower bound
is still tight, but the upper bound is no longer tight. The following lemma gives a graph
with a minimum data aggregation time that lowers the upper bound, for an arbitrary
maximum node degree Δ. We conjecture that it also gives the worst data aggregation du-
ration i.e., that it also give an upper bound that remains tight for an arbitrary maximum
node degree.

Lemma 3. Let n ∈ N
∗ and Δ ≤ n, there exist a dynamic graph G with n nodes of degree

at most Δ such that:

FCTDm(G, s, 0) = MDATOpt(G, s) < +∞
with m = (Δ− 1) logΔ (n (Δ− 1) + 1)−Δ+ 2

Proof. Let Δ ≥ 2. We consider the dynamic graph G(V,E). For the sake of simplicity,

we suppose that there exists h ∈ N such that |V | = n = Δh+1−1
Δ−1 . One can construct G

such that, there is a perfect Δ−ary tree T (of height h) such that, for all t ≡ 0 mod h,
FCT (G, s, t) = {(T, ct)} and (T, ct) is of duration h (and thus with collision appearing
between every nodes having the same parent). See for instance figure 6 with Δ = 2 and
h = 3. The path associated to a journey from a node u to the sink is unique. So that a
node has to wait to receive the data from all its children before transmitting.

Since no two children of s can transmit at the same time, s needs Δ FCTs to receive
the data from all its children. Let s′ be the first direct child of s that transmits, and
T (s′) the sub-tree of T rooted at s′. T (s′) is a perfect Δ−ary tree of height h− 1. When
s′ transmits, its data contains the data of its children. Again, Δ FCTs are needed to
aggregate all the data from all its children. One of this FCT can be used to aggregate
the data from s′ to s. For each layer of the tree, Δ− 1 consecutive FCTs are needed.

Recursively, we need at least (Δ − 1)h + 1 time-independent FCTs to aggregate
all the data from G. One can show that this is also sufficient (see figure 7). Since
h = logΔ(n(Δ− 1) + 1)− 1, the theorem is proved.

Conjecture 1. Let G be a dynamic graph with n nodes of degree at most Δ. Let m =
(Δ− 1) logΔ (n (Δ− 1) + 1)−Δ+ 2, we have:

FCTDm(G, s, 0) ≥MDATOpt(G, s)
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We observe that the conjecture is proved for Δ = n− 1 and is trivial if Δ = 1.

5. Impossibility Results

In this section we present several classes of dynamic graphs where only a centralized
algorithm that knows the future can compute optimal and ”good” approximate solutions.
A hierarchy of classes of dynamic graphs has been identify in previous work [10]. Here
we present only the few we are interested in.

• RC (Recurrent connectivity): ∀u, v ∈ V, ∀t ∈ N:

J [t,+∞)
(u,v) 
= ∅

• BRC (Time-bounded recurrent connectivity): There exists a bound T such that,
∀u, v ∈ V, ∀t ∈ N:

J [t,t+T ]
(u,v) 
= ∅

• P (Periodic): the graph is connected and there exists T ∈ N such that:

(∃t, (u, v) ∈ Et

)⇒ (∀k ∈ N, (u, v) ∈ Et+kT )

The two following impossibility results are for the class of periodic graphs, and natu-
rally extend to larger classes such as recurrent connected. The first impossibility result
concerns distributed algorithms. A distributed algorithm is a set of local algorithms that
are each executed independently by each node. It is also assumed that nodes no not have
knowledge about the global topology (or future global topology) of the graph; they may
only have knowledge about adjacent edges and nodes (or their future). In general, when
two nodes interact, we assume that they are allowed and able to exchange their local
knowledge (for instance, about their respective local future if they are aware of it) and
use this information for future interactions. For our problem, a distributed algorithm
has to decide, whenever an interaction occurs, whether the node sends its data or not.

Proposition 1. In P, the dynamic MDAT problem does not have a distributed optimal
algorithm, even if each node knows its own future.

Proof. We define G = (V, {Ei}) and G′ = (V ′, {E′
i}) as follow (see figure 8):

V = V ′ = {s, 1, 2, 3}, ∀i ∈ N,
E′

i = {(1, s), (2, 3)}, Ei = {(1, s)} if i ≡ 0 mod 3
E′

i = Ei = {(1, 2), (3, s)} if i ≡ 1 mod 3
E′

i = Ei = {(1, s), (2, 3)} if i ≡ 2 mod 3

At time 0 a distributed algorithm A do the same thing for node 1 and s on G and G′,
because they have the same neighbors now and in the future. If A decide that node 1
transmits its data to s at time 0, then A is not optimal on G (since its faster to wait the
data from node 2 at time 1 and then transmit at time 2). Otherwise, A is not optimal
on G′ (since all data can be aggregated at time 1).
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Figure 8: Optimal data aggregation in graph G and G′. In G, node 1 transmits at time 0 and in G′,
node 1 does not transmits at time 0, even though node 1 has the same future in both G and G′.

If we consider time as a measure of complexity, the following proposition shows that
the best competitive ratio a distributed algorithm with knowledge of (local) future can
achieve is unbounded.

Proposition 2. In P, the competitive ratio of a distributed algorithm is unbounded for
the dynamic MDAT problem, when considering time as a measure of complexity, even if
each node knows its own future.

Proof. We construct two graphs, G and G′, so that there is an arbitrary delay between
the optimal solution and any other solution, resulting in unbounded competitive ratio.
In more details, for all K > 2, we define GK = (V, {Ei}) and G′

K = (V ′, {E′
i}), periodic

with period T = 2K2, as follow :

V = V ′ = {s, 1, 2, 3}, ∀i ∈ N,
E′

i = {(1, s), (2, 3)}, Ei = {(1, s)} if i ≡ 0 mod T
E′

i = Ei = {(1, 2), (3, s)} if i ≡ 1 mod T
E′

i = Ei = {(1, s), (2, 3)} if i ≡ 2K mod T
E′

i = Ei = ∅ otherwise

So that, for an algorithm A, either (i) A chooses that node 1 transmits at time 0 and
the time to aggregate all the data is greater than 2K2 compared to 2K for an optimal
centralized algorithm (i.e. a ratio of K) or (ii) A chooses that node 1 does not transmit
at time 0 and the time to aggregate all the data is greater than 2K compared to 2 for an
optimal centralized algorithm (i.e. a ratio of K). In both case, the ratio K between the
time to aggregate the data with A compared to an optimal centralized algorithm can be
made arbitrary big.

Proposition 3. In P, without knwoledge of the future, the dynamic MDAT problem does
not allow a centralized optimal algorithm.

Proof. Let k ∈ {1, 2}. We define Gk as follow (see figure 9):

V = {s, 1, 2}, ∀i ≥ 0, Ei =

{
(1, 2) if i ≡ 0 mod 2
(k, s) if i ≡ 1 mod 2

Let A be an algorithm that does not know the future. At time 0, A is executed the same
way on G1 and G2. If A decides that node 1 should transmit its data to node 2 at time
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Figure 9: Optimal data aggregation in graph G1 and G2. In G1, node 2 transmits at time 0 whereas in
G2, node 1 does.

0, A cannot solve the problem on G1. If A decides that 2 should transmit to 1 at time
0, then A cannot solve the problem on G2. Otherwise, if A choose to do nothing at time
0, the solution given by A is not optimal.

Again, if we consider the time as a measure of complexity, the following proposition
shows that the best competitive ratio a centralized algorithm without the knowledge of
future (called online algorithm) can achieve is unbounded.

Proposition 4. In P, the competitive ratio of an online algorithm (that is, a centralized
algorithm without knowledge of the future) is unbounded for the dynamic MDAT problem,
considering time as a measure of complexity.

Proof. Let G∞(V,E∞) be defined as follow:

V = {s, 1, 2}, ∀i ≥ 0, E∞
i =

{
(1, 2) if i ≡ 0 mod 2
(1, s) if i ≡ 1 mod 2

Let A be an algorithm that does not know the future. When executing A on G∞, either
(i) A decides never to transmit, and the corresponding competitive ratio of A is infinite,
(ii) the first node to transmit is node 1, and the competitive ratio of A is infinite, or
(iii) at some time t, A decides that node 2 transmits to node 1. Let Gt,T (V,Et,T ), with
T > t, be defined as follow:

∀i ≥ 0, Et,T
i =

⎧⎨
⎩

(1, 2) if i ≡ 0 mod 2
(1, s) else, if i ≡ j mod 3T , with 0 < j < t
(2, s) otherwise

Then, when executing A on Gt,T , node 2 transmits to node 1 at time t, and node 1 has
to wait until time 3T + 1 to transmit its data to s. Since the optimal offline algorithm
executed on Gt,T terminates in 2 steps if t > 0, and 3 steps otherwise, the competitive
ratio of A on Gt,T is greater than T .
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6. Approximation Algorithm

In this section, we present an approximation algorithm for the dynamic MDAT prob-
lem. The maximum duration of a solution output by this algorithm reaches the theo-
retical upper bound given in Section 4. The complexity of our algorithm is better than
the one appearing in the preliminary version of this paper [19], as it needs to loop two
times over the number of edges of all snapshots between time 0 and time tf (where tf is
the duration of the found solution), instead of the square of this number for the previous
algorithm.

During the first inner while loop, the algorithm finds the arrival time of a foremost
convergecast tree of the nodes in remainingNodes, starting at time ts. The arrival time,
denoted tf , becomes the starting point to find a collision-free schedule between time tf
and time ts in a backward manner for the nodes in remainingNodes. If some nodes in
remainingNodes are not able to transmit between time ts and time tf , we start a new
iteration and compute the duration of the foremost convergecast tree consecutive to the
one found in the previous iteration (its departure time is the arrival time of the previous
foremost convergecast tree).

The last for loop converts the sequence S that contains the senders over the time to
a dynamic data aggregation schedule. With this method, if a node is in St1 ∩ St2 , then
only the last transmission is taken into account. The algorithm loops over all the edges,
two times, for each snapshot of the dynamic graph between time 0 and the duration of
the found solution.

Our algorithm uses Procedure canTransmit(u, Senders,Receivers), that returns
true if and only if Node u can transmit its data to a node in Receivers without in-
terfering with other nodes in Senders.

Lemma 4. If Algorithm GDAS terminates, the sequence {Si}i≤tf is a valid DAS.

Proof. If GDAS terminates, then the sequence S satisfies S0 = V , because each node
that has been removed from remainingNodes line 21 has been added to St line 23.
Moreover, for each time t, nodes in St \ St+1 (if not empty) have been added to St line
23 after Function canTransmit returned true, thus their data are successfully received
by nodes in St+1. This implies (G,St, t)→ (G,St+1, t+ 1).

Theorem 5. If a graph G is in RC, algorithm GDAS finds a valid dynamic data aggre-
gation schedule such that

duration(GDAS(G, s)) ≤ FCTDn−1(G, s, 0)

Proof. First, we observe that the inner while loop simulates a multicast of every
node in the network and stops when the sink node receives data from the nodes in
remainingNode. The duration tf − ts is smaller than the duration of a foremost con-
vergecast tree starting at ts (and it terminates in finite time since the graph is recurrent
connected).

We prove that after each iteration of the main do ... while loop, the cardinal of the
set remainingNodes strictly decreases.

Let tif be the value of tf at the end of the i-th iteration. Suppose we have already
executed the i− 1 iteration of the main loop. At the beginning of the i-th iteration, we
compute in the inner while loop the minimum time to aggregate (maybe with collision)
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Algorithm GDAS: Greedy Data Aggregation Schedule

Input: MDAT Instance (G, s)
1 S ← empty sequence
2 remainingNodes← V \ {s}
3 t← 0
4 do
5 ts ← t
6 for u ∈ V do
7 datat[u]← {u}
8 while remainingNodes �⊂ datat[s] do
9 datat+1 ← datat

10 for (u, v) ∈ Et do
11 datat+1[v]← datat[u] ∪ datat[v]
12 datat+1[u]← datat[u] ∪ datat[v]

13 t← t+ 1

14 tf ← t
15 marked← {s}
16 for t = tf − 1, . . . , ts do
17 St ← ∅
18 previouslyMarked← marked
19 for v ∈ {Nt(u)|u ∈ previouslyMarked} do
20 if canTransmit(v, St,marked) ∧ datat−1[v] ∩ remainingNodes �= ∅ then
21 remainingNodes← remainingNodes \ {v}
22 marked← marked ∪ {v}
23 St ← St ∪ {v}

24 t← tf
25 while remainingNodes �= ∅;
26 for t = tf − 1, . . . , 0 do
27 St ← St ∪ St+1

28 return S
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the data of the nodes in remainingNodes. Indeed, for a node u, v ∈ datat[u] implies
that there exists a journey from v to u ending before time t. Since datatif [s] contains

remainingNodes, for each node u ∈ remainingNode, there exists a journey from u to s
with departure greater than ti−1

f = tis and arrival smaller that tif .
In the for loop starting Line 16, we create a collision-free schedule that aggregates

the data of at least one node in remainingNodes. Indeed, for each time t ∈ [tis..t
i
f ]

(in decreasing order), a node is chosen to transmit if the transmission does not create a
collision (with the help of the function canTransmit) and the node is in a journey from
a node in remainingNodes to s (since datat−1[v]∩ remainingNodes 
= ∅). Since a node
can be marked at most once, there exists a time t, when the only nodes (not marked) on a
journey from a node in remainingNodes to s are themselves in remainingNodes. One of
these nodes is chosen to transmit at time t and is removed from the set remainingNodes.

This implies that there can be at most n − 1 = #(V \ {s}) iterations of the main
loop. After each iteration, the duration tf − ts is smaller than the duration of a foremost
convergecast tree starting at ts. Since for each iteration, the computation restart from
the end of the previous one, after i iterations of the main loop, tif is smaller than the
duration of i consecutive foremost convergecast trees. Since there can be at most n− 1
iterations of the main loop, the duration of the dynamic data aggregation schedule is at
most LTJDn−1(G, s, 0).

If the graph is T -time-bounded recurrent connected, then a FCT duration is smaller
than T . Thus, we can derive an absolute bound and the following approximation factor
for the dynamic MDAT problem.

Corollary 1. Algorithm GDAS, in BRC with bound T , satisfies:

duration(GDAS(G; s)) ≤ T (n− 1)

Thus, it is an approximation of factor T (n− 1), for the dynamic MDAT problem.

7. Conclusion

We studied the complexity of the minimum data aggregation time problem in wireless
sensor networks. We proved that the problem is NP-complete in a static WSN of degree at
most three, and NP-complete in a dynamic WSN of degree at most two. The degree con-
straint is crucial, as a smaller one induces a trivial solution in both cases. Then we gave
tight lower and upper bounds for the minimum data aggregation time problem in dynamic
networks and the first approximation scheme for the problem. Also, in a dynamic graph
with n nodes of degree at most Δ, we conjecture a more accurate upper bound of l time-
independent foremost convergecast trees (with l = (Δ− 1) logΔ (n (Δ− 1) + 1)−Δ+2).

Finally we observed that only a centralized algorithm with full knowledge can compute
the optimal solution of the problem. Thus, we gave a simple approximate algorithm
giving a solution whose time matches the theoretical upper bound.

One can observe that allowing nodes to transmit several times their data, instead
of only once, does not change the results concerning centralized algorithms that are
aware of the future. Indeed, a schedule that contains multiple transmissions by node
can be converted to a schedule where each node transmits only once, by keeping only
the last transmission. Moreover, we also believe that the impossibility results concerning
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distributed algorithm, and online algorithms, still hold even if a constant number of
transmissions are allowed by node.
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