
HAL Id: hal-01420298
https://hal.sorbonne-universite.fr/hal-01420298v1

Submitted on 20 Dec 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Memory Consumption Analysis for a Functional and
Imperative Language

Jérémie Salvucci, Emmanuel Chailloux

To cite this version:
Jérémie Salvucci, Emmanuel Chailloux. Memory Consumption Analysis for a Functional and Imper-
ative Language. RAC 2016 - Resource Aware Computing, Apr 2016, Eindhoven, Netherlands. pp.27
- 46, �10.1016/j.entcs.2016.12.013�. �hal-01420298�

https://hal.sorbonne-universite.fr/hal-01420298v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

Memory Consumption Analysis for a
Functional and Imperative Language

Jérémie Salvucci1 and Emmanuel Chailloux2

Sorbonne Universités,
UPMC Univ. Paris 06,

UMR 7606, LIP6,
4 Place Jussieu, F-75005 Paris, France

Abstract

The omnipresence of resource-constrained embedded systems makes them critical components. Program-
mers have to provide strong guarantees about their runtime behavior to make them reliable. Among these,
giving an upper bound of live memory at runtime is mandatory to prevent heap overflows from happening.
The paper proposes a semi-automatic technique to infer the space complexity of ML-like programs with
explicit region management. It aims at combining existing formalisms to obtain the space complexity of
imperative and purely functional programs in a consistent framework.

Keywords: ML, regions, static analysis, memory analysis.

1 Introduction

Deploying software in constrained environments requires strong guarantees about its

runtime behavior. In memory-constrained embedded systems, dynamic allocation

is often prohibited to keep execution time analyses doable and avoid heap overflows.

We introduce a programming language and a resource consumption analysis to en-

able dynamic allocation while providing an upper bound of live memory at compile

time.

In this paper, we propose a language à la ML mixing purely functional and

imperative features with an explicit region mechanism. To retrieve information

about a program memory interactions, we rely on a static type & effect system

and manual memory management through region related primitives. The type

system aims at ensuring the absence of memory-related errors at compile time. To

1 jeremie.salvucci@lip6.fr
2 emmanuel.chailloux@lip6.fr

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 330 (2016) 27–46

1571-0661/© 2016 Published by Elsevier B.V.

www.elsevier.com/locate/entcs

http://dx.doi.org/10.1016/j.entcs.2016.12.013

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2016.12.013
http://dx.doi.org/10.1016/j.entcs.2016.12.013
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/4.0/

perform this, programmers have to manage memory manually through a restricted

set of primitives describe in section 3. The effect system helps generalize terms and

discriminate between purely functional and imperative styles at the function level.

The analysis relies on the correctness of the type system to consider only error-

free programs with respect to memory. It combines several existing resource con-

sumption analyses depending on the style inferred by the effect system. For in-

stance, a function which does not allocate memory do not require analysis whereas

a function which allocates memory and performs side-effects needs careful han-

dling. On pure functions, we apply automatic amortized analysis [7] adapted to the

region mechanism. On imperative functions, regions offer spatial information for

side-effects, we use invariants on iteration spaces provided by the programmer as

annotations. Both analyses return a symbolic expression characterising the space

complexity of the analyzed function for each region involved in the computation.

The composition of these symbolic expressions with a careful handling of side-effects

give the program memory consumption.

To allocate memory and to reclaim memory are orthogonal operations. Allocat-

ing memory does not require information about the current state of the memory

graph. Whereas, reclaiming memory requires a global view of the heap to distin-

guish reachable from unreachable values. In this work, we use regions to gather

enough information at compile time to prevent overpessimistic upper bounds by

considering regions freed by the programmer in a sound way.

The main goal of this paper is to introduce a framework to combine various

memory consumption analyses depending on the programming style used at func-

tion level to provide an upper bound of live memory at compile time considering

reclaimed memory. In the remainder, related works are presented in section 2. We

describe the language in section 3 with its type & effect system on which we base

our analysis. Then, we show how to deal with purely functional and imperative

features in sections 4, 5 as described above and section 6 composes them in a con-

sistent framework. Then, we show how it works on an example in section 7. Finally,

we conclude with a discussion about current limitations and further improvements.

2 Related works

Resource consumption analysis started in the late 70s with METRIC [14] targetting

the best, worst and average execution times of programs written in a pure subset

of Lisp. Based on recurrence relations, it can be adapted to memory consumption

analysis. Contrary to time, memory can be reclaimed. Hence, new methods have

emerged from both purely functional and imperative communities to obtain upper

bounds on live memory.

Sized types [9] have been applied to the core part of HUME [13], a purely

functional language with an eager evaluation mechanism. It infers linear space

complexities and provides an upper bound on allocated memory without requiring

the user intervention.

Automatic amortized analysis [6], based on Tarjan’s work [11], has been used in

J. Salvucci, E. Chailloux / Electronic Notes in Theoretical Computer Science 330 (2016) 27–4628

several projects. Among them, RAML [7], a pure ML language and RAJA [8], a

subset of the Java language. It is able to infer polynomial bounds on live memory

considering some side-effects [5] in the last version without any user annotation.

Recurrence relations have also been employed in the COSTA [1] project target-

ting the Java platform. Relying on a powerful solver, it is able to infer polynomial,

logarithmic and exponential bounds on live memory thanks to a scope-based mem-

ory management mechanism.

Abstract interpretation [3] has been applied to Safe [10]. A pure first-order

language equipped with an implicit region mechanism to manage memory. This

technique does not restrain to particular complexity class. Unfortunately, it does

not consider side-effects or higher-order functions.

Invariants over iteration spaces have been used in the JConsume [2] project

targetting the Java language. It considers side-effects through an escape mechanism.

It also relies on invariants provided by external tools or the programmer to extract

program space complexity. Thanks to the escape mechanism, it can provide an

upper bound on live memory.

In the following, we build on previous works to obtain an upper bound on live

memory at compile time. We develop a language equipped with a type & and effect

system and an explicit memory mechanism based on regions. The effect system

allows us to mix automatic amortized analysis and invariants on iteration spaces

depending on the programming style employed at the function level. Regions offer

information about the heap state at compile time. We can then track side-effects

and consider reclaimed memory to prevent inacurrate bounds.

3 Language & Analysis

In modern high-level languages, memory management is often performed by a

garbage collector. Mainly ruled by dynamic criteria, predicting its behavior is a

difficult problem. For instance, we need to know when it will be triggered and how

much memory will be reclaimed.

To circumvent this problem, we develop a statically typed language à la ML

equipped with a specific memory management mechanism: regions [12]. A region

represents a set of data whose lifespan is similar. Originally developed to bring

back lexical scope to heap-allocated values, they suffered memory leaks due to the

stack discipline. A work about linear regions [4] shows that adding capabilities

to the system makes it more general without involving such a stack discipline. A

capability can be seen as a permission to operate on a region and as a witness that

data within the related region are still necessary for the rest of the computations.

This is a compile-time mechanism which allows us to consider reclaimed memory

during resource consumption analysis (see section 6).

J. Salvucci, E. Chailloux / Electronic Notes in Theoretical Computer Science 330 (2016) 27–46 29

3.1 Syntax

From a programmer point of view, regions can be seen as a way to manage mem-

ory through the use of four primitives: newrgn, @, aliasrgn and freergn. They

respectively allow the programmer to allocate new regions, specify where a value

is allocated, remove temporarily the linear constraint (see typing rules) and safely

free regions previously allocated. Correctness of these operations is ensured by the

type system at compile-time through the use of capabilities. A capability can be

seen as a permission to do some actions. The grammar in figure 1 shows that each

expression whose evaluation turns into heap-allocated value is annotated with @

to specify the region eρ where it is allocated at runtime. Each operation related

to region-allocated values requires the associated capability of the relevant region.

The type system checks that the right capability is owned. If not, this is considered

as a forbidden operation and raises a type error.

The language syntax is presented in figure 1. The rule e is annotated with the

nature of the corresponding expression. Hence, eρ denotes an expression whose

evaluation should produce a region handler, ec, et and ef denote respectively the

condition, the consequence and the alternative of a conditional expression. The two

kinds of assignment, cumulative and non-cumulative, will be discussed in section 6.

expressions description

〈e〉 ::= () | 〈b〉 | 〈n〉
| 〈x 〉
| fun x → 〈e〉 @ 〈eρ〉
| 〈e0〉 〈e1〉
| if 〈ec〉 then 〈et〉 else 〈ef 〉
| let 〈x 〉 = 〈ea〉 in 〈eb〉
| let rec 〈f 〉 〈x 〉 = 〈eb〉 @ 〈eρ〉 in 〈e〉
| (〈ea〉,〈eb〉) @ 〈eρ〉
| Πi 〈e〉
| Nil @ 〈eρ〉
| Cons 〈eh〉 〈et〉 @ 〈eρ〉
| ref 〈e〉 @ 〈eρ〉
| 〈e〉 := 〈e〉 | 〈e〉 += 〈e〉
| !〈e〉
| newrgn ()

| aliasrgn 〈eρ〉 in 〈e〉
| freergn 〈eρ〉

unit, booleans, integers

variables

functions

function application

conditional

variable binding

recursive binding (function only)

pair construction

pair projections

end of list

new list head

reference

assignment

dereference

new region primitive

sharing a region handler

free region primitive

Fig. 1. Expressions

3.2 Type & effect system

The goal of this type system is twofold: gather information about the program

memory behavior to prevent bad memory management and provide a topology of

J. Salvucci, E. Chailloux / Electronic Notes in Theoretical Computer Science 330 (2016) 27–4630

Types Description

〈τs〉 ::= unit | bool | int
| α

〈τ〉 ::= 〈τs〉
| (〈τa〉 CinCout−−−−−→

φ
〈τb〉, ρ)

| (〈τa〉 × 〈τb〉, ρ)
| (list 〈τ〉, ρ)
| (ref 〈τ〉, ρ)
| hnd ρ

〈σρ〉 ::= 〈τ〉 | ∀ρ. 〈σρ〉

〈σ〉 ::= 〈σρ〉 | ∀σ. 〈σ〉

type of singleton, booleans, integers

type variables

type of closures

type of pairs

type of lists

type of references

type of region handlers

region type schemes

type schemes

Fig. 2. Types

the heap available at compile-time. The typing judgement has the following shape

C; Γ � e : τ ; Γ′;C ′;φ

where C is a set of capabilities, Γ a typing environment and φ is a set of effects.

It reads as follows: “given a set of capabilities C and a typing environment Γ, the

expression e has type τ , returns a set of capabilities C ′ and performs effects φ at

runtime”.

The effect system tracks three kinds of effects: alloc, read and write (see figure 3).

They are mainly used for let generalization and the resource consumption analysis.

effect description

read{r} read a value allocated in region r

write{r} update a reference allocated in region r

alloc{r} allocate a new value in region r

Fig. 3. Tracked effects

In the language, there are two kinds of variables. Those bound to stack values

and those bound to region-allocated values. The latest is dealt with the rule for

region variables, RVar. To ensure correctness, two specific rules have been added

for linear and non-linear region handlers, LRHVar and RHVar. As you can see,

the type (see figure 2) of this expression contains a region name r. This name is

qualified with a constraint q in the environment C. This qualifier can take two

different values : 1 or +. Linearity, 1, ensures that you do not share a region

handler whereas + allows you to weaken the linearity constraint. This rule checks

J. Salvucci, E. Chailloux / Electronic Notes in Theoretical Computer Science 330 (2016) 27–46 31

that the access to a value in region r is sound. For region allocated values, we have

different rules. We need to distinguish region handlers from other values because

of the linearity constraints. The role of the primitive instantiate is to replace type

parameters with fresh type variables. Hence,

hnd r = instantiate(σ) C = C ′, r1

C; Γ, x : σ � x : hnd r; Γ;C; {read r} (LRHVar)

The linear restriction on the capability r allows only one use of the hypothesis x : σ.

hnd r = instantiate(σ) C = C ′, r+

C; Γ, x : σ � x : hnd r; Γ, x : hnd r;C; {read r} (RHVar)

When the linear restriction is weakened, its number of uses is unrestricted.

(τ, r) = instantiate(σ) C = C ′, rq

C; Γ, x : σ � x : hnd r; Γ, x : (τ, r);C; {read r} (RVar)

In the previous rule, q means that the linearity constraint doesn’t matter.

Typing a function requires planning for future calls. For instance, if some free

variables bound to region-values are captured then the relevant set of capabilities

has to be presented at each call site. To perform this verification, the arrow type is

augmented with Cin and Cout respectively the set of required capabilities to eval-

uate the function body and the new set of capabilities once evaluation terminates.

The predicate unrestricted checks that no region handler associated with a linear

capability is captured. Moreover, we need to propagate the effects performed by

the evaluation of e, φe. To do this, we add a latent effect to the arrow type.

C; Γ � eρ : hnd r; Γ′;C ′;φρ

Cin; Γ
′, x : τx � e : τ ; Γ′;Cout;φe

C ′ = C ′′, rq unrestricted(Cin,Γ
′)

C; Γ � fun x → e @ eρ : τx
Cin | Cout−−−−−−−→

φe

τ ; Γ′;C ′;φρ ∪ {alloc r}
(Fun)

The application rule, APP, follows immediately the function rule. At each call site,

we check that the operation is sound by checking that C entails Cin, the relevant

set of capabilities to evaluate the function body. Here ≤ can be seen as a subtyping

relation: Cv has to allow at least operations doable with Cin. Hence, we have

r1 ≤ r+ because linearity allows you to allocate and free a region 3 . This relation

extends to sets of capability.

C; Γ � ef : τx
Cin | Cout−−−−−−−→

φe

τ ; Γf ;Cf ;φf

Cf ; Γf � ev : τx; Γv;Cv;φv Cv ≤ Cin

C; Γ � ef ev : τ ; Γv;Cv \ (Cin \ Cout) ∪ (Cout \ Cin);φf ∪ φv ∪ φe

(App)

3 This relation can also be read as {alloc, free} ≤ {alloc}

J. Salvucci, E. Chailloux / Electronic Notes in Theoretical Computer Science 330 (2016) 27–4632

To introduce capabilities in the system, the primitive newrgn has to be used. It

gives the permission to allocate, read, write values in the region. We can see that

the capability is qualified with a linear property. At creation, we know that it has

not been shared. This is an important criterion for reclaiming a region.

r /∈ C

C; Γ � newrgn () : hnd r; Γ;C, r1; ∅ (New)

Sometimes using a region handler several times is necessary. For instance, when

you need to pass several region handlers as arguments to a function. This is the

case when you use a function that copies a list in two distinct regions. To perform

this, aliasrgn can help. Leaving the scope of this primitive restores the linearity

property we had before.

C, r1; Γ � eρ : hnd r; Γρ;Cρ, r
1;φρ

Cρ, r
+; Γρ � e : τ ; Γ′;C ′, r+;φe

C, r1; Γ � aliasrgn eρ in e : τ ; Γ′;C ′, r1;φρ ∪ φe

(Alias)

The most interesting rule for the analysis is Free. Here, linearity is the important

part, it ensures that the region handler is not shared. Thus, the corresponding

region can be freed in a sound way.

C; Γ � eρ : hnd r; Γ′;C ′, r1;φρ

C; Γ � freergn eρ : unit; Γ′;C ′;φρ

(Free)

We have a set of rules giving information about the memory behavior of our

programs and providing guarantees that a well typed should not crash because of

memory management. Moreover, regions give us an abstract view of the heap at

compile-time. In section 6, we will see how this view can be useful to do a resource

consumption analysis.

3.3 Cost model

To perform a resource consumption analysis, we need to model the runtime en-

vironment with respect to memory usage. Programs written in our language can

allocate memory with the creation of five different kinds of values: closures, pairs,

lists, references and region handlers. Thus, we introduce five constants representing

the amount of allocated memory for a pair, a list node, an empty list, a reference

and a region handler. For closures, we introduce a specific operator because the

amount of memory used is proportional to the number of free variables. We assume

that compilation schemes do not introduce additional heap memory allocations.

This allows us to manipulate symbolic expressions that will be instantiated ac-

cording to the target system. Every amount of memory is a multiple of a memory

word (see figure 4) which itself depends on the platform softwares are running on.

The cost of a closure is represented with Ccls(n) where n is the size of the closure

J. Salvucci, E. Chailloux / Electronic Notes in Theoretical Computer Science 330 (2016) 27–46 33

Value Constant Size (Words)

Pair Ccpl 2

List node Ccons 2

Empty List Cnil 0

Reference Cref 1

Region handler Chnd 1

Fig. 4. Memory model

environment. The analysis relies on this model to predict amounts of live memory.

3.4 Analysis

The goal of this analysis is to provide an upper bound of live memory at compile-

time to prevent heap overflows. The analysis consists in a mix of several existing

resource consumption analyses. It returns the amount of allocated memory in each

region involved by a function call. With region sizes and the region mechanism, we

are able to consider reclaimed memory.

To analyze a program, we distinguish functions written with a purely functional

style from those written with an imperative style. To do this, we rely on the

language effect system. In this language, side effects happen through reference

updates. Hence, if a function type is labelled with a write effect on a region r

then this function is considered impure and is analyzed with the analysis based on

invariants on iteration spaces. Whereas if the function only performs alloc or read

effects then it is seen as pure and can be analyzed thanks to automatic amortized

analysis.

If the side-effect is performed on a local region that do not escape then from

a caller point of view, this function is pure. This is a property we rely on in the

section 6.

In the next sections, we describe how each analysis works with pure and imper-

ative programming styles and then we show how to compose these analyses.

4 Analysis of pure functions

Based on Tarjan’s work [11], the goal is to apply amortized analysis using the

potential method without requiring the user intervention. This analysis targets the

cost of a sequence of operations considering interactions between these operations.

A famous example is the complexity of a sequence of operations on a functional

queue. A functional queue q is implemented as a pair of lists (see figure 5). When

we push an element in q, we add it in front of the first component. When we take

out an element of q, two cases are considered. First, the second component is non-

empty, we remove the head and return it. Second, the second component is empty,

J. Salvucci, E. Chailloux / Electronic Notes in Theoretical Computer Science 330 (2016) 27–4634

meaning either q is empty or only pushes have been performed until now, we reverse

the first component in the second component. The option type used in the example

is related to error handling.

type ’a option = None | Some of ’a

type ’a queue = ’a list * ’a list

let push x (xs , ys) = (x :: xs, ys)

let rec take q =
match q with
| ([], []) -> None
| (xs, y :: ys ’) -> Some (y, (xs, ys ’))
| (xs, []) -> take ([], List.rev xs)

Fig. 5. Queues as paired lists in OCaml

push : a → a queue → a queue

take : a queue → (a× a queue) option

As we can see, the worst case execution time of the function take is linear in

the length of the first component because of the call to reverse. Hence, pushing n

elements and taking them back would be a quadratic sequence of operations. This

situation arises because we do not consider the state of the queue.

The potential method introduces the notion of credit to solve this. It is rep-

resented by the function Φ in the following equations where C (P) is the program

complexity and, ci and ĉi representing respectively the effective cost and the amor-

tized cost of the ith operation.

C (P) =

n∑

i=1

ĉi
ĉi = ci +Φ(Di)− Φ(Di−1)

C (P) = (

n∑

i=1

ci) + Φ(n)− Φ(0)

Fig. 6. The potential method

In our case, the function Φ is twice the length of the first component of a queue.

When we add an element to the queue we pay twice the size difference between the

previous and the current state of the queue. When we start taking elements out

of the queue, the call to reverse is already amortized by the accumulated credits.

Hence, the worst case execution time of this sequence can be reduced to a linear

complexity.

The crux of the analysis is the Φ function. Automating the analysis requires

to infer this function. To do this, it is necessary to add some restrictions. In this

paper, we are only interested in linear complexities. Then, the function Φ is a linear

combination of the function parameters. To find this function, we extract a set of

inequalities to minimize. In what follows, the potential method is applied only to

memory consumption.

J. Salvucci, E. Chailloux / Electronic Notes in Theoretical Computer Science 330 (2016) 27–46 35

A resource judgement has the following shape and can be read as if there are

n+Φ(Γ) memory cells available before the evaluation of e then heap overflows are

prevented. At the end of the evaluation n′ +Φ(τ) memory cells are left.

Γ, n � e : τ, n′

Types are annotated with potentials c, d and k. We remove region information

for readability but assume that they are still available when needed.

〈τs〉 ::= unit

| bool

| int

| α

〈τ〉 ::= 〈τs〉
| 〈τa〉 c−→

d
〈τb〉

| (〈τa〉 × 〈τb〉, k)
| (list 〈τ〉, k)
| (ref 〈τ〉, k)
| hnd, k

Fig. 7. Annotated types for automatic amortized analysis

The analysis is directly adapted from earlier works on automatic amortized

analysis. The main difference is the complexity computed on a per region basis to

consider reclaimed memory. It is expressed as a set of syntax-directed rules describ-

ing memory consumption-related constraints of each language construct. Each type

is decorated with a potential annotation. For instance, List α k represents the list

type where each element has a potential k. Hence, the list potential is k× length(l).

To consider region sizes, we need to adapt amortized analysis to the region mech-

anism. Instead of considering every allocations, we only count allocation made in

a specific region. Typing rules are applied for a specific region r. When an ex-

pression contains the annotation, the corresponding amount of allocated memory

counts only if it is in region r. When a function involves several regions, the analysis

is performed once for each region. Hence, we obtain space complexities related to

each region involved in the computations.

r
n ≥ m

Γ, n � b : Bool,m
(AA-Bool) r

n ≥ m

Γ, n � i : Int,m
(AA-Int)

r
n ≥ m

Γ, n � x : τs,m
(AA-SVar)

r
Γ(x) = (τ, r) n ≥ m

Γ, n � x : (τ, r),m
(AA-RVar)

Primitive values do not cost anything as they are allocated on the stack. Thus,

their respective rules propagate constraints already known.

r
Γ(ρ) = hnd r Γ, x : τx, c � e : τ, d n ≥ m

Γ, n � fun x → e @ ρ : (τx, c) → (τ, d),m
(AA-Fun)

If the closure is created in the current analyzed region r , then we need to consider

the closure size as the amount of allocated memory.

J. Salvucci, E. Chailloux / Electronic Notes in Theoretical Computer Science 330 (2016) 27–4636

The analysis being compositional, we cannot easily count the number of times a

function is applied. This constrains us to add the following restriction: potential

contains in a function closure has to be null. Thus, memory consumption can only

be parameterized by the function parameters.

r

Γ, n � ef : (τx, nf) → (τ,mf),m
′ Γ,m′ � ev : τx,m

m′ − nf +mf ≥ m

Γ, n � ef ev : τ,m
(AA-App)

Function application requires enough accumulated potential to be performed.

r

Γ, n � ec : Bool,m′

Γ,m′ � et : τ,m Γ,m′ � ef : τ,m

Γ, n � if ec then et else ef : τ,m
(AA-Cond)

Conditional expressions propagate constraints generated by expressions ec, et
and ef . They are not related to region-allocated memory. To be compositional,

both branches return values of the same type and potential. With the ≥ relation,

this will only compute the maximum amount of allocated memory.

r
Γ, n � ea : τa,m

′ Γ[x : τa],m
′ � eb : τ,m

Γ, n � let x = ea in eb : τ,m
(AA-Let)

The rule for let expressions is similar to the conditional one. It only propagates

constraints to the sub-expressions.

r

Γ, n � ea : τa,m
′ Γ,m′ � eb : τb,m

′′

Γ(ρ) = hnd r m′′ ≥ Ccpl +m

Γ, n � (ea, eb) @ ρ : τa × τb,m
(AA-Pair)

Pairs are also allocated in regions. So, if the allocation is made in the region under

analysis then we have to accumulate enough credits to create this value. This is

represented by this constraint m′′ ≥ Ccpl +m.

r

Γ, n � e : τa × τb,m

n ≥ m

Γ, n � Πi e : τi,m
(AA-Proj)

r
n ≥ m

Γ, n � Nil : List a,m
(AA-Nil)

r

Γ, n � eh : a,m′

Γ,m′ � et : List a k,m′′

Γ(ρ) = hndr

m′′ ≥ Ccons + k +m

Γ, n � Cons eh et @ ρ : List a,m
(AA-Cons)

Data constructors without arguments are represented as integers. Hence, regions

are not involved in their evaluation. However, Cons takes two arguments and is

J. Salvucci, E. Chailloux / Electronic Notes in Theoretical Computer Science 330 (2016) 27–46 37

therefore allocated in a region. The constraint m′′ ≥ Ccons + k + m characterizes

this.

Γ, n � e : List a k,m′

Γ,m′ � enil : τ,m

Γ, x : a, xs : List a k,m′ + k � econs : τ,m

Γ, n � match e with | Nil → enil

| Cons x xs → econs

: τ,m

(AA-Match)

The pattern matching rule is crucial. Depending on the branch taken, different

assumptions about data structure sizes can be made. For instance, if the nil branch

is taken then we know that the list is empty. But if the cons branch is taken then

we know that the list has at list one element with its potential. This rule combined

with allocation sites drive the analysis.

n ≥ Crgn +m

Γ, n � newrgn () : τ,m
(AA-New)

Allocating a new region introduces a new handler to perform operations on this

region. This handler is allocated in its own region and requires Crgn memory words.

When we share a value, we need to share the potential accordingly. To care-

fully track this, we need the following structural rule which basically ensures that

potential is not duplicated.

Γ, x : τx, y : τy, n � e : τe,m share(τ |τx, τy)
Γ, z : τ, n � e[z/x][z/y] : τe,m

(AA-Share)

With this rule, the amount of potential available cannot be duplicated but is

shared among different variables. For instance, List a k0 means that each list

element has k0 credits. If this list is shared between variables x : List a k1 and

y : List a k2 then we generate a constraint similar to k0 = k1 + k2.

Example

Here, we are looking for the sizes of the regions involved in the computation of the

function duplicate (see figure 9). This function duplicates twice the list passed as

an argument.

duplicate : (List a r, hnd rc, hnd r1, hnd r2) → (List a r1 × List a r2, rc)

Fig. 8. Type of duplicate

From this type (figure 8), we can see that in the general case, the paired lists

can be distributed in three distinct regions, rc, r1 and r2.

J. Salvucci, E. Chailloux / Electronic Notes in Theoretical Computer Science 330 (2016) 27–4638

let rec duplicate xs r r1 r2 =
match xs with
| Nil -> (Nil @ r1, Nil @ r2) @ r
| Cons (x, xs ’) ->

let (ys, zs) = duplicate xs ’ r r1 r2 in
(Cons(x, ys) @ r1 , Cons(x, zs) @ r2) @ r

Fig. 9. function duplicate

Duplicate clones xs twice. We can see that the list structures can reside in two

different regions at most and that the pair can also be in its own region.

First, the effect analysis marks this function with read{r} and alloc{r1, r2, rc}
effects. Hence, automatic amortized analysis is employed. From previous explana-

tions, the potential function will be of the form a× |xs| where a is the potential of

each list element and |xs| represents the size of the list xs parameter of the function

duplicate. The analysis extracts a system of constraints from the program and tries

to minimize it.

1
Γ, n1 � (Nil,Nil) : List a k1 × List a k2,m1

2

Γ3, n3 � duplicate xs : List a k1 × List a k2,

m3

Γ4, n4 � (Cons x ys, Cons x zs) : List a k3 × List a k4,m4

Γ, n � let (ys, zs) = duplicate xs

in (Cons x ys, Cons x zs)

3
Γ, n0 � match xs with | Nil → (Nil,Nil)

| Cons x xs → let (ys, zs) = duplicate xs

in (Cons x ys, Cons x zs)

This function can allocate memory in different regions (depending on how it is

called). We are interested in the more general case. What size regions r, r1 and r2
will be? To do this we apply the analysis to each region. Hence, we are going to

get three different sets of relations to minimize.

Constraints related to region r1:

1 n1 ≥ m1

2
Γ4 = Γ, x : a, ys : List a k3, zs : List a k4

n4 ≥ size(a× List a k3) + k3 +m4

k3 = k1, k4 = k2

J. Salvucci, E. Chailloux / Electronic Notes in Theoretical Computer Science 330 (2016) 27–46 39

3

Γ = duplicate : List a q0, c → List a q1 × List a q2, d

xs : List a k0

n3 − c+ d ≥ m3

k0 = q0, k1 = q1, k2 = q2

When we solve this set of inequalities, we get q0 = 2, q1 = 0 and q2 = 0 (assuming

that a list node requires two words of memory in the runtime system). Thus, we

can conclude that region r1 grows of 2× |xs|. Then, we apply the same method for

rc and r2. In the end, we get three symbolic expressions characterizing the size of

each region where allocations are performed.

5 Analysis of imperative functions

Programs written with an imperative style perform side-effects through the use

of references. To consider them, we need to use a different method: invariants on

iteration spaces. We rely on recent work done in the JConsume project [2] targeting

Java programs at the bytecode level.

Analysis

We adapt this analysis to programs written in our language. We still rely on the

user to provide invariants. They can be expressed using all classic arithmetical and

logical operators. These can be directly provided by her or obtained through the

use of external tools. They are written with the with syntax as in

fun x y -> x + y with x < y

Fig. 10. With syntax

Contrary to the original work, here we do not care about the notion of escape

memory as it is already handled through the use of regions. As in the automatic

amortized analysis, we are looking for the sizes of the different regions involved in

the computations. To perform this, invariants characterize the number of iterations.

Here, invariants are linear relations but the user could provide other classes as well.

The advantage of linear invariants comes when we try to infer them.

Example

If we take an imperative version of the previous example, we obtain

The invariants we are interested in characterize size relations of data structures

involved (see figure 12). Amounts of memory allocated in r1 and r2 are extracted

from them. They are related to the length of the list xs. Expected invariants are

in figure 12. The function length represents the projection of the list structure into

the integer domain.

As side-effects are performed through references, we need to also keep track of

the amount of memory available through references. Here, we notice that reference

J. Salvucci, E. Chailloux / Electronic Notes in Theoretical Computer Science 330 (2016) 27–4640

let duplicate xs rc r1 r2 =
let r = newrgn () in
let ys = ref Nil @ r in
let zs = ref Nil @ r in
let rec loop es =

match es with
| Nil -> ()
| Cons (e, es ’) ->

ys += Cons (e, !ys) @ r1;
zs += Cons (e, !zs) @ r2;
loop es ’

in loop xs; (!ys , !zs) @ rc ;

Fig. 11. function duplicate

Region Invariant

r1 length(xs) = length(es) + length(!ys)

r2 length(xs) = length(es) + length(!zs)

rc Ccpl

Fig. 12. Invariants for duplicate

assignments are cumulative, meaning that data is added to previous data reachable

through the reference. Hence, to determine the amount of memory reachable from

them, we rely on the same invariants. In the end, we dereference ys and zs, so we

propagate the amounts of memory reachable through these references.

From these, we obtain symbolic expressions characterizing the amounts of al-

located memory in different regions. From the outside, this function is seen as

pure.

Region Amount

r1 Ccons ∗ length(xs)
r2 Ccons ∗ length(xs)
rc Ccpl

Fig. 13. Amounts of memory

6 Composition of analyses

Previous analyses are concerned with space-complexity but a program mixing both

purely functional and imperative features involves composition. Results provided

by previous analyses do not track side-effects. This lack prevents propagation of

size relations to make a sound analysis.

To track side-effects, it is necessary to manage references with some accuracy.

For instance, if a reference is updated then we need to propagate new size informa-

tion about the value being dereferenced to pursue the analysis. Unfortunately, space

complexities are not directly related to the sizes of the data structures involved. The

J. Salvucci, E. Chailloux / Electronic Notes in Theoretical Computer Science 330 (2016) 27–46 41

append function is linear in term of the first argument but the returned list length

is the sum of both argument lengths.

References require careful handling. For instance, a reference update may imply

a size change. This new size has to be propagated to the rest of the program. To do

this, we annotate each reference with a unique identifier. A reference is annotated

with the region it lives in and the region referenced data lives in. To track effects,

we refine the write effect with the label of the updated reference.

If the programmer employs the region mechanism with a fine granularity, it is

possible to derive data structure sizes from space complexity. The function append

is a good illustration of this principle. Its type shows that the two lists can reside

in two different regions and that the resulting list lives in the same region than the

second argument. The combination of the base case and the effect alloc r2 entails

that data is added to the second list. Thanks to this, we can deduce that the size

of the resulting list is the sum of lists passed as arguments.

When size relations cannot be extracted automatically, the programmer has to

provide them manually with the with syntax just like for the imperative analysis to

run the analysis. Annotations can be provided through the use of classic arithmeti-

cal operators and the size operator. This size operator is a way to count the number

of node of a data structure. Variables bound to integers can be used directly to

refer to the integer itself.

To perform the composition, we assume the whole program available. The com-

position follows the control flow graph of the program. It is expressed as a set of

rules whose shape is

C ;σ;φ � e : σ′;φ′

where σ and φ represents respectively the sizes of regions allocated and amounts

of memory reachable through each references visible in the current scope, e an

expression of the language.

C ;σ;φ � n : σ;φ
(CSP-Int)

C ;σ;φ � b : σ;φ
(CSP-Bool)

As in the previous analyses, primitives values are not allocated in regions. Hence,

neither σ nor φ is modified.

C ;σ;φ � x : σ;φ
(CSP-SVar)

C ;σ;φ � x : σ;φ
(CSP-RVar)

Using a variable does not affect regions.

σ′ = update(σ,Ccls(fv(e) \ {x}) + 1, ρ)

C ;σ;φ � fun x → e @ ρ : σ′;φ
(CSP-Fun)

Thanks to previous analyses, we already know the space-complexity of functions

used by the program. The only thing we care about here is the size of the closure

itself. One word for the code pointer and the rest for the closure environment.

Here, the function update adds Ccls(fv(e) \ {x}) + 1 memory words to the region

represented by ρ.

J. Salvucci, E. Chailloux / Electronic Notes in Theoretical Computer Science 330 (2016) 27–4642

C ;σ;φ � ea : σa;φa C ;σa;φa � eb : σb;φb

σ′;φ′ = instantiate(C (ea), size(eb))

C ;σ;φ � ea eb : σ
′;φ′ (CSP-App)

Composition really happens at call sites with the function instantiate. This is

where symbolic expressions are merged and side-effects propagated.

C ;σ;φ � ec : σc;φc

C ;σ;φ � et : σt;φt C ;σ;φ � ef : σf ;φf

σ′;φ′ = max(σt, σf),max(φt, φf)

C ;σ;φ � if ec then et else ef : σ′;φ′ (CSP-Cond)

Conditional expressions introduce the use of the operator max. To keep the

analysis sound, we need to consider the worst case. Here, it means the maximum of

memory allocated in a region and the maximum amount of memory reachable from

a reference.

C ;σ;φ � ea : σa;φa σa;φa � eb : σ
′;φ′

C ;σ;φ � let x = ea in eb : σ
′;φ′ (CSP-Let)

C ;σ;φ � Nil : σ;φ
(CSP-Nil)

C ;σ;φ � eh : σh;φh

C ;σh;φh � et : σt;φt

σ′ = update(σ,Ccons, ρ)

C ;σ;φ � Cons eh et @ ρ : σ′;φt

(CSP-Cons)

C ;σ;φ � e : σe;φe

C ;σe;φe � enil : σnil;φnil C ;σe;φe � econs : σcons;φcons

σ′;φ′ = max(σnil, σcons),max(φnil, φcons)

C ;σ;φ � match e with | Nil → enil

| Cons x xs → econs

: σ′;φ′

(CSP-Match)

C ;σ;φ � e : σe;φe

φ′ = add(φe, l, size(e))

C ;σ;φ � refl e : σ
′;φ′ (CSP-Ref)

When a reference is created, we need the corresponding amount of memory. The

interesting thing about references appears when assignments are made. We have

to update the amount of memory reachable by the corresponding reference. This

is what the function update performs on φ. This update depends on the nature

of the assignment. If cumulative then we add a few memory words to the already

available amount. If non-cumulative, then we introduce a max operator to keep the

maximum amount of reachable memory.

J. Salvucci, E. Chailloux / Electronic Notes in Theoretical Computer Science 330 (2016) 27–46 43

C ;σ;φ � ef : σr;φr C ;σr;φr � ev : σv;φv

φ′ = update(φv, label(er), size(ev))

C ;σ;φ � er := ev : σ′;φ′ (CSP-Assign)

To allocate a new region, you need to have at least the amount of memory

necessary to store a region handler.

σ′ = update(σ,Crgn, ρ)

C ;σ;φ � newrgn () : σ′;φ
(CSP-New)

record(σ)

σ′ = free(σ, ρ) φ′ = clean(φ, ρ)

C ;σ;φ � freergn ρ : σ′;φ′ (CSP-Free)

The type system checks that the region corresponding to ρ can be reclaimed in

a safe way. Hence, we can ignore the size of this region to compute an upper bound

of live memory. As we are freeing memory, there is a local maximum. We need to

save the sum of region sizes to track the maximum amount of live memory. At the

end of the analysis, we take the maximum between each local maximum. We do

not need to consider the amount of memory available at the end of the execution

because the typing discipline checks that no region remains unclaimed.

7 Example

The following example shows how the analysis is performed. The main function

is rev append which concatenates two lists by reversing the first one to be tail

recursive. This function can be written in at least two different styles: purely

functional and imperative.

This program builds two regions, r and rr, and allocates two lists, xs and ys, in

r and rr respectively. Then, it concatenates xs and ys thanks to rev append and

reclaims the region rr.

let r = newrgn () in
let ys = [12; 15; 18] @ r in
let rr = newrgn () in
let xs = [3; 6; 9] @ rr in
let zs = rev_append xs ys r in

freergn rr

The left version employs a purely functional style and the right version an im-

perative one with the side-effect on the reference rs along the computation. The

effect system captures this difference and allows different analyses to be performed

and combined.

J. Salvucci, E. Chailloux / Electronic Notes in Theoretical Computer Science 330 (2016) 27–4644

functional rev append imperative rev append

let rec rev_append xs ys r =
match xs with
| Nil -> ys
| Cons (h, t) ->

let ys’ = Cons(h,ys) @ r in
rev_append t ys’ r

let rev_append xs ys r =
let rs = ref ys in
let rec loop xs =
match xs with
| Nil -> ()
| Cons (h, t) ->

rs += Cons(h,!rs) @ r;
loop t

in loop xs; !rs

As you can see here, each region contains the structure of the list. The type of

the rev append function gives us information about its memory allocation behavior.

rev append : (α list, ra) → (α list, rb) → hnd rb → (α list, rb)

The first list can be allocated in a region ra, the second in a region rb but in

the end the returned list will be allocated in region rb. This information is useful

to track the different lifespans of the regions involved in the computations.

Pure functions are analyzed with the automatic amortized analysis. It extracts a

set of constraints of the function and tries to minimize it. In rev append, the inter-

esting part is the application of the data constructor Cons. If before this application,

the amount of memory available is n, then the constraint n ≤ CCons + n′, where
n′ is the amount of memory available after, needs to be satisfied. CCons represents

the amount of memory necessary to allocate an element of a list. In this case, the

extracted cost is proportional to the size of the first list. Here, rev append behaves

like the function append. This allows us to infer size relations. Pure functions do

not act on the program state, hence there is no information related to side-effects

to propagate.

The imperative version of rev append is analyzed thanks to invariants on it-

eration spaces. Here, the side-effect is local to the function. Hence, the amount

of allocated memory is the only information propagated. Here, the invariant is

length !rs = size xs + size ys where size ys is a constant. It is linear and could

be obtained in an automatic way. In other cases, we would rely on programmer

annotations. From this, we can deduce the amount of allocated memory. In this

case, it is also proportional to the length of the first list.

In this example, both analyses return similar results. Then, we can instantiate

symbolic expressions to get the amount of memory necessary to execute the program

in a safe way. Here, we can see that the region rr is freed at the end. If the program

would be larger, this region would have been considered as non-existent to analyze

the rest of the memory allocated.

8 Conclusion

Providing an upper bound at compile-time on the amount of live memory at run-

time would allow the introduction of high-level languages in the embedded system

communities. This paper proposes to conceive a language and an analysis to move

towards this end.

J. Salvucci, E. Chailloux / Electronic Notes in Theoretical Computer Science 330 (2016) 27–46 45

We present a language à la ML mixing pure and imperative features with an

explicit region mechanism. Memory management is performed by the programmer

through a set of primitives and checked at compile time. This mechanism provides

information about the heap topology and lifespans of allocated values.

The analysis relies mainly on an effect system and a region mechanism. The

effect system allows us to combine several analyses depending on the programming

style employed by the programmer. Regions offer lifespans of allocated values.

This prevents overpessimistic bounds because we can consider reclaimed regions at

compile time. Automatic amortized analysis is used on pure functions and invariants

on iteration spaces are employed on imperative functions.

Correctness of this analysis relies on the correctness of the type system which

has been proved through progress and preservation lemmas which haven’t been

presented in this paper but proofs are similar to [4]. To validate this approach in

practice, a prototype is currently being developed.

References

[1] Albert, E., P. Arenas, S. Genaim and G. Puebla, Closed-Form Upper Bounds in Static Cost Analysis,
J. Autom. Reasoning 46 (2011), pp. 161–203.

[2] Braberman, V. A., D. Garbervetsky, S. Hym and S. Yovine, Summary-based inference of quantitative
bounds of live heap objects, Sci. Comput. Program. 92 (2014), pp. 56–84.

[3] Cousot, P. and R. Cousot, Abstract interpretation: a unified lattice model for static analysis of programs
by construction or approximation of fixpoints, in: Conference Record of the Fourth Annual Symposium
on Principles of Programming Languages, POPL 77 (1977), pp. 238–252.

[4] Fluet, M., G. Morrisett and A. J. Ahmed, Linear Regions Are All You Need, in: Proceedings of the
15th European Symposium on Programming, ESOP 06, 2006, pp. 7–21.

[5] Hoffmann, J., A. Dash and S.-C. Weng, Towards automatic resource bound analysis for ocaml (2015).
URL http://www.cs.cmu.edu/~janh/papers/HoffmannW15.pdf

[6] Hofmann, M. and S. Jost, Static Prediction of Heap Space Usage for First-order Functional Programs,
in: Proceedings of the 30th Symposium on Principles of Programming Languages, POPL ’03 (2003),
pp. 185–197.

[7] Hofmann, M. and S. Jost, Type-Based Amortised Heap-Space Analysis, in: Proceedings of the 15th
European Symposium on Programming, ESOP 06, 2006, pp. 22–37.

[8] Hofmann, M. and D. Rodriguez, Automatic Type Inference for Amortised Heap-Space Analysis, in:
Proceedings of the 22sn European Symposium on Programming, ESOP 13, 2013, pp. 593–613.

[9] Hughes, J., L. Pareto and A. Sabry, Proving the Correctness of Reactive Systems Using Sized Types,
in: Proceedings of the 23rd Symposium on Principles of Programming Languages, POPL 96 (1996),
pp. 410–423.

[10] Montenegro, M., R. Peña and C. Segura, “Foundational and Practical Aspects of Resource Analysis:
First International Workshop, FOPARA 2009, Eindhoven, The Netherlands, November 6, 2009, Revised
Selected Papers,” Springer Berlin Heidelberg, Berlin, Heidelberg, 2010 pp. 34–50.

[11] Tarjan, R. E., Amortized computational complexity, SIAM Journal on Algebraic and Discrete Methods
6 (1985), pp. 306–318.

[12] Tofte, M. and J.-P. Talpin, Implementation of the Typed Call-by-value λ–calculus using a Stack of
Regions, in: Proceedings of the 21st Symposium on Principles of Programming Languages, POPL 94,
1994, pp. 188–201.

[13] Vasconcelos, P., “Space Cost Analysis Using Sized Types,” Ph.D. thesis, University of St Andrews
(2008).

[14] Wegbreit, B., Mechanical Program Analysis, Commun. ACM 18 (1975), pp. 528–539.

J. Salvucci, E. Chailloux / Electronic Notes in Theoretical Computer Science 330 (2016) 27–4646

http://www.cs.cmu.edu/~janh/papers/HoffmannW15.pdf

	Introduction
	Related works
	Language & Analysis
	Syntax
	Type & effect system
	Cost model
	Analysis

	Analysis of pure functions
	Analysis of imperative functions
	Composition of analyses
	Example
	Conclusion
	References

