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Abstract

Background: The last decades witnessed an explosion of large-scale biological datasets whose analyses require the
continuous development of innovative algorithms. Many of these high-dimensional datasets are related to large
biological networks with few or no experimentally proven interactions. A striking example lies in the recent gut
bacterial studies that provided researchers with a plethora of information sources. Despite a deeper knowledge of
microbiome composition, inferring bacterial interactions remains a critical step that encounters significant issues, due
in particular to high-dimensional settings, unknown gut bacterial taxa and unavoidable noise in sparse datasets. Such
data type make any a priori choice of a learning method particularly difficult and urge the need for the development
of new scalable approaches.

Results: We propose a consensus method based on spectral decomposition, named Spectral Consensus Strategy, to
reconstruct large networks from high-dimensional datasets. This novel unsupervised approach can be applied to a
broad range of biological networks and the associated spectral framework provides scalability to diverse reconstruction
methods. The results obtained on benchmark datasets demonstrate the interest of our approach for high-dimensional
cases. As a suitable example, we considered the human gut microbiome co-presence network. For this application,
our method successfully retrieves biologically relevant relationships and gives new insights into the topology of this
complex ecosystem.

Conclusions: The Spectral Consensus Strategy improves prediction precision and allows scalability of various
reconstruction methods to large networks. The integration of multiple reconstruction algorithms turns our approach
into a robust learning method. All together, this strategy increases the confidence of predicted interactions from
high-dimensional datasets without demanding computations.

Keywords: Network reconstruction, Community-based method, Spectral theory, High-dimensional data, Microbiota

Background
Discovering complex interactions is a long-standing prob-
lem which led over the past years to the development
of many network reconstruction methods that exhibit
competitive results on various types of data. As suc-
cessfully demonstrated, networks are invaluable tools
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to comprehensively relate biological variables [1–3] and
possibly gain insights into their direct causal relation-
ships [4]. Interestingly, recent studies have shown that
the available approaches would not generally perform
optimally across all dataset types and the integration
of diverse inference methods can provide an improved
robust performance [5–8]. However, several well-known
and widely used algorithms cannot directly process high-
dimensional data or actually perform better on small
networks. Bringing these methods within a lower dimen-
sional space would enable researchers to fully benefit from
their strengths under high-dimensional settings, andmore
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interestingly, to integrate their outcome in community-
based predictions.
We propose a consensus approach, named Spectral

Consensus Strategy (SCS), to reconstruct complex bio-
logical networks from high-dimensional datasets. This
method provides scalability to various reconstruction
methods and can be applied to a broad range of com-
plex biological networks. Our approach unfolds in three
parts. First, it relies on a spectral framework to iden-
tify sets of significantly related variables. Specifically, the
subset selection uses the magnitude of the normalized
Laplacian eigenvector elements. These subsets are then
considered in a second phase for multiple parallel local
reconstructions from which global effects are inferred.
By enabling each reconstruction method to locally avoid
high-dimensional settings, this second phase improves
individual prediction accuracy and scalability. In the last
phase, the individual reconstructions that benefited from
the spectral embedding are integrated in a consensus
network.
All together, this strategy provides robust and accu-

rate reconstructions from high-dimensional observational
data for which no suitable learning approach is known
beforehand, as for instance frequently encountered in
metagenomics. To our knowledge, our contribution is the
first attempt to introduce a consensus network recon-
struction approach based on a spectral framework.

Network reconstruction background
Generally speaking, network learning algorithms can
be divided into two categories: constraint-based and
score-based approaches. The constraint-based methods
ascertain (conditional) independence relationships from
statistical tests [9, 10] to learn structural constraints in
causal graphs. These approaches are highly efficient on
sparse networks and are guaranteed to learn the Markov
equivalent class of the underlying graphical model if
the exact list of conditional independence relationships
is given. However, constraint-based methods have also
proved to be very sensitive to sampling noise from finite
datasets. Alternatively, score-based methods identify the
model that best fits the data through the maximization
of a score function over the space of (ideally all) possi-
ble Bayesian networks [11, 12]. To learn the networks in
reasonable time, the search procedure usually follows a
heuristic algorithm that identifies a local optimum. More
recently, several mutual information-based approaches
have been proposed to infer direct relationships from
noisy observational datasets containing few samples
[1, 2]. Nevertheless, as demonstrated by the growing num-
ber of hybrid approaches [4, 13–15], the wide range of
high-dimensional data is still challenging state-of-the-art
methods, both in terms of accuracy, or time and memory
consumption.

Spectral methods background
Spectral theory has provided a number of approaches to
uncover dataset structure. A well-known result is the abil-
ity to optimally bi-partition a graph based on the second
eigenvector of the normalized Laplacian matrix, also
known as algebraic connectivity or Fiedler vector [16, 17].
Following this idea, recursive two-way cut methods
[18–20] that rely solely on the second eigenvector, and
k-way cut approaches [21–26] that are based on trun-
cated eigenvector basis, have been successfully applied to
dimensionality reduction or clustering problems. Specifi-
cally, the truncated eigenvector basis provides a new rep-
resentation that amplifies the similarity between closely
related variables while reducing the affinity of unrelated
variables [26–29]. Many biological systems are usually
composed of overlapping sub-units that involve function-
ally related features, such as found in metabolic or gene
regulatory networks. Hence, learning large biological net-
works from multiple local reconstructions appears to be
a reasonable procedure as much as it follows the natural
dataset structure. Spectral methods hold great potential
for guiding learning algorithms that perform better on
small graphs towards improving inference of large net-
works.

Consensus reconstruction approaches
The idea of consensus or ensemble learning is recently
gaining interest in the field. An example is given in [30]
where the yeast metabolic network was reconstructed
based on a complex consensus procedure that involved a
number of statistical methods and an important amount
of prior knowledge. As previously demonstrated [31], con-
sensus approaches can be efficiently exploited to recon-
struct Bayesian networks and provide robust models from
biological data. A consensus method that mainly rely on
significance tests is proposed in [32] to learn dependen-
cies between gene regulatory factors in the human frontal
lobe, resulting in a high-confidence model. The commu-
nity structure in complex networks can also be revealed
by consensus clustering as reported in [33], where a
stable partitioning approach based on several stochastic
method results is proposed. Marbach et al. [5] motivates
the development of consensus methods by demonstrat-
ing the benefits of combining complementary inference
approaches. Specifically, they have evaluated the perfor-
mance of diverse learning algorithms and shown that their
combination performs robustly across various datasets
while providing as good or better results than individual
methods.

The complex gut microbiome system
The human gut hosts a high density of commensal bacte-
ria whose collective genome, also known as metagenome,
exceeds more than a hundred times the size of the human
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genome [34]. This rich ecosystem provides the host with
vital functions that affect nutritional efficiency and over-
all health [35, 36]. Over the past few years, the role of
gut microbiota in human health has received unprece-
dented attention [37]. In particular, several chronic dis-
eases such as obesity [38, 39], inflammatory bowel disease
[40, 41], liver cirrhosis [42, 43], type-I [44], and type-II
diabetes [45, 46] have been associated with gut micro-
biota. For a long time, the composition of human gut
microbial ecosystem was unknown, especially due to the
large number of non-cultivable species. The recent avail-
ability of metagenomic data along with different binning
techniques allows now to obtain a better picture of the
taxonomical groups that inhabit the gut microbiome [47].
These species are organized in complex ecological net-
works and can be involved in different types of interac-
tions such as competition ormutualism [48]. Yet, mapping
these relationships with high confidence remains a com-
plicated task for multiple reasons. First of all, as many
species are usually absent from one sample to another,
metagenomic datasets are very sparse. This sparsity adds
on technical artifacts inherent to the obligate multi-step
data processing. Hence, metagenomic data are challeng-
ing available reconstruction methods, which may indi-
vidually yield different topologies for the same set of
observations.

Methods
We propose a simple yet highly efficient method called
Spectral Consensus Strategy (SCS) that simultaneously
embeds multiple discovery algorithms within a spec-
tral framework for the reconstruction of large graphi-
cal model. The strength of the SCS method hinges on
two key points that are (i) the accuracy improvement
of each individual learning algorithm and (ii) the com-
bination of predictions from complementary reconstruc-
tion methods. Specifically, sets of path-related variables
are first identified based on the magnitude of the graph
Laplacian eigenvector elements (Fig. 1,a), then multiple
parallel local reconstructions are performed using dif-
ferent learning methods (Fig. 1,b) and lastly a consen-
sus network is built on the previous multiple outcomes
(Fig. 1,c).
In the following, we provide theoretical support to

the uncovering of connected variable subsets from the
first phase of the SCS approach (SCS-spectral step,
Fig. 1,a). In particular, we demonstrate that subsets
of path-related vertices can be directly retrieved from
the magnitude and sign of individual eigenvector ele-
ments. These subsets, which correspond to possibly
overlapping dense subgraphs, are given as input to the
second phase of the SCS approach (SCS-learn step,
Fig. 1,b). We finally detail the whole Spectral Consensus
Strategy.

Normalized Laplacian eigenvectors
We consider the random-walk normalized Laplacian
matrix Lrw as it entails the random walk dynamics from
one vertex to another in the corresponding graph G. This
matrix is defined as Lrw = I − D−1W , where I is the
identity matrix, W = (wij) is a weight matrix over all
pairs of variables and D the diagonal degree matrix with
dii = ∑

j wij.

Communitymembership indicators
As already established [49], the null eigenvalues of the
graph Laplacian matrices are associated with the number
of connected components. A subset of vertices Ak ⊂ V is a
connected component if (i) all intermediate points that lie
on a path between two vertices ofAk also belong toAk and
(ii) there is no connection between the vertices of Ak and
its complementary subset Ak (Additional file 1: Proposi-
tion 1). Interestingly, for the case of finding k > 2 clusters,
the first k eigenvectors of the normalized Laplacianmatrix
Lrw minimize the normalized cut (NCut) criterion of the
relaxed problem [18, 50],

Ncut(A1, . . . ,Ak) = 1
2

k∑

i=1

W (Ai,Ai)

vol(Ai)
(1)

whereW (A,B) = ∑
i∈A
j∈B

ωij, and vol(Ai) = ∑
j∈Ai dj.

In a nutshell, the solution of the relaxedNcutminimiza-
tion problem consists of the orthonormal matrix H ∈
R
p×k whose columns are the first k eigenvectors of the

normalized Laplacian eigenvector matrix U, associated
with the first k smallest eigenvalues.
When the between-cluster similarity is exactly 0, these

eigenvectors are the indicator vectors {hj}j∈[1,k] (hj ∈ R
p

and hij = 1 if xi ∈ Aj, otherwise 0) of the k con-
nected components [50]. In practice, the distribution of
the data points in distinct clusters is hardly encountered,
and one should expect the between-cluster similarity to
be greater than 0. Yet, under nearly ideal conditions the
eigenvectors are still close to the indicator vectors, and the
elements magnitude and sign of each eigenvector contain
information on vertices membership strength [18, 50, 51].

Path-related vertices subsets
Beyond the membership indication, the Laplacian matrix
eigenvector elements also convey path-relationship infor-
mation. In the following we assume that vk is the k-th
eigenvector of the normalized Laplacianmatrix associated
with the connected component Ak . Under ideal condi-
tions, xi ∈ Ak ⇒ vk(i) = 1, otherwise vk(i) = 0 [50]. In
addition, we demonstrate that similar elements of a given
eigenvector (|vk(i)−vk(j)| = 0) indicate path-related vari-
ables (xj is path connected with xi) based on the Rayleigh
quotient [52] (Additional file 1: Proposition 2).
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Fig. 1 Overview of the Spectral Consensus Strategy (SCS). The SCSmethod unfolds in three parts. a The SCS-spectral phase identifies sets of
path-related variables based on the magnitude of the graph Laplacian eigenvector elements. b The SCS-learn phase performs multiple parallel local
reconstructions using different learning methods. c The SCS-consensus phase provides a consensus network built on the individual outcomes from
the SCS-learn step

For the case of a connected graph G (i.e. there is a
path between any pair of variables in G) Fiedler’s Nodal
Domain theorem (Additional file 1: Theorem 1) indicates
that while xi and xj belong to different clusters A and B,
|vk(i) − vk(j)| < ε can be found. However, if there exists a
subset of vertices S at a distance less than a step ρ ≥ 2
from A that separates A and B, then vk is such that [53]

⎧
⎪⎪⎨

⎪⎪⎩

if i ∈ A, then vk(i) = 1,
if i ∈ B, then vk(i) = −1,
if i ∈ S, then − 1 + 2/ρ ≤ vk(i) ≤ 1 − 2/ρ,
if i, j are adjacent then |vk(i) − vk(j)| ≤ 2/ρ.

Taking ρ = 2 we obtain the case which is commonly
used for separators. Hence, |vk(i) − vk(j)| is a measure
of the distance between the vertices i and j reflecting the
cluster assumption which stipulates that close data points
are expected to lie within the same cluster (Additional
file 1: Proposition 3).
In summary, under ideal conditions, the first k eigenvec-

tors of the normalized Laplacian matrix provide indicator
vectors of the k connected components. In practice, the
magnitude and sign of the eigenvector elements contain
information on vertex membership strength to the cor-
responding component (Additional file 1: Proposition 1).

Furthermore, path-connected variables have similar eigen-
vector elements (Additional file 1: Proposition 2), that are
distinct from the element of vertices belonging to a dif-
ferent component (Additional file 1: Proposition 3). Thus,
subsets of nodes that correspond to large positive or neg-
ative eigenvector elements (retrieved in the SCS-spectral
step) correspond to dense subgraphs (to be reconstructed
in the SCS-learn step). These subgraphs associated to
large eigenvector elements can be redundantly found in
the first eigenvectors [54]. However, higher eigenvectors
can also be used to identify different subsets of connected
nodes, as observed in the context of anomalous graph
detection [55].

The spectral consensus strategy
This section details the three steps of the SCS approach
and provides the algorithms associated with each phase
(Fig. 1).

(a) SCS-spectral, identifying graph sub-paths
The first phase of the SCS approach, called SCS-spectral,
identifies subsets of vertices that are at a small walk
distance from each other within the graph G (Fig. 1,a).
This information is conveyed by the magnitude of the
Laplacian eigenvector elements [51].
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In the following, the input datamatrix isRn×p with n the
number of observations and p the number of variables. In
Algorithm 1, the eigenvectors of the normalized Laplacian
matrix Lrw are computed to identify vertices that lie on
common sub-paths (Algorithm 1, lines 4 − 5).

Algorithm 1: SCS-spectral → Path indicators
1 In: input data matrix Rn×p, with n the number
of observations and p the number of variables

2 Out: U, normalized Laplacian eigenvector matrix
3 ComputeW ∈ R

p×p, the mutual information
matrix for the data points {xi}i∈[1,p]

4 Construct the unnormalized Laplacian L = D−W
5 Compute the generalized eigenvectors {vk} of the
generalized eigenproblem Lv = λDv

6 Set U the matrix containing all the eigenvectors
{vk} as columns in increasing order of {λk}.

In our consensus approach, we choose the mutual infor-
mation to model vertex similarity as it provides a general
measure of relationship between variables [56, 57]. More-
over, previous studies have shown that information theo-
retic measures are well suited to study high-dimensional
biological data [58–60], which was one of our objectives
when designing the SCS approach.

(b) SCS-learn, high-dimensional spectral embedding
The second phase of our approach, called SCS-learn,
relies on the sign and magnitude of the first k eigenvector
elements to reconstruct possibly overlapping sub-graphs
that involve path connected vertices (Fig. 1,b). Specifically,
each eigenvector vk is associated with two sub-graphs,
Gm,−
vk and Gm,+

vk , that relate the m data points corre-
sponding to either the most negative or the most positive
eigenvector elements (Algorithm 2, line 7).
For clustering purposes, the subspace spanned by the

first k eigenvectors would normally be preferred to their
individual interpretation [28]. However the SCS-learn
step does not aim at partitioning the variables, but rather
to learn the whole underlying network based on overlap-
ping sub-graphs. In particular, the non high-dimensional
settings (m � n) obtained for each local reconstruction
Gm,+/−
vk restrict the number of false positive edges. Alterna-

tively, the overlaps between selected subsets ofm variables
limit the number of false negative interactions. At the end
of this phase, the edges eventually retained in each indi-
vidual network Gl are those that were learned every time a
sub-graph Gm,+/−

vk involved the corresponding pair of ver-
tices (Algorithm 2, lines 17 − 18). Lastly, whenever the
input reconstruction method Rl provides orientations,
a majority rule is applied to set the final orientation or

Algorithm 2: SCS-learn → Embedded networks
1 In: U, first k eigenvector matrix (SCS-spectral
output)

2 {Rl}, a set of L network reconstruction
methods

3 Out: {Gl = (V,El)}, a set of L (possibly oriented)
networks

4 forall theRl // in parallel do
5 forall the vk with lowest λk // in parallel do
6 Sort elements of vk = (v1k , ..., v

p
k) in

increasing order
7 Using theRl method, reconstruct two

networks, Gm,+
vi and Gm,−

vi , from them
most positive andmmost negative
elements of vk

8 for pairs (xi, xj) ∈ V2
Gm,+/−
vi

do

9 occurencexixjGl
++

10 if (xi, xj) adjacent in Gm,+/−
vi then

11 adjacencyxixjGl
++

12 if (xi ← xj or xi → xj) then
13 orientxixjGl

← orientxixjGl
∪ +/−1

14

15

16 end
17 end
18 end
19 Set Gl = (V,El) for each {Rl}whereV = {xi}i∈[1,p]

and El = {(xi, xj)|occurencexixjGl
= adjacencyxixjGl

}
20 with orientxixjGl

← majority{orientxixjGl
}

resolve possible conflicts over all the inferred orienta-
tions for two adjacent vertices (Algorithm 2, line 19). If no
majority can be achieved, the edge is set undirected.

(c) SCS-consensus, final network
In this last phase, called SCS-consensus, networks
inferred by individually embedded reconstruction meth-
ods are combined (Fig. 1,c). Specifically, for each learning
approach Rl, we rank the predicted edges by decreasing
strength or confidence (Algorithm 3, lines 4 − 6). Then,
following the integration procedure proposed in [5], an
average is computed to provide a consensus rank for the
(xi, xj) edge in the final graph G (Algorithm 3, line 8). If an
individual reconstruction method gives no edge between
(xi, xj), the pair receives the worst possible rank for this
method, i.e. rankxixjGl

= 1. A weighted average over the
(sub)set {R}L′ of learning approaches that predicted ori-
entations is also computed, giving greater weight to upper
rank edge orientations (Algorithm 3, lines 9 − 12). Lastly,
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Algorithm 3: SCS-consensus → Final network
1 In: {Gl = (V,El)} for each {Rl} (SCS-learn
output)

2 emax, most significant edges threshold
3 Out: {G = (V,E)}, consensus (oriented) network
4 forall theRl // in parallel do
5 Order {(xi, xj)} ∈ El by decreasing strength
6 end
7 forall the (xi, xj) ∈ V2 // in parallel do
8 rankxixjG = 1

L
∑L

l

(
rank

xixj
Gl /|El|

)

9 orientxixjG =
1

∑L′
l w

rank(xixj)
Gl

∑L′
l orientxixjGl

wrank(xixj)
Gl

10 with
11 wrank(xixj)

Gl
= (1 − rank

xixj
Gl /|El|)

12 orientxixjGl
= 1 if xi → xj, −1 if xi ← xj

13 else 0
14 end
15 Set G = (V,E) where
16 V = {xi}i∈[1,p] and E = {(xi, xj)|rankxi,xjG ≤ emax}

only the emax most significant edges are retained in the
consensus network (Algorithm 3, line 15).

Results
The SCS approach embeds multiple reconstruction
methods in a spectral framework to learn possibly ori-
ented interactions from high-dimensional data by (i) com-
bining the edges discovered from overlapping sub-graphs
(Fig. 1, SCS-learn, (b)) and (ii) computing a consensus
network (Fig. 1, SCS-consensus, (c)). In the following,
the reconstructed networks are evaluated for an increas-
ing proportion of eigenvectors (Fig. 2, horizontal axis).
Results are discussed in terms of Precision (TP/(FP+TP)),
Recall (TP/(TP+FN)) and F-score (2×Prec×Rec/(Prec+Rec))
(FN ,TP,FP; false negative, true positive and false positive
edges resp.). In particular, falsely oriented TP edges are
considered as FP. For these evaluations, a benchmark
network of 223 nodes and 338 edges has been consid-
ered (ANDES benchmark [61, 62]). This choice was in
particular motivated by the fact that each variable of
the ANDES benchmark network has exactly two cate-
gories, as encountered for metagenomics co-presence or
presence-absence data. Besides, the 223 variables of this
network enable us to reproduce high-dimensional con-
ditions while evaluating the SCS results against recon-
struction performed by each learning approach without
the SCS embedding. We also considered a larger bench-
mark network composed of 1,041 nodes and 1,397 edges,
MUNIN [63], and provide the corresponding results in

(Additional file 1: Figures S3 and S9). We randomly
sampled 5 datasets of sizes 150 and 200 to perform
the experiments under high-dimensional conditions for
ANDES, and 5 datasets of size 935 for MUNIN. The embed-
ded reconstruction methods are ARACNE [1], a mutual
information-based approach, 3off2 [4], a hybrid method
that combines constraint-based and scoring approaches
based on multivariate information measures, and a hill-
climbing algorithm using the Bayesian Dirichlet equiva-
lent score. We also considered a random classifier in our
SCS-spectral and SCS-learn step evaluations (Additional
file 1: Figures S4).

SCS-learn network evaluations
As previously established [5], adding high quality recon-
struction methods to a consensus approach significantly
improves consensus predictions. We have thus evaluated
the accuracy improvement achieved in the SCS-learn
phase that relies on the SCS-spectral step. Specifically,
we have compared reconstructions obtained from variable
subsets selected with the element magnitude of the first k
eigenvectors to networks learnt based on variable subsets
derived from different partitioning or clustering meth-
ods. Alternative subset selections are provided by spectral
fuzzy C-means partitioning, spectral K-means clustering
and recursive bi-partitioning. Random subset selection is
also considered as a mere comparison.
Evaluations of embedded network reconstructions from

subgraphs of m = 12 nodes using n = 150 samples
(results for different subgraph and dataset sizes follow a
similar trend, see Additional file 1) for the ANDES bench-
mark are given in Fig. 2 (top three rows). Reconstructions
obtained from randomly sampled subsets exhibit a poor
Precision (green solid line). This highlights that guided
local reconstructions improve prediction accuracy. Net-
works reconstructed from subgraphs that rely on spectral
K-means (darkblue solid line) or spectral fuzzy C-means
(lightblue solid line) subsets do not provide better Preci-
sion than the SCS-learn method (red solid line) up to 30
eigenvectors (14% of the total number). Although bipar-
tition of the variables (salmon solid line) allows for better
Precision than the random or spectral clustering, it is still
largely outperformed by the SCS-learn phase.
This high Precision is at the slight expense of the Recall

(Fig. 2, middle column), although it still outperforms the
bi-partitioning approach and performs almost as better
as clustering-based reconstructions. It is worth noting
that reconstructions obtained with the SCS-learn step are
consistent with Proposition 2 and 3. In particular, Fig. 2
shows an increase of the Recall as the number of eigen-
vectors grows (middle column, red solid line) as well as
a higher Precision with the first eigenvectors (left col-
umn, red solid line). This is in line with a progressive
discovery of the true underlying network and further show
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Fig. 2 SCS-learn and SCS-consensus evaluations for ANDES benchmark network [223 nodes, 338 edges, 〈k〉 = 3.03]. Precision, Recall and F-score
results for an increasing proportion of eigenvectors (up to 40%), subgraphs of 12 nodes (5% variables) and 150 samples. Scores take misorientations
into account. Each point is an average over 5 datasets (results for different subgraph and dataset sizes follow a similar trend, see Additional file 1).
(SCS-learn, top three rows) Three learning algorithms are embedded to reconstruct a network from subgraphs whose vertices are selected from the
magnitude of eigenvector elements (SCS-learn, red solid line), spectral fuzzy C-means partitioning (light blue solid line), spectral K-means clustering
(dark blue solid line), random subsets (green solid line) and recursive bi-partitioning (salmon solid line). Results are compared to scores obtained
without spectral or partitioning embedding (red dashed line). (SCS-consensus, bottom row) The SCS-learn reconstructions are combined in a
consensus network (red solid line) and compared with individual SCS-learn outcomes (gray dashed lines). Scores are computed from the top 338
consensus edges (results for different number of consensus edges follow a similar trend, see Additional file 1)
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that non principal eigenvectors, although less informative
than the first eigenvectors, carry relevant information on
connected vertices. This can also be observed, to a lesser
extent, when a random classifier is embedded in the SCS-
learn step (Additional file 1: Figure S4). Interestingly, the
Recall of networks based on spectral clustering parti-
tions decreases when too many eigenvectors are consid-
ered (Fig. 2, middle column, lightblue and darkblue solid
lines). As already established [26–29], truncated eigenvec-
tor basis are expected to emphasize variable similarities
and thus, should indicate relevant variable subsets. Yet,
due to the approximation error from the real valued solu-
tion, non principal eigenvectors are unreliable and worsen
variable partitioning. Consequently, connected vertices
may be assigned to distinct clusters as the number of
eigenvector grows, leading to local reconstructions with a
low Recall.
All together, the association of the SCS-spectral and

SCS-learn steps leads to higher F-score results (Fig. 2,
right column; Additional file 1: Figure S3, left column) as
compared to reconstructions obtained with various par-
titioning approaches. This improvement is achieved from
a relatively small number of eigenvectors (5% of the total
number), thus enabling a good trade-off between recon-
struction quality and the number of required subgraphs.
Lastly, the ANDES benchmark network was considered as
its size allows for a direct reconstruction by each learn-
ing method. Results provided in Fig. 2 (dashed red line)
show that SCS-learn performs better than, or as well as,
reconstruction methods alone.

SCS-consensus network evaluations
Evaluations of consensus networks reconstructed from
embedded learning approaches based on subgraphs of
m = 12 nodes and using n = 150 samples are given
in Fig. 2 (bottom row). The ANDES benchmark net-
work having 338 edges, scores for the consensus outcome
are given based on the 338 first ranked edges (results
for different number of edges follow a similar trend, see
Additional file 1). The consensus Precision scores (Fig. 2,
bottom left, red solid line) clearly outperform the individ-
ually embedded learning approaches (gray dashed lines)
as the proportion of eigenvector grows. Similar results are
observed for the MUNIN benchmark network (Additional
file 1: Figure S9).
Interestingly, these results emphasize the complemen-

tarity of the different reconstruction methods, as already
demonstrated [5]. In particular, it has been shown that
ARACNE and other mutual information reconstruction
methods detect more easily feedfoward loop (A→B→C and
A→C) and fan-in (A→C and B→C) patterns. Conversely, cas-
cade (A→B→C and (A,B) not adjacent) and fan-out (A→C
and A→B) patterns are more easily inferred by Bayesian
learning approaches [5].

All together, the SCS-consensus phase provides high F-
score network reconstructions (Fig. 2, bottom right, red
solid line) for a reasonable number of eigenvectors (pro-
portion ≥ 11.5%). The SCS-consensus predictions also
exhibit high F-scores when considering variable subsets
of larger sizes in the SCS-learn phase (Additional file 1:
Figures S7–S9).

Reconstruction of microbial ecosystems
We applied the SCS method to a complex biological
dataset generated by high-throughput sequencing of gut
microbiome samples from 663 patients recruited in the
MetaHIT project (Metagenomics of the Human Intestinal
Tract). The nearly 4 million genes whose abundance was
measured using quantitative metagenomics were binned
to generate representative variables based on their mean
co-abundance as introduced by Nielsen et al. [47]. These
co-abundance groups (CAG) can be either classified as
genomic units (GU) for small groups (between 3 and 700
genes) or metagenomic species (MGS) for larger groups
(more than 700 genes). The authors produced a first
reconstruction of the gut microbial ecosystem based on
Fisher’s exact test between pairs of CAGs.
In our study we used this extensively annotated dataset

where information on phylogenetic classification and gene
assembly is also available. Here we focused on p = 2,101
CAGs with more than 50 genes as already proposed in
[64]. Figure 3a represents 307 co-presence relationships
(edges) between these 2,101 CAGs (vertices) with at least
one connection (leading to a subset of 445) as already
provided by Nielsen et al. [47]. The number of genes com-
posing a CAG is proportional to the vertex size. CAGs
from the same phylum have similar color hues that are
specified at the family level of their phylogenetic classi-
fication (e.g. Firmicutes are given in a range of blue and
Bacteroides in a range of pink).
The SCS approach which embeds three reconstruction

methods (ARACNE, 3off2, hill-climbing) inferred a con-
sensus network of 6,389 edges from the above-mentioned
dataset. To compare our results with the pairwise net-
work reconstructed by Nielsen et al. [47], we selected the
same number (307) of top-ranked SCS edges which repre-
sent approximately 5% of the consensus interactions. This
network composed of 443 nodes yieldsmore complex sub-
structural patterns as illustrated in Fig. 3b. When compar-
ing networks (A) and (B), only 111 out of the 307 edges
(36%) inferred by Fisher’s exact test are also predicted
by the SCS method. Interestingly, 105 of these common
edges (95%) have genetic elements that share same assem-
bly contigs, bringing strong biological evidence for these
predicted relationships. Conversely, out of the remaining
196 edges solely inferred by Fisher’s exact test, a signifi-
cantly smaller number (121, 62%) have genetic elements
that share same assembly contigs (p < 8 × 10−10, χ2).
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Fig. 3Microbial co-presence ecosystem. Microbial ecosystem reconstructed with the pairwise Fisher’s exact test [47] (a) and the SCS approach
(b,c). Data for 2,101 co-abundant groups (CAGs) and n = 663 patients recruited in the MetaHIT project were used. Edges depict co-presence
(gray edges) or absence-presence (red edges) relationships. a Gut microbial ecosystem based on Fisher’s exact test between pairs of CAGs [47] (307
edges between 445 CAGs of at least 50 genes). b The same number of top-ranked edges (307) obtained with the SCS approach which involve 443
CAGs of at least 50 genes. c The 15% most significant edges obtained with the SCS approach (654 nodes and 639 edges)

Complementary evaluations for different number of com-
mon edges (from 55 to 146 edges) follow the same
trend (Additional file 1: Table S4 and Additional file 1:
Figure S9). We hypothesize that a non negligible number
of edges inferred by pairwise reconstruction techniques
may correspond to indirect relationships.
We explored the topology of the SCS consensus gut

microbial ecosystem at different most significant edges
threshold (emax) and illustrate the network at 15% in
Fig. 3c (654 vertices and 639 edges). The modular

structure of this network is highlighted by tightly related
vertices sharing similar colors. This indicates that species
of the same family or phylum are mostly co-present as
previously discussed [43]. This can be explained by the
fact that closely related species have similar genetic back-
ground adapted for the same environmental niche. Of
interest is also the fact that small CAGs (GU) are strongly
linked with large CAGs (MGS) having the same phylo-
genetic annotations as depicted in Fig. 3(a & b) and pre-
viously described [47]. The SCS microbial network also
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includes consensus directed edges computed from the
orientations of the embedded 3off2 and hill-climbing
algorithms. Gray oriented edges (A → B) indicate ordered
co-presence relationships (i.e. the presence of A species is
expected whenever B is found). Conversely, red oriented
edges provide presence-absence information.
We further analysed the SCSmicrobial network by con-

sidering the edge rank correlations between individual
reconstructions and the consensus result (Fig. 4). The
3off2 and the ARACNE algorithms have a strong cor-
relation (Fig. 4, ρ = 0.77), as it could be expected for
approaches that rely on similar metrics. Conversely, the
edge ranks between 3off2 or ARACNE and hill-climbing
heuristic exhibit weak correlation coefficients (Fig. 4, ρ =
0.31 and ρ = 0.22 resp.). The slightly higher correla-
tion between 3off2 and hill-climbing approaches may be
related to the fact that 3off2 is a hybrid approach that is
also score-based. All together, these results demonstrate
the complementarity of the individual approaches from
which the human gut microbial consensus predictions can
benefit.

Discussion
In this paper, we propose a consensus network learn-
ing approach called Spectral Consensus Strategy which is
based on spectral decomposition. Our method proceeds
in three steps, namely SCS-spectral, SCS-learn and SCS-
consensus. The first and second phases enable any recon-
struction method to learn a possibly oriented network
under high-dimensional settings. In addition to accuracy
improvement of each reconstruction method, the spectral
framework on which the SCS approach relies, also sup-
ports fast processing of high-dimensional datasets. The
last phase combines the outcome of each reconstruction
method to provide consensus predictions.
This strategy, as well as being accurate, scales up

extremely well. Specifically, as the SCS-learn step pro-
cesses in parallel local reconstructions related to the
first k eigenvectors (Algorithm 2, lines 5 − 15), it is
the time complexity of the reconstruction methods that
mainly impedes the whole running time. The SCS frame-
work itself does not add any demanding computations.
In particular, the running time for each individual recon-
struction method embedded in the SCS-learn phase
grows with the number of variables p as O(p log p)
(Algorithm 2, line 6). Furthermore, all reconstruction
methods can simultaneously learn the network within the
second phase. As an example, gut microbiota consen-
sus reconstruction (2,101 variables, 663 samples, Fig. 3c)
required 43 seconds to reconstruct all subgraphs (m = 40
vertices, 63 eigenvectors) needed for the Gl individual net-
works, and 52 seconds to build the consensus outcome G
using 40 CPUs. Besides, the early step of the SCS-spectral
phase which involves the computation of the mutual

information matrix (Algorithm 1, line 3) and the last step
of the SCS-learn phase which is dedicated to the assem-
bling of local reconstructions (Algorithm 2, lines 17−19),
can be efficiently optimised and implemented [65, 66]. All
together, the SCS approach could efficiently reconstruct
the microbiome ecosystem, while the hill-climbing algo-
rithm alone did not converge in 48 hours (see Additional
file 1: Section 4, for detailed evaluations). These results
highlight the ability of our method to improve the scala-
bility of the embedded learning approaches.
The subgraph size m for the SCS-learn phase influ-

ences the quality of individual reconstructions (Gl graphs).
Specifically, too small subgraphs lead to low Recall and
very high Precision, while conversely too large sub-
graphs (even still under non high-dimensional condi-
tions) increase the Recall at the expense of the Preci-
sion, both cases impeding the F-score results (Additional
file 1: Figures S1–S3). Yet, predictions output by the SCS-
learn step remain better than predictions derived from
classical clustering and partitioning approaches for var-
ious sizes m. Interestingly, although the parameter m
significantly impacts individual reconstructions, it only
slightly impedes the consensus F-score. In particular,
larger subgraphs still provide a consensus network of
good quality from high-dimensional dataset (Additional
file 1: Figures S7–S9). Similarly, the eigenvector pro-
portion influences individual reconstructions Gl as too
many eigenvectors lead to lower Precision and higher
Recall. Yet, the consensus network based on the first emax
most significant edges achieves good and stable quality
as the number of eigenvectors grows (Additional file 1:
Figures S7–S9).
To define the minimal number of eigenvectors that

would bring sufficient amount of information for a
good consensus reconstruction, we designed a heuristic
approach based on the decreasing interval between suc-
cessive eigenvalues. For classical clustering approaches,
the eigengap heuristic has been proposed to define the
most suitable cluster number. This eigengap heuristic
method is related to the fact that under ideal condi-
tions, k distinct connected components are associated
to the first k null eigenvalues and thus, a gap can be
found between λi≤k = 0 and λk+1 > 0. In prac-
tice, the eigengap heuristic sets the number k such that
λi≤k are small but λk+1 is relatively large. The SCS
approach objective is not to partition variables but rather
to reconstruct a consensus network from overlapping
subgraphs, using as much as possible of the informa-
tion conveyed by each eigenvector. As shown from the
counts and cumulative counts of true positive interac-
tions for the ANDES benchmark network (Additional
file 1: Figure S5), although most of the true positive inter-
actions are retrieved from the first eigenvectors, non
principal eigenvectors also conveyed relevant information
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Fig. 4 Edge rank correlations between SCS-learn and SCS-consensus outcomes for human gut microbial ecosystem. 6,389 edges were predicted
from a dataset of 663 observations and 2,101 CAGs (MetaHIT project [47]). Rank of edges predicted by only one embedded learning method are
given in blue (ARACNE, 159 edges), red (3off2, 498 edges) and yellow (hill-climbing, 2,889 edges). Rank of edges predicted by two individual
learning methods are given in green (ARACNE & hill-climbing, 31), orange (3off2 & hill-climbing, 573 edges) and purple (3off2 & ARACNE, 720
edges). Rank of edges predicted by all individual methods are given in black (1,519 edges)

on connected vertices. Hence, we consider the first
k eigenvectors for which the successive eigenvalues
are dissimilar enough as being the best number of eigen-
vectors to be used for the SCS consensus reconstruction.
As an example, our heuristic method evaluated at 30
(14%) the most suitable number of eigenvectors for the
ANDES benchmark network. This number approximately
corresponds to the number of eigenvectors from which

the consensus network achieves better F-score results than
networks obtained from individually embedded methods
(Fig. 2).
The SCS approach is mainly designed to reconstruct

large unknown biological networks, thus no weights
have been assigned to individual reconstruction meth-
ods. However, if any prior knowledge is available on the
underlying network topology, such as bias in particular
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connection patterns, weights can be easily assigned when
computing the average interaction rank.

Conclusion
Our contribution addresses the problem of large network
reconstructions. The Spectral Consensus Strategy aims
to reconstruct networks from high-dimensional dataset
by overlapping subgraph parallel learning and consen-
sus predictions. Although this approach is not intended
to partition the data points, it takes advantage of spec-
tral decomposition to identify tightly related vertices. We
show by our experiments on both standard benchmark
and real complex data that the performance of the pro-
posed approach is extremely competitive. Our method is
efficient from a computational viewpoint, its implemen-
tation is straightforward, and no effort has to be spent on
hyper-parameter tuning.

Additional file

Additional file 1: Contains complementary demonstrations as well as
supplementary evaluations for the SCS approach. Specifically, Section 1
provides Propositions and associated sketches of proof that support our
method. Complementary evaluations of the SCS first steps, namely
SCS-spectral and SCS-learn, are given in Section 2. We also provide in
Section 3 complementary evaluations of the SCS last step, named
SCS-consensus. Execution time comparisons are given in Section 4.
Supplementary statistics on the application to human gut microbiota close
this Additional file 1. (PDF 606 kb)
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