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Abstract

We study deformations of 2D Integrable Quantum Field Theories (IQFT) which
preserve integrability (the existence of infinitely many local integrals of motion).
The IQFT are understood as ”effective field theories”, with finite ultraviolet cutoff.
We show that for any such IQFT there are infinitely many integrable deformations
generated by scalar local fields Xs, which are in one-to-one correspondence with the
local integrals of motion; moreover, the scalars Xs are built from the components of
the associated conserved currents in a universal way. The first of these scalars, X1,
coincides with the composite field (T T̄ ) built from the components of the energy-
momentum tensor. The deformations of quantum field theories generated by X1

are ”solvable” in a certain sense, even if the original theory is not integrable. In
a massive IQFT the deformations Xs are identified with the deformations of the
corresponding factorizable S-matrix via the CDD factor. The situation is illustrated
by explicit construction of the form factors of the operators Xs in sine-Gordon
theory. We also make some remarks on the problem of UV completeness of such
integrable deformations.

This paper is an extended version of the talk given at the Simons Center, 2015-03-04,
http://media.scgp.stonybrook.edu/presentations/20150304 Zamolodchikov.pdf
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1 Introduction

A substantial number of Integrable Quantum Field Theories (IQFT) is known in two
space-time dimensions. If Σ is the space of all 2D Quantum Field Theories (QFT), one
can think of the subspace ΣInt ⊂ Σ of IQFT. This paper is an attempt to get insight
into the geometry of ΣInt. Given an IQFT, we will try to enumerate all its infinitesimal
deformations which preserve integrability. By definition, such deformations form the
tangent space TΣInt|IQFT, which is a subspace of TΣ|IQFT. We mostly ignore the
profound question of ultraviolet (UV) completeness, assuming that the theory has UV
cutoff. One can think of elements of Σ as ”effective field theories” which make sense
only at sufficiently large length scales. Then the space TΣ|IQFT is given by the span
of all local scalar fields (modulo total derivatives) present in a given IQFT, and the
subspace TΣInt|IQFT consists of all fields which, being added as perturbations of IFT,
preserve its integrability.

In this work we show that for any IQFT the space TΣInt|IQFT includes an infinite
number of independent fields Xs, where s runs the values that enumerate the commut-
ing local integrals of motion (IM) of the IQFT. The scalars Xs can be defined in terms
of the components of the local currents associated with the corresponding IM (Sect.4).
Alternatively, in massive theories, the fields Xs are identified with special solutions of
the form factor bootstrap equations, relating them to the deformations of the factoriz-
able S-matrix via the CDD factor (Sect.7). In many cases the set {Xs} form basis in
TΣInt|IQFT, but generally a finite number of additional fields have to be added to span
the whole of this space. We illustrate the situation by explicit construction in the case
of the sine-Gordon model (Sect.8).

The fieldX1 is identical to the composite field (T T̄ ). We show that the deformations
generated by X1 are ”solvable” in a certain sense, even if the original theory is not
integrable, and we discuss some properties of such deformations (Sect.5).

Our calculations in Sect.4 and 6 suggest that the question of integrability can be
untangled from the problem of UV completeness. Our statements below apply to QFT
understood as ”effective field theories”, in which all UV pathologies can be hidden
under a short-distance cutoff. However, in Sect.9 we make some remarks concerning
possible UV behavior of IQFT, and on the problem of UV completeness.

2 QFT and deformations

In this discussion, QFT is understood in an abstract sense, as an infinite vector space
F = Span{Oa(z)} of local fields, and a collection of their correlation functions

〈Oa1(z1) ... Oan(zn) 〉 . (2.1)
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Here z (e.g. z1, ..., zn above) generally denotes point of space-time. Anticipating dealing
with IQFT, we limit our attention to 2D space-time, which we take to be Euclidean.
Then the points z can be labeled by complex coordinates, which are denoted z, z̄,

z → (z, z̄) ,

{
z = x + iy

z̄ = x− iy
(2.2)

The correlation functions (2.1) are required to satisfy certain properties (some of
which we specify below, as needed), the most important being the Operator Product
Expansion (OPE)1

Oa(z1)Ob(z2) =
∑
c

Cc
ab(z1 − z2)Oc(z2) . (2.3)

One might (or might not) think in terms of Lagrangian QFT, where the theory is
described by some sort of local action

A[ϕ] =

∫
L (ϕ(z), ∂μϕ(z), ∂μ∂νϕ(z), ...) d

2z (2.4)

which appears in the functional integral over a set of ”fundamental fields” ϕ. As was
mentioned, in this discussion we mostly ignore the problem of UV completeness of the
theory, assuming that some UV regularization (with the microscopic cutoff distance ε)
is imposed. The density L may involve higher derivatives of the fundamental fields, i.e.
(2.4) is a generic quasi-local action in the sense of Ref. [1]. In this approach the space Σ
is understood as the space of quasi-local actions (2.4). The coordinates {gi} on Σ may
be given by a full set of parameters - ”coupling constants” - on which L(ϕ(z), ... |gi)
may depend. To shorten notations, we denote by Ag, g = {gi}, the points of Σ. Let
again Fg be the space of local fields in Ag. Generic variation of the action (2.4) can be
written as

δA =

∫
δL(z) d2z , δL(z) =

∑
i

δgiOi(z) , (2.5)

where Oi(z) are elements of a basis in the factor-space

F̂g = F (0)
g /∂Fg ; (2.6)

with F (0)
g being the subspace of scalar fields (for simplicity, we assume that Σ includes

only rotationally invariant theories), and ∂F = Span{∂zOa, ∂z̄Oa} is the subspace

1Here the OPE is understood in the strong sense: we assume that (2.3) converges at some finite
range of separations z1 − z2. Then the bi-local products as in the l.h.s. of (2.3) can be understood
as elements of F . Although this assumption is not crucial for our conclusions below, it considerably
shortens some of our arguments.
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of total derivatives, which bring zero contributions to to the integral in (2.5). The
Lagrangian approach formulation makes self evident the following deformation formula

δg〈O1(z1) · · · On(zn) 〉g = −
∑
i

δgi
∫

d2z〈Oi(z)O1(z1) · · · On(zn) 〉g

+
n∑

k=1

〈Oi1(z1) · · · δgOik(zk) · · · Oin(zn) 〉g (2.7)

Here δgOa =
∑

i δg
i (B̂i(g)O)a, where Bi(g) are some linear operators in Fg. (The

integral over z can - and usually does - diverge as z → zk, and in UV complete theory
δOk(zk) must include cutoff dependent counterterms to make the finite limit ε → 0
possible.) In what follows we will not explicitly refer to any Lagrangian representation,
but simply postulate the above deformation formula. The latter then represents the
sense in which the space F̂g is the tangent one TΣ

∣∣
g
.

3 IQFT and local IM

One of the common characteristics of Integrable Field Theories is the presence of an
infinite set of commutative local Integrals of Motion (IM). Local IM are generated by
local currents, i.e. pairs of local fields (Ts+1(z),Θs−1(z)), which satisfy the continuity
equations

∂z̄Ts+1(z) = ∂zΘs−1(z) . (3.1)

The index s labels the currents; we will assume its values to represent their spins:
the subscripts s + 1 and s − 1 indicate the spins of the corresponding fields2. The
spins s for the currents takes values in some set {s} ⊂ Z which may be different for
different IQFT3. However, in all QFT there are conserved currents (3.1) with s = ±1,
the components of its energy-momentum tensor Tμν . Below we also use conventional
notations

T = −2π Tzz , T̄ = −2π Tz̄z̄ , Θ = 2π Tzz̄ (3.2)

for these components. If the theory is P-invariant (which we assume), the set {s} is
symmetric with respect to the P-reflection s ↔ −s. In what follows it will be convenient

2This identification is convenient, but not essential for our arguments below. When there are more
than one current of the same spin, additional labels may be introduced.

3Since we assume that the currents are local fields, only integer or half-integer spins s are allowed,
but the requirement of commutativity (3.6) rules out the possibility of having many fermionic elements.
Supersymmetry provides an interesting extension, but we do not discuss it here.
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to use separate notations for negative s, i.e. for s > 0 we write Θ−s−1 as T̄s+1, and
T−s+1 as Θ̄s−1, and remove all negative entries from {s}. The negative-s equations
(3.1) then read

∂zT̄s+1(z) = ∂z̄Θ̄s−1(z) . (3.3)

It follows from (3.1) and (3.3) that the integrals

Ps =
1

2π

∫
C
Ts+1(z) dz + Θs−1(z) dz̄ (3.4)

P̄s =
1

2π

∫
C
T̄s+1(z) dz̄ + Θ̄s−1(z) dz (3.5)

do not change under trivial deformations of the integration path C, and thus define
local IM.

The notion of integrability requires that the operators4 Ps form a commutative set,

[Ps, Ps′ ] = 0 (3.6)

for any s, s′ ∈ {s}. For local IM of the form (3.4), (3.5) this condition implies

[Pσ, Ts+1(z)] = ∂zAσ,s(z) , [Pσ,Θs−1(z)] = ∂z̄Aσ,s(z) , (3.7)

and

[Pσ, T̄s+1(z)] = ∂z̄Bσ,s(z) , [Pσ, Θ̄s−1(z)] = ∂zBσ,s(z) , (3.8)

where Aσ,s and Bσ,s are some local fields, as well as similar equations for the commu-
tators of P̄s with local currents. Let us remind here that the commutators [Ps,O(z)]
with any local field O can be defined, in the Euclidean language, by the integrals

[Ps, O(z0)] =
1

2π

∮
Cz0

[Ts+1(z)dz + Θs−1(z)dz̄]O(z0) (3.9)

In QFT with ”coventional” UV behavior (i.e. the one controlled by some UV
fixed point) the components (Ts+1,Θs−1) both have scale dimensions s + 1. Let us
note here that generally the dimensions are defined relative to to a given fixed point;
Generally, if QFT has a more complicated UV structure, the notion of dimensions may
be ambiguous.

4As usual, the space of states and operator representation may depend on the choice of the Hamil-
tonian picture (equal-time slices); specifics of such choice are completely irrelevant for the present
discussion.
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4 Local fields Xs

Given the currents (Ts+1,Θs−1) and (T̄s+1, Θ̄s−1), one may attempt to construct ”com-
posite” scalar fields by taking limit z → z′ in the operator products Ts+1(z)T̄s+1(z

′)
and Θs−1(z)Θ̄s−1(z

′). Of course generally such limits are singular, demanding subtrac-
tions and thus making the result ambiguous. It turns out that if one takes OPE in the
special combination

Ts+1(z)T̄s−1(z
′)−Θs−1(z)Θ̄s−1(z

′) (4.1)

and ignores the terms with total derivatives of local fields in the expansion, the non-
derivative divergent terms cancel out (in fact, all non-derivative terms with singular
coefficients disappear in the OPE of (4.1), see below). As the result, the limit z′ → z
exists in a straightforward sense, and it uniquely (up to derivatives) defines the scalar
local field Xs,

lim
z→z′

(
Ts+1(z)T̄s−1(z

′)−Θs−1(z)Θ̄s−1(z
′)
)
= Xs(z

′) + derivatives terms. (4.2)

Let us note that the ”derivative terms” may well involve divergent coefficients, therefore
this definition of Xs is unambiguous only up to the derivatives. Fortunately we are
interested in the fields as the vectors in F̂ , so the derivatives are irrelevant.

Let us show that the limit in (4.2) indeed exists. The following calculations are
nearly identical to those presented in Ref. [2]. Consider, say, the z̄ derivative of the
combination (4.1). As the consequence of the continuity equations (3.1), (3.3), the
following easily verified identity holds

∂z̄
(
Ts+1(z)T̄s+1(z

′)−Θs−1(z)Θ̄s−1(z
′)
)
=

(∂z + ∂z′)Θs−1(z)T̄s+1(z
′)− (∂z̄ + ∂z̄′)Θs−1(z)Θ̄s−1(z

′) . (4.3)

Now, plug in the OPE of the products appearing in the r.h.s., e.g. Θs−1(z)T̄s+1(z
′) =∑

i c
i(z − z′)Oi(z

′), where the sum is over the complete set of independent fields Oi of
the theory, and ci(z − z′) are c-number coefficient functions. Since all the coefficient
functions depend on the separation z − z′, and thus get annihilated by the derivatives
∂z + ∂z′ and ∂z̄ + ∂z̄′ in (4.3), one concludes that the OPE of the l.h.s. in (4.3) consists
entirely of the derivative terms. Similar calculation reveals that the ∂z derivative of
(4.1) also involves only derivatives of local fields. That is, both ∂z̄ and ∂z of the operator
product (4.1) vanish as the vectors in F̂ = F/∂F . In turn, it follows that the OPE
of (4.1) consists mostly of the derivative terms, except for a single term which comes
with a constant (independent of z − z′) coefficient. The value of the coefficient is
irrelevant, since it can be absorbed in the normalization of the field Xs below. Setting
this coefficient to one (for every s) brings the OPE of (4.1) to the form

Ts+1(z)T̄s−1(z
′)−Θs−1(z)Θ̄s−1(z

′) = Xs(z
′) + derivative terms , (4.4)
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which in particular makes obvious the regular nature of the limit in (4.2). Let us stress
that the scalar fields Xs s ∈ {s} can be constructed in any IQFT explicitly, in terms
of the local IM densities.

Some useful properties of these operators are worth noting. Consider IQFT in
the geometry of an infinite cylinder, with the spatial coordinate x compactified on a
circle with some finite circumference R. Then the energy spectrum is discrete, and the
stationary states | n 〉 are, generally, non-degenerate. Then, by repeating the arguments
in [2], one can prove that

〈n | Xs | n〉 = 〈n | Ts+1 | n〉 〈n | T̄s+1 | n〉 − 〈n | Θs−1 | n〉 〈n | Θ̄s−1 | n〉 . (4.5)

It follows, in particular, that in the infinite system R = ∞ expectation values 〈Xs〉
with s > 1 vanish, because the rotational symmetry of the infinite system forces the
expectation values in the r.h.s. of (4.5) to vanish.

In IQFT with UV limit controlled by a CFT, the scalars Xs have the dimensions
of [mass]2(s+1), in particular, they all are ”irrelevant” in standard nomenclature. This
simply means that adding such fields as the perturbations to the action (as we do in
Sect.6 below) alters the UV properties of the theory, and generally - but not always
- breaks UV completeness of the theory. We make further remarks on this point in
Sect.9.

5 (TT̄) flow

The operator X1 is special. It is built from the components (3.2) of the conserved
energy-momentum tensor, which is present in any QFT, integrable or not. It is identical
to the field (T T̄ ), a frequent actor in a number of previous studies [2–7]. A general
definition can be found in [2]. Here we use the notations X1 and (T T̄ ) interchangeably.
Infinitesimal deformations generated by this operator turn out to be in some sense
”solvable”, even if the original theory is not integrable. Consider a curve Aα in the
theory space Σ, with α denoting the parameter along the curve, such that at any point
of the curve the tangent vector is proportional to X1,

d

dα
Aα =

1

π2

∫
(T T̄ )α d

2z (5.1)

where the additional subscript α in the r.h.s. is added to emphasize that the operator
is built (according to (4.4)) from the components of the energy-momentum tensor
associated with the QFT Aα, and the numerical coefficient 1/π2 is introduced for future
convenience. Consider the theory Aα in finite size geometry, as in Fig.1, and let En =
En(R,α) energies of the stationary states | n 〉; we also denote Pn = Pn(R) = 2πln/R,
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ln ∈ Z, the corresponding spatial momenta of these states. Then, as was shown in [2],
the equation (4.5) with s = 1 reduces to

〈n | (T T̄ ) | n〉 = −π2

R

(
En

∂

∂R
En +

P 2
n

R

)
. (5.2)

Since, by definition of Aα, an infinitesimal shift of α is generated by (T T̄ )α, this leads
to closed differential equation for the energy levels,

∂

∂α
E(R,α) + E(R,α)

∂

∂R
E(R,α) +

P 2(R)

R
= 0 . (5.3)

The equation has the same form for all eigenvalues En(R,α); for this reason we dropped
the index n. Since in what follows α is generally regarded as the parameter, we use
instead the abbreviated notation

Eα(R) ≡ E(R,α) (5.4)

for any level En(R,α). Let us note here some properties of the solutions of equation
(5.3), comparing them to the expected properties of the finite-size energies.

(1) Equation (5.3) has the form of the inviscid Burgers equation with the additional
driving force −P 2(R)/R = −(2πl)2/R3, with E(R,α) playing the role of the velocity
field, and α interpreted as the time.

(2) The general solution at P = 0 is well known; it is given explicitly by the equation

Eα(R) = E0 (R− αEα(R)) . (5.5)

At generic P = 2πl/R the solution is more complicated but still can be found by the
method of characteristics.

(3) Since in our context the solution Eα(R) has the meaning of the finite size
energy levels, one expects them to behave as Eα(R) 
 FαR, up to the terms bounded
at R → ∞. The above equation yields the α-dependence of the bulk vacuum energy
density Fα

Fα =
F0

1 + αF0
, (5.6)

where F0 is the vacuum energy density of the unperturbed theory A0. Furthermore,
if the theory is massive, it follows from (5.3) that the mass Mα of any of its particles
depends on α as5

Mα =
M0

1 + αF0
. (5.7)

5It is easy to check that Eα = FαR+
√

M2
α + P 2(R) solves (5.3), provided Mα is given by (5.7).
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Since this equation applies to any particle of the theory, the mass ratios in Aα are
independent of α.

(4) In general, the energy levels can be written as

Eα = FαR+ μα u(r, t) , (5.8)

where r = μαR, μα is an α-dependent mass scale which satisfies μα = μ0/(1+αF0) (in
massive theories one can take μα = Mα), t = αμ0μα, and the dimensionless function
u(r, t) is bounded as r → ∞. Then it is straightforward to check that u = u(r, t) itself
satisfies the same equation

∂tu+ u ∂ru+
(2πl)2

r3
= 0 , (5.9)

in terms of the dimensionless quantities.
(5) If the theory is massive, one can consider finite size energy levels corresponding to

two identical particles having opposite momenta p and −p (so that the total momentum
P is zero). If MR >> 1 (M = Mα), and energies are well below all inelastic thresholds,
the R-dependence of of E = E(R,α) has the form

E = FαR+ 2
√

M2 + p2 , (5.10)

up to terms exponentially small in R. The momentum p here is subject to the quan-
tization condition pR + Δ(p) = 2πn, where Δ(p) = Δα(p) is the scattering phase.
It is not difficult to show that consistency of (5.10) with (5.9) demands Δα(p) =
Δ0(p)− 2αp

√
M2 + p2, or, in terms of the rapidity difference θ = θ1 − θ2 (θ parame-

terizes the particle momentums as p = M sinh(θ/2))

Δα = Δ0 − αM2 sinh θ . (5.11)

We see that the effect of the α-flow on the two particle S-matrix is in adding a CDD
factor S(θ) = S0(θ) exp{−iαM2 sinh θ} (this of course agrees with Eq.(7.4) in sect.7
below, provided one identifies αM2 = −α1).

If the theory A0 is integrable, the theories Aα are integrable as well (see sect.6
below). In that case the ground state energy of the finite-size system can be found
using the Thermodynamic Bethe Ansatz (TBA) technique [8](for a review see e.g [9]).
It is not difficult to show that the deformation (5.11) of the scattering phase in the
TBA equations leads to the deformation of the ground state energy according to (5.5).

(6) As is well known, solutions of Eq.(5.3) tend to develop ”shocks”. Mathemat-
ically, shocks are algebraic (square-root) singularities of E(R,α). Even if one starts
with physically acceptable E(R, 0) (the analytic function of R at all real R > 0, with
singularity at R = 0), evolution in α may generate a shock singularity at finite positive
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R. A simple example is provided by the case when A0 is CFT, where the finite-size
energies of the stationary states | n〉 have the standard form

E0(R) = F0R− C

R
, (5.12)

with the constants C = Cn = (π/6R) (c−12(Δn+Δ̄n)) expressed in terms of the central
charge c and the eigenvalues Δ, Δ̄ of the operators L0, L̄0. Limiting our attention to
the case Pn = 0 (i.e. Δ = Δ̄) one finds from (5.5)

Eα(R) = FαR+
R

2α̃

(
1−

√
1 +

4α̃ C

R2

)
, (5.13)

where α̃ = α (1 + αF0). When α̃ Cn is negative, En(R,α) develops a square-root
singularity at real positive R = 2

√−α̃Cn. On the other hand, if α̃C is positive, Eα(R)
is free from singularities at all real R2, including R2 = 0. In fact, it is easy to argue that
these features of Eα(R) are not specific to the cases when A0 is a CFT. This follows
from an alternative form of Eq.(5.5),

Rα = R0 + αE (5.14)

in terms of the functions R0(E), Rα(E) inverse to E0(R), Eα(R), respectively (we still
assume P = 0 for simplicity, and regard α as a parameter). It shows that the E vs R
plots of Eα(R) and E0(R) are related just by affine transformation of the coordinate
axes E → E, R → R − αE, hence the above features are typical if one assumes that
E0(R) is regular at all R > 0 but diverges at R = 0. Both at positive and negative
α̃C, the form (5.13) looks pathological, or at least unusual, if one wants to interpret
Eα(R) in terms of local QFT with finitely many local degrees of freedom. But while the
R2 → 0 behavior at positive α̃C may, in principle, be excused in a theory with finite UV
cutoff6, the singularity at finite positive R is more troublesome. A possible connection
of such ”shock” singularities to the problem of UV completeness of the theory Aα,
Eq.(5.1), will be discussed in Sect.9 in a more general context. Here we note that the
finite size spectrum (5.13) was obtained in [6, 11, 12], as the solution of Nambu string
quantized in a certain unitary gauge, under conjecture that interactions of transverse
string oscillations are described by (T T̄ ) perturbation of free bosonic CFT, and using
techniques of IQFT with the two-particle S-matrix S(θ) = exp{−iαM2 sinh θ}.

The results presented in this section have substantial overlap with interesting recent
work of Cavagliá, Negro, Szecsenyi, and Tateo [13].

6In fact, it is possible to argue that the theory Aα with positive α, even if equipped with finite UV
cutoff, does not have a ground state at any R, at least if c is positive. We will comment on this point
elsewhere [10].
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6 Integrable Perturbations

We now want to show that every field Xs ∈ F̂ generates an integrable deformation
of a given IQFT, or, in other words, that Xs all lie in TΣInt

∣∣
IQFT

, the tangent to the

subspace ΣInt ⊂ Σ at the IQFT.
To this end, let us first prove that the commutator of any local IM Pσ with any of

the fields Xs(z) is a total derivative of a local field, i.e.

[Pσ, Xs(z)] ∈ ∂F . (6.1)

Here the commutator can be understood as the contour integral (3.9). To prove (6.1),
replace Xs(z) by its point-splitted version, and consider the commutator[

Pσ,
(
Ts+1(z)T̄s+1(z

′)−Θs−1(z)Θ̄s−1(z
′)
)]

. (6.2)

The commutator naturally splits into ”z-terms”, the terms generated by commuting
Pσ with the densities localized at z, and ”z′-terms” from the commutations with the
densities at z′. Recalling the relations (3.7) one finds

”z-term” = ∂zAσ,s(z) T̄s+1(z
′)− ∂z̄Aσ,s(z)Θ̄s−1(z

′) = (6.3)

= (∂z + ∂z′)Aσ,s(z) T̄s+1(z
′)− (∂z̄ + ∂z̄′)Aσ,s(z)Θ̄s−1(z

′) ∈ ∂F ,

Similar calculation using (3.8) shows that z′-term lies in ∂F as well. Therefore, the
whole commutator (6.2) reduces to a combination of total derivatives, and the desired
result (6.1) follows in the limit z′ → z.

Take a generic IQFT (which we denote A0 ∈ ΣInt), and focus on one of its local
IM, say Pσ. Consider the correlation function

〈O
∮
C
[Tσ+1(z)dz + Θσ−1(z)dz̄] 〉 (6.4)

where O stands for any insertion of the form Oa1(z1)Oa2(z2)...Oan(zn), and the z, z̄
integration is over some closed contour C. The continuity equation for the current
(Tσ+1,Θσ−1) is equivalent to the statement that (6.4) vanishes as long as all the inser-
tion points z1, ..., zn lie outside the integration contour C.

Now, letA0+δgsA be an infinitesimally close QFT generated by adding δgs
∫
Xs(z) d

2z
to the action. According to the deformation formula (2.7), the associated deformation
of (6.4) has the form

δgs (Eq.(6.4)) = − δgs

∫
d2w 〈Xs(w)O

∮
C
[Tσ+1(z)dz + Θσ−1(z)dz̄] 〉+

〈O
∮
C
[δgsTσ+1(z)dz + δgsΘσ−1(z)dz̄] 〉 , (6.5)
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where we ignored the term with δgsO in the r.h.s. since it plays no role in the analysis
below. The deformed theory would still have the IM Pσ if the field variations δgsTσ+1

and δgsΘσ+1 can be adjusted in such a way that the full variation (6.5) vanishes.
To see that this is always possible, let us assume for simplicity that the contour C

is simple, and focus on the first term in the r.h.s. of (6.5). Split the integration over w
into two parts7, ∫

R2

d2w (...) =

∫
D(C)

d2w (...) +

∫
D̄(C)

d2w (...) , (6.6)

where D(C) is the part of R2 lying inside C, and D̄ is the complement of D. Then the
second term in (6.6) vanishes, because for any fixed w ∈ D̄(C) the contour C leaves
outside all insertion points of Xs(w)O. A nonzero contribution may arise from the first
term, where w falls inside C. With w ∈ D(C) fixed, one can collapse the contour C on
w, thus reducing the integral over z to the commutator [Pσ, Xs(w)] (see (3.9)), which,
according to (6.1), lies in ∂F . The latter statement means that

4πi [Pσ, Xs(w)] = ∂w̄T̂σ+1, s(w) + ∂wΘ̂σ−1, s(w) , (6.7)

where T̂σ+1, s and Θ̂σ−1, s are some local fields of spins σ + 1 and σ − 1, respectively.
Thus, in the remaining integral over w the integrand is written as a total derivative,
and the integral reduces to the boundary contribution, i.e. to contour integral over C.
As a result, the first term in the r.h.s. of (6.5) transforms to

−δgs 〈O
∮
C

[
T̂σ+1, s(z)dz + Θ̂σ−1, s(z)dz̄

]
〉 . (6.8)

Thus, the full variation (6.5) can be made equal to zero by choosing

δgsTσ+1 = δgs T̂σ+1, s , δgsΘσ−1 = δgs Θ̂σ−1, s . (6.9)

We conclude that after infinitesimal deformation generated by the operator Xs the
integral Pσ, Eq.(3.4) still conserves, provided the densities (Tσ+1,Θσ−1) are deformed
as

Tσ+1 → Tσ+1 + δgs T̂σ+1, s , (6.10)

Θσ−1 → Θσ−1 + δgs Θ̂σ−1, s . (6.11)

Note that the above analysis applies to deformation generated by any of the scalar
fields Xs, s ∈ {s}, or any linear combinations thereof , and demonstrates conservation

7Here we ignore possible ”contact terms” contributions which may came from the integration region
|w−z| < ε. It is easy to see that such terms can be absorbed into re-definitions of δgsTσ+1 and δgsΘσ−1

in Eq.(6.5).
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of the whole set of integrals Pσ, P̄σ, σ ∈ {s} in the deformed theory. However, it does
not prove that the deformed IM {Ps, P̄s} still commute with each other. Although at
the moment we do not have satisfactory proof of this statement, we find its general
validity very likely. One of the arguments is as follows. Consider two IM, say Ps

and Ps′ , and suppose that after the deformation the commutator ceases to be zero,
[Ps, Ps′ ] = Qs+s′ �= 0. The operator Qs+s′ must be another local IM of the form (3.4),
of the spin s+ s′. A priori, there are two possibilities. Either Qs+s′ is the deformation
of one of the local IM of the original theory8, or it is an entirely new IM. In both
cases the IM of the deformed theory would form a non-abelian algebra of local higher
spin IM, which would provide extremely powerful symmetry structure, so far unknown
outside CFT or free massive QFT. Therefore, breakdown of the commutativity under
deformation is unlikely: it would be ”too good to be true”. With this reasoning, we
conjecture that the IM of the deformed theory generally still commute with each other.

7 S-matrix and Form-factors

Typical IQFT is massive9. As any massive theory, it is completely characterized by
the associated particle theory - the spectrum of stable particles and S-matrix. The
presence of higher-spin local IM forces the S-matrix to be purely elastic, in which the
number N of particles and the set of their individual momenta is preserved after the
scattering process. Such S-matrices are known as ”factorizable”, because then N → N
S-matrix is expressed as the product of 2 → 2 S-matrices. The latter is the function
of a single kinematic variable θ = θ1 − θ2, the difference of the particle’s rapidity. In
general, in the presence of mass degeneracies in the particle spectrum, the two-particle
S-matrix Ŝ(θ) is an operator acting in the ”flavor” spaces of the colliding particles (see
e.g. [16]).

Deformations of IQFT preserving integrability, described in the previous sections,
must generate deformations of the factorizable S-matrix. To understand the situation,
let us recall that in the factorizable scattering theory the two-particle S matrix must
satisfy a number of general conditions. When mass degeneracy is present, Ŝ(θ) satisfies
the celebrated Yang-Baxter equation, which typically fixes the ”flavor” structure up to
a finite number of parameters, but leaves the freedom multiplying Ŝ(θ) by an arbitrary
overall scalar factor. In addition, there are general constraints of analyticity, crossing
symmetry, and unitarity, which together fix the scalar factor up to the so-called CDD

8This would be impossible for some classes of IQFT. For example, in many cases, such as the
sine-Gordon model, the set {s} includes only odd integers; in such cases s+ s′ can not be in {s}.

9Exceptions are integrable CFT, and the so called integrable massless flows. The latter correspond
to the special (integrable) RG flows ending at IR fixed points. In such cases the notions of particles
and S-matrix are less physically clear, and generally are ambiguous. Nonetheless, many such theories
admit treatment based by ”massless S-matrix” and associated TBA equations [3, 14,15].
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ambiguity,

Ŝ(θ) → Ŝ(θ) Φ(θ) (7.1)

where Φ(θ) is a meromorphic function, which is analytic and bounded in the ”physical
strip”, and satisfies the equations

Φ(θ)Φ(−θ) = 1 , Φ(iπ + θ)Φ(iπ − θ) = 1 . (7.2)

Thus, a generic CDD factor admits the formal representation

Φ(θ) = exp

{
i

∞∑
s=1

αs sinh(sθ)

}
. (7.3)

In fact, in many cases (like sine-Gordon model, or O(N) sigma models) the crossing
symmetry also excludes terms with even s in (7.3). Although important exceptions
exist10, here we assume that {s} includes only odd entries (equivalently, the CDD factor
satisfies Φ(θ) = Φ(iπ − θ)) to simplify the arguments below. Furthermore, a possible
bound-state structure (i.e. identifications of physical poles with particles) may impose
additional constraints on the factor Φ(θ), which further restricts admissible values of s
in (7.3) to certain a subset {s} ⊂ N. Importantly, in all known cases {s} coincides with
the set of spins of local IM (3.4) of the given IQFT. Therefore, in the typical situation
described above, the space of infinitesimal deformations of a factorizable S-matrix
involves a finite-dimensional part related to the deformations of solutions of the Yang-
Baxter equation (in what follows we refer to those as the ”principal deformations”),
and also infinite-dimensional space of deformations of the CDD factor,

δŜ(θ) =

(
i
∑
s∈{s}

δαs sinh(sθ)

)
Ŝ(θ) . (7.4)

On the other hand, deformations of QFT, and hence deformations of S-matrix,
are generally generated by local fields O from F (0)/∂F . The S-matrix version of the
deformation formula (2.7) reads

δg
[
out〈A(θ′1)...A(θ′M ) | A(θ1)...A(θN ) 〉connin

]
=

−
∑
i

δgi
∫

d2w out〈A(θ′1)...A(θ′M ) | Oi(w) | A(θ1)...A(θN ) 〉connin (7.5)

10A notable exception is the situation when the particle spectrum contains charge-conjugated pairs
of particles A, Ā, but all the A+ Ā → A+ Ā scattering amplitudes have a zero ”reflection” component
(see e.g. [17] for an example). Such structure is compatible with IM Ps with even s, since the charge
conjugation acts on the local IM as CPsC = (−)s+1Ps. More generally, it is possible that the two-
particle S-matrix, as an operator in the ”flavor” spaces, has block-diagonal structure; in such cases
the CDD ambiguity may involve more then one functional factor. In this discussion we ignore such
complications.
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where it is assumed for simplicity that there is a single kind of particles which we denote
A, and we use obvious notations for the asymptotic states11. The matrix elements

〈A(θ′1)...A(θ′M ) | O(w) | A(θ1)...A(θN ) 〉conn (7.6)

appearing in the integrand in the r.h.s. of (7.5) are known as the form-factors. The
deformation formula (7.5) is written for fully connected parts of both the S-matrix
element in the l.h.s. and the form-factor in the r.h.s., as the superscript ”conn” indicates
(of course, the same formula remains valid if one includes all disconnected parts). In
what follows we always discuss in terms of the fully connected matrix elements, and
omit the superscript ”conn”. Also, when not important, we omit indicators in/out for
the states.

In IQFT the form-factors are constrained by a system of the so called ”form-factor
bootstrap” (FFB) equations, which can be written in closed form, provided the factor-
izable Ŝ(θ) is given. FFB equations are a system of linear functional equations, and
the solutions form a vector space. The form of the FFB equations is independent of
the choice of the field O involved, and from this point of view O can be regarded as
just a tag labeling basic vectors in the vector space of solutions of FFB. It is generally
believed that the space of solutions of FFB equations is isomorphic to the space F of
local fields of the IQFT. In a number of important models this expectation was sup-
ported by counting of the solution (see e.g. [18, 19]), and for the sine-Gordon model,
even explicit relations between the bases was established [20,21].

For generic Oi(w) there is no reason for the connected matrix element in the r.h.s
of (7.5) to vanish neither at M �= N , nor, if M = N , at {θ′1, ..., θ′N} �= {θ1, ..., θN}.
Therefore, of course, generic Oi ∈ F̂ generates non-elastic scattering processes, and
thus the corresponding deformation δgi breaks integrability. However, recall that the
S-matrix elements always involve the energy-momentum delta functions

i (2π)2 δ (ΔP+) δ (ΔP−) (7.7)

(which in (7.5) emerges after the w-integration), where

ΔP+ =
N∑
k=1

p+(θk)−
M∑
l=1

p+(θl) , ΔP− =
N∑
k=1

p−(θk)−
M∑
l=1

p−(θl) , (7.8)

and p±(θ) = M e±θ. Therefore, the deformation would not generate inelastic processes
provided the form-factors in (7.5) with N > 2 or M > 2 vanish on the ”energy-
momentum surface” supporting the delta-functions (7.7). To make this property con-
sistent with analyticity, one then has to demand that the connected form-factors with

11Our convention for the state normalization is 〈A(θ) | A(θ′)〉 = (2π) δ(θ − θ′).
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N > 2 or M > 2 have the form

〈A(θ′1)...A(θ′M ) | O(0) | A(θ1)...A(θN )〉 =
ΔP+G+({θ}|{θ′}) + ΔP−G−({θ}|{θ′}) (7.9)

with G±({θ}|{θ′}) regular at the energy-momentum surface. And it is easy to see
that the structure (7.9) is fully consistent with all FFB equations, notably with the
”annihilation pole” equation, which states that the form-factors (7.6) have poles when
one of the final rapidities θ′l coincides with any of the initial rapidities θk, and relates the
residues of these poles to the reduced form-factors (7.6), with the particles A(θ′l) and
A(θk) deleted from the bra and ket states, respectively; clearly, under such reduction
the structure (7.9) is preserved, because at θ′l = θk the associated terms in the sums
in (7.8) cancel out. Of course, if O is a derivative of another local field, i.e. O ∈ ∂F ,
its form-factors (7.6) vanish on the energy-momentum surface automatically, for any
N and M . And naively, one might conclude that the structure (7.9) suggests O ∈ ∂F .
This, however, is not always the case, because for N = M = 2 the energy-momentum
surface defined by ΔP+ = 0,ΔP− = 0 lies entirely within the locus of the annihilation
poles of the form-factor

in〈A(θ′1)A(θ′2)|O(0)|A(θ)A(θ2)〉in . (7.10)

Indeed, in this case the energy-momentum conservation requires that both variables
θ1 − θ′1 and θ2 − θ′2 (or the same with θ1 ↔ θ2, if the particles have equal masses) turn
to zero, while one hits the annihilation pole by bringing to zero either one of these
variables. Set θ′1 = θ1 + ε1, θ

′
2 = θ2 + ε2, and expand (7.10) in double Laurent series

in ε1 and ε2 (remember that the form-factor (7.10) is a meromorphic function). It is
not difficult to see from the annihilation pole residue equation of the FFB [22] that the
leading terms have the form

1

i

(
ε1
ε2

+
ε2
ε1

)
Ŝ−1(θ12)Ŝ

′(θ12) 〈A | O | A〉+ f̂ reg
O (θ12) +O(ε1, ε2) , (7.11)

with θ12 := θ1 − θ2, and the prime denotes the derivative. The regular part f̂ reg
O

generally does not vanish. The singular terms can be attributed to the mass operator
O insertions into the external legs of the 2 → 2 scattering amplitude, as the presence
of the factor 〈A | O | A〉 = 〈A(θ)|O|A(θ)〉 (which in fact is θ-independent constant)
suggests.

From this analysis we conclude that special solutions of the FFB equations can exist,
for which all form factors (7.6) with N > 2 or M > 2 vanish on the energy-momentum
surface, but the ones with N = 2,M = 2 do not. We call those the ”special form
factors”, and denote X the operators associated with these special solutions. Clearly,
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adding to X any total derivative of a local field generates again a special solution. Since
total derivatives are totally irrelevant in the deformation formula (7.5), we may regard
X as being defined modulo total derivatives. Although a general proof is not available,
it is very plausible that the space of special solutions, when factorized over the total
derivatives, is isomorphic to TΣInt.

Every special solution X ∈ F̂ generates infinitesimal deformation of the factorizable
S-matrix, by the deformation of the two-particle S-matrix (see [23]),

Ŝ(θ) → Ŝ(θ)

[
1 +

i δg

sinh θ

(
f̂ reg
X (θ)− 2i Ŝ−1(θ)Ŝ′(θ) 〈A | X | A〉 cosh θ

)]
(7.12)

where f̂ reg
X (θ) is the regular part in (7.10). On the other hand, it is natural to assume

that any infinitesimal deformation of factorizable S-matrix can be generated by some
special solution X of the FFB equations, via (7.12). Thus, the deformations of the
CDD factor (7.1) are generated by the operators Xs (see sec. 5). Then (7.4) suggests
that we must have12

f reg
Xs

(θ) = κs sinh(θ) sinh(sθ) for s > 1 , (7.13)

f reg
X1

= −2πM2 〈Θ〉ϕ(θ) cosh θ (7.14)

where the constants κs depend on the normalization of the currents (Ts+1,Θs−1), and
M is the particle’s mass. This expectations will be confirmed by explicit calculations
in the sine-Gordon model in the next section.

8 Example: Sine-Gordon model

The Sine-Gordon model,

ASG[ϕ] =

∫ [
1

4π
∂zϕ∂z̄ϕ− μ2

sinπβ2
cos(βϕ)

]
d2z (8.1)

with real β < 1, is perhaps the best known IQFT. Here we use this example to sub-
stantiate the statements of the previous section.

The particle spectrum and factorizable S-matrix associated with the model are well
known (see e.g. [16]). Stable particles are quantum soliton A+ and corresponding anti-
soliton A− (which can be regarded as as basic vectors in the space C

2 of the charge
states), and a number (which depends on the range of the coupling parameter β) of

12Note that for all deformations Xs but X1 the second term in (7.12) vanishes, since 〈A | Xs | A〉 = 0
for all s > 1, as is easily deduced from (4.5). For s = 1 the well known relation 〈A | Xs | A〉 = πM2 〈Θ〉
holds.
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neutral ”quantum breathers” Bn. The latter can be regarded as A+A− bound states.

The two-particle S-matrix of solitons and anti-solitons is an operator Ŝ(θ) = S
ε′1ε

′
2

ε1ε2 (θ)
acting in the tensor product C2⊗C

2 of the charge states of the scattering particles. Its
explicit form can be found in Ref. [16].

The model (8.1) can be regarded as a CFT perturbed by a relevant operator. Ac-
cording to arguments in [24], the space of local fields FSG is isomorphic to the space of
fields of the associated UV CFT. It includes the exponentials eiaβϕ with arbitrary real
a, as well as all their ”descendants”. The latter are suitably regularized fields of the
form P (∂μϕ, ∂μ∂νϕ, ...) e

iaβϕ, where P are arbitrary polynomials of the first and higher
derivatives of ϕ. The descendants of a given exponential form a bosonic Fock space Fa,
where the exponential field is identified with the Fock vacuum. As in CFT, each of the
spaces Fa splits into the ”level subspaces” characterized by spins and scale dimensions
of the descendants. It is useful to define the spaces

Fa = ⊕∞
n=−∞ Fa+n . (8.2)

which combine all the fields with the same transformation under the symmetry βϕ →
βϕ + 2πZ of (8.1). The full space FSG is the continuous direct sum of Fa with a ∈
[−1/2 : 1/2].

Being IQFT, the model (8.1) has an infinite number of local IM of the form (3.4),
(3.5). In this case the spins s run all positive odd values, i.e. {s} = N+1. All currents
(Ts+1,Θs−1), as well as the negative-spin currents, lie in the subspace F0. The IM Ps,
P̄s act in FSG by commutators: ∀O ∈ FSG

isO(z) := [Ps,O(z)] , īsO(z) = [P̄s,O(z)] , (8.3)

where the commutator may be understood as in (3.9). In fact, the operators is, īs act
separately in each of the subspaces Fa.

The above structure of FSG was essentially proven in Refs. [21,25], starting with the
lattice realization of the model. By explicit lattice construction, and then taking the
continuous limit, it was found that FSG supports action of an infinite set of fermionic
”creation operators”

β∗
s , γ∗

s and β̄
∗
s, γ̄∗

s , (8.4)

along with the corresponding ”annihilation operators” βs, γs and β̄s, γ̄s, where again
s runs over 2N−1. The fermionic operators obey standard anti-commutation relations,
with nonzero anti-commutators

{βs,β
∗
s′} = δs,s′ , {γs,γ

∗
s′} = δs,s′ , (8.5)
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and all fermions commute with is, īs defined in (8.3). The operators βs,γs annihilate
the exponential fields eiaβϕ. Then, the spaces Fa emerge within the module Ψa gen-
erated by the operators (8.3) and (8.4)13. More precisely, by ascribing the ”fermionic
charges” q to the operators (8.4) (q = +1 to γ∗

s and γ̄∗
s, and q = −1 to β∗

s and β̄
∗
s))

the module Ψa can be split into the sum of of subspaces Ψ
(q)
a of given q. Then the

zero charge sector Ψ
(0)
a is isomorphic to Fa. Form factors of the fields associated with

natural basic vectors in Ψ
(0)
a (monomials in (8.4)) have simple compact form [21].

As was mentioned, components of conserved currents all lie in the space F0. They
have simple form in the fermionic basis

Ts+1 = Cs β
∗
sγ

∗
1 · 1 , Θs−1 = Cs β

∗
sγ̄

∗
1 · 1 , (8.6)

T̄s+1 = Cs β̄
∗
sγ̄

∗
1 · 1 , Θ̄s−1 = Cs β̄

∗
sγ

∗
1 · 1 ,

where 1 ∈ F0 is the identity field, and Cs are constants whose values depend on the
normalization of the currents. Furthermore, the scalar fields Xs defined by (4.4) are
identified with the vectors

Xs = C2
s β

∗
1γ

∗
sβ̄

∗
1γ̄

∗
s · 1 . (8.7)

One way to establish (8.7) is to use the following remarkable identity [21]. Consider
the operator

Q =
∑

s∈N−1

(
isγs + īsγ̄s

)
, (8.8)

which has the fermionic charge +1, and squares to zero. It is possible to show that Q
annihilates all vectors in the q = −1 subspace of the a = 0 module,

QΨ
(−1)
0 = 0 . (8.9)

For instance, applying (8.8) to β∗
sγ

∗
1γ̄

∗
1 · 1 leads to

(
i1β

∗
sγ̄

∗
1 − ī1β

∗
sγ

∗
1

) · 1 = 0, which
of course is the continuity equation (3.1). More to the point, apply Q to the vector
β∗
sβ̄

∗
sγ

∗
1γ̄

∗
1γ

∗
σ · 1. Then (8.9) yields

iσβ
∗
sβ̄

∗
sγ

∗
1γ̄

∗
1 · 1 = ī1β

∗
sβ̄

∗
sγ

∗
1γ

∗
σ · 1− i1β

∗
sβ̄

∗
sγ̄

∗
1γ

∗
σ · 1 . (8.10)

While the l.h.s. represents the commutator of Pσ with the field (8.7), the r.h.s. is
expressly a total derivative, in agreement with (6.1). As a bonus, this calculation gives
the explicit form of the fields appearing in the r.h.s of (6.7),

T̂σ+1, s = β∗
sβ̄

∗
sγ

∗
1γ

∗
σ · 1 , Θ̂σ−1, s = β∗

sβ̄
∗
sγ̄

∗
1γ

∗
σ · 1 . (8.11)

13Relation between this ”fermionic” basis in Fa is complicated but can be established level by level [26,
27]. The important question of explicit realization of the fermionic operators directly in the continuous
theory (8.1), or even in its UV CFT, remains largely open.

18



in the sine-Gordon model.
Alternatively, the identification (8.7) can be established using the explicit form of

the finite-size matrix elements of these fields, which, in particular, expressly satisfy
(4.5) (see [25], Eq. (10.5)). Moreover, using explicit expression of the form factors in
the fermionic basis (see [21]), it is not difficult to verify that the form-factors of the
fields (8.7) satisfy all the special properties described in in Sect.7, namely the form
factors (7.6) with N > 2 or M > 2 vanish, while the N = M = 2 form factors
reproduce (7.14) with κs = C2

s , (the last result, Eq. (7.13), for the sinh-Gordon
model was obtained independently in a recent paper [28] by a different method), and

〈Θ〉 = πM2

4 cot
(

π
2(1−β2)

)
.

We note here that the sine-Gordon model S-matrix has, apart from the CDD de-
formations generated by Xs, two independent ”principal” deformations. One is the
change in the parameter β, which is generated by the field (∂μϕ)

2. The other is less
obvious. It is generated by the ”soliton-creating” operator Y = O4

0 + O−4
0 ; here and

below we use the terminology and notations of Ref. [29]. The two terms have soli-
ton charges +4 and −4, respectively, therefore after deformation by this operator the
theory conserves the soliton number only modulo 4. It is possible to prove that this
deformation preserves integrability, and the operator Y generates the ”8-vertex” de-
formation of the SG S-matrix which is described in Ref. [30]. An instructive way to
show that Y ∈ TΣInt|SG is to recall that SG model has the symmetry with respect to
the affine quantum group Uq(ŜL(2)) symmetry [?] whose generators are given in terms
of non-local currents (J±,H±) and (J̄±, H̄±) of fractional spins (see Eq.(4.8) of [29]
for definitions). Albeit non-local, the currents satisfy continuity equations (3.1), which
allows one to derive

J±(z)J̄±(z′)−H±(z)H̄±(z′) = O±4
0 (z′) + derivatives (8.12)

in analogy to (4.4), and use the arguments of Sect.6 to show that [Ps,O±4
0 (z)] ∈ ∂F14.

9 Discussion

Here we considered the subspace ΣInt of integrable QFT is the space Σ of all QFT. Given
a IQFT ∈ ΣInt, we studied the content of the tangent space TΣInt

∣∣
IQFT

of infinitesimal
deformations of IQFT which preserve integrability. We found that this space contains
infinitely many independent vectors Xs, where s runs the same values that labes the
local IM Ps of the IQFT. The full tangent space may include finitely many additional

14By the same arguments one can show that the operators O0
±1/β = exp{± i

β
ϕ} also lie in TΣInt|SG.

Perturbing with these operators generates a confining interaction between the solitons, which completely
restructures the particle spectrum. There are a number of puzzles regarding this deformation, we do
not feel ready to discuss it.
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basic vectors (see discussion at the end of sect.7). Since massive IQFT are described
by their factorizable S-matrces, we observed that the local deformations Xs are in
correspondence with infinitesimal deformations (7.4) of the two-particle S-matrix by
the CDD factor. The remaining admissible deformations correspond to deformations
of the solutions of Yang-Baxrer equations proper.

In the previous sections we almost completely ignored the problem of short distance
behavior of QFT. We assumed that QFT constituting Σ are equipped with a certain
UV cutoff, with cutoff distance ε, and limited attention to the scales much greater
than ε. Note that this is exactly the space in which Wilson’s RG transformations are
defined, see Ref. [1]. Of course, it is of much interest to understand which members of
Σ are ”UV complete”, i.e. admit meaningful limit ε → 0. This condition is naturally
formulated in the language of RG: we are interested in RG trajectories which can be
extended backward in RG ”time” (the logarithm of the characteristic length scale)
indefinitely, without encountering any singularities or pathologies. Such UV complete
QFT constitute but a small subspace in the whole space of QFT, Σ(∞) ⊂ Σ in the
notations of Ref. [1] 15. Generally, characterization of Σ(∞) and the associated tangent
space is very difficult problem even in 2D, but perhaps it can be simplified if one limits
attention to IQFT. This sort of ideas was one of the main motivations for this work.

In principle, there are many ways to probe short distance behavior of a theory.
Perhaps the simplest is to consider the energy spectrum of a finite size system in
the geometry shown in Fig.1. Then the behavior of En(R) at small R might tell us
something about short distance in a given theory. Somewhat more complicated but
still feasible is to look at the two-point correlation functions of local operators, through
their intermediate-state decompositions in terms of the form factors [33]. Then the UV
consistency may be probed by looking at short distance behavior of such correlation
functions. Below we mostly discuss the finite-size energies, but then make some remarks
concerning the second approach.

In massive IQFT with known factorizable S-matrix the finite-size energies can be
obtained using the Thermodynamic Bethe Ansatz (TBA) method and/or its general-
izations [34–36]16. One can take factorizable S-matrix of any known IQFT and modify
it by a CDD factor (7.3), and then solve (numerically) the modified TBA equations for

15Of course the fact that the overwhelming majority of small deformations of UV complete QFT are
not UV complete is well known since the discovery of the ”Moscow Zero” in QED, and the (T T̄ )-flow
discussed in section 5 seems to provide an ”exactly solvable” example of the UV problem generated
by deformation: at α̃C < 0 the energy level Eα(R) develops square-root singularity at certain finite
positive R which may be much greater than the cutoff distance ε. And we do not believe that just
naming this singularity ”the Hagedorn transition” of some sort dismisses the problem of explaining its
physical nature. We hope to return to this question elsewhere [10].

16Another approach is based on so called ”Non-Linear Integral Equations” (NLIE), generalizing
Destri-deVega equations [37]. In many cases it is more powerful than TBA, but so far it lacks the
universality and model independence of the TBA algorithm.
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the ground state energy E(R). In fact, the coordinates αs are not the best for this sort
of calculation (primarily because the series in (7.3) has limited domain of convergency
in θ); it is more convenient to use the conventional representation

Φ(θ) =
N∏
p

Bp − i sinh θ

Bp + i sinh θ
, (9.1)

where the parameters Bp are either real negative or enter in complex conjugated pairs
with negative real part (see e.g. [16]), and the number N of the factors in the prod-
uct may be finite or infinite17. The union of the N -tuples {Bp, p = 1, · · · , N} with
all N constitutes coordinate system in the space of CDD factors, alternative to the
coordinates {αs} in (7.3). If ignoring the parameters associated with the principle de-
formations of the factorizable S-matrix, both can be regarded as coordinates in ΣInt.
Under special arrangements of the CDD poles, the TBA equations may lead to E(R)
which is regular at all positive R and display CFT-like singularity at R = 0, and these
CDD deformations can be shown to give rise to UV complete IQFT. Famous example
of this kind is provided by Al. Zamolodchikov’s staircase model [38], whose S-matrix,
from the point of view of the present paper, is the free Majorana fermions S-matrix
with a simple CDD factor. Further examples can be found in [39,40]. But it is known
for a long time that with generic choice of the CDD factor (9.1), solution of the TBA
equations results in E(R) having singularity at finite R. Extensive analysis of this phe-
nomenon was conducted by Al. Zamolodchikov in the early 90’s [41], who, by careful
numerical calculations, discovered that in all cases that such singularity emerged, it
happened to be the square root branching point. The singularity was later observed
(without elucidating its character) in [42], and was attributed to the bosonic character
of the TBA equation there. In fact, the singularity seems to be a typical feature of
solutions of TBA equations, bosonic and fermionic alike. It also does not stem from
any abnormality in the high-energy behavior of Ŝ(θ), in particular, the square-root
singularity appears under finite-N deformations (9.1), with generic choice of Bp. It
seems suggestive to note that, at least mathematically, these singularities are of the
same character as the singularities observed in Eα(R) in the T T̄ -flow in sect.5. It is
tempting to assume that appearance of such singularities indicates a violation of true
locality, in other words that theories with such singularities lie outside Σ(∞). But it is
difficult to support this assumption without much better understanding of the physics

17If the number of factors is finite, such modification does not alter the high-energy asymptotic
of the S-matrix, except for possibly changing the sign. However, with the infinite product the UV

behavior can be substantially affected. For example, by taking the limit limN→∞
[
2N−iα sinh θ
2N+iα sinh θ

]N
one

can obtain the exponential factor exp{−iα sinh θ} appearing in the T (T̄ ) flow, see sect. 5. The union
of the collections {Bp} with all numbers of entries can be regarded as another coordinates in the space
of CDD factors, alternative to the coordinates {αs} in (7.3).
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behind the formation of such singularities. Some steps in this direction will be reported
in [10].

Alternative approach is to study the correlation functions using by known approach
based on the intermediate-state decomposition, with the use of exact form factors
[32, 33]. For instance, the two-point function 〈O(z)O(0)〉 is represented as the sum

∞∑
n=1

1

n!

∫ [ n∏
j=1

dθj
2π

] ∣∣〈A(θ1) . . . A(θn) | O(0) | 0 〉∣∣2 exp
{
−MR

n∑
i=1

cosh θi

}
(9.2)

where R =
√
zz̄ (again, for simplicity we assume single particle in the spectrum). In

local theories the series converges for all positive R (and for all R with positive real
part). In principle, one can find solutions of the FFB equations for any S-matrix, and
the CDD deformations lead to corresponding deformations of the form factors. For
example, for the Sine-Gordon model S-matrix with CDD factors (9.1) the it is not
too hard to find the form factors using the technique of [21]. Very little is known
about convergence of the series for generic S-matrix, but it is plausible that generally,
even with regular high-energy behavior, the series converges only at sufficiently large
R > R∗, and analytic continuation shows branching point singularity at R∗. This of
course would indicate breakdown of locality (the discontinuity across the branch cut is
directly related to the commutator). The problem deserves detailed study.

In this work we only considered Lorentz invariant IQFT. But some of our main re-
sults seems to apply to more general setting. Thus, the properties established in Sect.6
for the operators Xs generalize straightforwardly for the fields Xs,s′(z

′) =
limz→z′ [Ts+1(z)T̄s′+1(z

′) − Θs−1(z)Θ̄s′−1(z
′)], which may have non-zero spins s − s′,

and thus generate integrable deformations breaking the Lorentz invariance. Connec-
tions of such ”effective theories” with lattice integrability seems an interesting question
to explore.
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