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Abstract—As distributed IoT applications become larger and
more complex, the simple processing of raw sensor and actuation
data streams becomes impractical. Instead, data streams must
be fused into tangible facts and these pieces of information must
be combined with a background knowledge to infer new bits of
knowledge. And since many IoT applications require almost real-
time reactivity to stimuli from the environment this information
inference process has to be performed in a continuous, on-line
manner. This paper proposes a new semantic model for data
stream processing and real-time symbolic reasoning based on
the concepts of Semantic Stream and Fact Stream, as a natural
extensions of Complex Event Processing (CEP) and RDF (graph-
based knowledge model). The main advantages of our approach
are that: (a) it considers time as a key relation between pieces of
information; (b) the processing of streams can be implemented
using CEP and that (c) it is general enough to be applied to any
Data Stream Management System (DSMS).

Index Terms—Internet of Things (IoT); sensors; data streams;
complex event processing (CEP); semantic reasoning.

I. INTRODUCTION

Several complex IoT applications, such as of manufacturing
industry, transportation systems, and healthcare, put hard real
time requirements on the acquisition and processing of sensor
data for identifying situations and extracting information from
systems’ operations and its environment. These typically re-
quire on-line processing of continuous streams of sensor data
(Data Stream Processing), sensor fusion techniques, pattern
recognition and timely and autonomous systems control. There
are already many well-established machine learning algorithms
for clustering, classification and sequence-analysis.

However, so far however in current IoT systems, sensing
and actuation is mostly done at the bare bones data level,
whereas many IoT applications demand higher level situation
awareness of — and reasoning about — the systems’ states and
the physical environment where they operate. For this to be
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possible, it is necessary to have comprehensive semantic mod-
els for data stream analysis and actuation. Semantic models are
formally defined concepts and relations on which reasoning
engines can operate to derive new bits of information and
knowledge about a system and its environment. The main
problem is that current semantic models (mostly designed
for from the Semantic Web) are not suitable for efficient
continuous-mode reasoning. Current data analysis for IoT
systems is either done off-line or lacks any semantic-based
reasoning.

For example, consider a production plant in near future,
where several — mobile or stationary — robots operate in a
product assembly and interact with each other to hand over
parts and tools of the assembly line. Suddenly, there is a short
power outage and the assembly line stops for a few seconds, so
that some robots go back to their consistent initial states, while
others continue their activity (e.g. on battery power) and only
stop when their sensors notice that the production line is not
advancing. In this case, the robots have to “understand” what
has happened, and have to “know” which of the machinery
(and robots) are in which state when activity is resumed, as
well as the assembly stage of items being produced. And like
magic, only a few seconds after energy is back, the robots
synchronize with each other, identify missed steps in the
assembly process of each item, and resume cooperating again.
Such knowledge and understanding is only possible because
all robots have not only a semantic model of their own state,
but also situational awareness, i.e. a comprehensive model of
the production process as a whole and their role in the entire
process. The semantic model furthermore describes possible
localized and global problems of the entire production process,
as well as individual and specific actuation plans for some
situations. As all possible situations cannot be represented



in a model, the robots have to classify features, combine
situational patterns and combine parts of specific action plans.
In the aforementioned IoT scenario, the robots would be
capable of such fast recovery of the manufacturing process
because their situational understanding (i.e. semantic-centered
inference/reasoning process) is executed very fast, with almost
no delay, as soon as each robot’s operational capability is back.

With the goal of finding a suitable semantic model for IoT,
this paper proposes a novel approach for real-time symbolic
reasoning based on the concepts of Semantic Stream and Fact
Stream, as natural extensions of Complex Event Processing
(CEP) [1] and RDF (graph-based knowledge model) [2]. The
main advantages of our approach are that: (a) it considers time
marks as the link between simple events/pieces of information;
(b) the processing of semantic streams can be implemented
using existing CEP technology and that (c) it is generic
enough to be applied to many Data Stream Management
Systems (DSMS). This research is being carried out in the
scope of the ESMOCYP research cooperation project between
Pontificia Universidade Catdlica do Rio de Janeiro (PUC-Rio),
Universidade Federal do Maranhdo (UFMA) and University of
Stuttgart.

The paper is structured as follows. In Section II, we explain
the basic concepts of Complex Event Processing (CEP) and
list some common approaches for modeling knowledge and
performing reasoning. Section III explains the two steps of se-
mantic stream reasoning. In Section IV, we present a scenario
to explain how our reasoning process would be performed
using temperature and accelerometer sensors embedded into
vehicles, houses and in the street. Then we present related
work and in Section VI discuss the benefits of our approach
and prospects. Section VII then concludes the paper.

II. FUNDAMENTALS
A. Complex Event Processing

Complex Event Processing (CEP) [1] provides a rich set of
concepts and operators for processing events, which include
the CQL-like (Continuous Query Language) [3], [4] queries,
rules, primitive functions (aggregation, filtering, transforma-
tion, etc.) and production of derived events. A CEP workflow
continuously processes incoming events, analyzes and manip-
ulates them, and outputs derived events that are delivered to
event consumers (e.g. monitoring applications). These output
usually represent notifications about detected situations of
interest to the the applications.

The manipulations of events are described by CEP rules,
which are Event-Condition-Actions that combine continuous
query primitives with context operators (e.g. temporal, logi-
cal, quantifiers) on received events, checking for correlations
among these events, and generating complex (or composite)
events that summarize the correlation of the input events.
For example, a split rule takes an input event and creates
a set of events, while a filter rule only outputs events that
satisfy a given criteria. Rules can also operate on a collection
of events, for example, an aggregate rule outputs a single
event by executing a function on the grouped events, while

a join transformation tries to correlate events from various
data streams. Another important concept in CEP is that of
sliding time and event windows [4]. A time window is a
temporal context that subdivides the stream of events into
intervals, where CEP rules and operators are applied only to
the events within each window. CEP supports three sorts of
windows, Landmark, Sliding, and Fading., the latter being a
sliding window where a decay factor A is applied to the events
according to their age. Most CEP systems have the concept of
Event Processing Agents (EPAs), which are software modules
that implement one transformation within the event processing
workflow. The type of an EPA is defined by the rules it
implements, such as filtering, counting or specific event pattern
detection.

B. Knowledge Representation and Reasoning Approaches

There are plenty of Semantic Models that represent knowl-
edge about a system and its environment, but almost all of
them have problems of scale (i.e. the reasoning has high
computational complexity) and thus are not suitable for real-
time reasoning. The main semantic approaches are:

o Frame Based Models: A frame is an artificial intel-
ligence data structure used to divide knowledge into
substructures by representing “stereotyped situations”.
They are used in Artificial Intelligence Frame-based
representation languages.

o Conceptual Graphs: Are a logical formalism that in-
cludes classes, relations, individuals and quantifiers. This
formalism is based on semantic networks, but it has direct
translation to the language of first order predicate logic,
from which it takes its semantics.

o Description Logic: Are logics serving primarily for
formal description of concepts and roles (relations). These
logics were created from the attempts to formalize seman-
tic networks and frame based systems. Semantically they
are based on predicate logic.

« Ontologies: An ontology is a semantic/concept network
that contains a body of knowledge describing some
domain, typically common sense knowledge relating con-
cepts.

o Semantic Web: RDF, RDFS and OWL: RDF is a frame-
work for representing information about resources in a
graph model, where information is represented by triples
subject-predicate-object. RDFS extends RDF vocabulary
to allow describing taxonomies of classes and properties.
It also extends definitions for some of the elements
of RDF. For example it sets the domain and range of
properties and relates the RDF classes and properties into
taxonomies using the RDFS vocabulary. Web Ontology
Language (OWL) brings the expressive and reasoning
power of Description Logic (DL) to the Semantic Web.
It is divided into two levels: OWL Lite and OWL DL,
which differ in their expressive power and the deduction
complexity. The problem with OWL Lite and OWL DL
is that reasoning is hardly implemented in an efficient
way, and it also suffers from lack of scalability.



III. GENERAL IDEA

The general idea of our semantic model and reasoning
approach is to define two-level CEP transformations, each of
which transforms one event flow/stream into a semantically
richer one: at the first stage, we transform the stream of
data events (attributes are data items) into a stream of RDF
statements, and at the second stage, we transform the stream
of RDF-triples into semantically richer facts, i.e combining
RDF statements. The details of each step are explained in the
following.

A. Mapping Data Events to Semantic Events

Our reasoning approach dictates that each simple event (i.e.,
an object with attributes) represents an action-based predicate
(i.e. the event is the outcome of an action) and has at least one
of the other two remaining RDF elements: the subject or the
object. If the event has the ID of the subject and the object
then we have the complete RDF triple (Subject, Predicate,
Object), but otherwise, the missing third RDF element of
the triple may be inferred from the shared context (i.e. the
temporal and spatial correlation) of both elements, the subject
and the object when these are received in separate events. For
example, if we consider RDF statement (ball, kicking,
in the front-yard), then the event instances represent
the predicate kick. It further carries the ID of either the
ball (e.g. when the ball carries an accelerometer sensor),
or else the ID of the yard (e.g. the GPS-position or the
street number of the yard where lawn sensors detect some
kicking object). The shared context is defined by the co-
location and the synchronicity of the events (detected by
sensors on the yard ground and by the sensor in the ball).
This contextual correlation is performed by CEP rules called
“Context mappers”, that analyze the streams of events and
match Subjects, Objects and Predicates.

Figure 1 shows how Context mappers analyze each pair of
events in the sliding time window (e.g. 60 s.) of Data Event
Stream and try to identify common contexts, based on time
proximity or any other data attribute.

B. Mapping Semantic Events to Knowledge Facts

The mapping from Semantic Events (i.e. RDF triples) to
Facts is achieved by Semantic Event (SEv) rules. These are
CEP rules that look to find causality and temporal patterns
in several Semantic Event sub-Streams, where each stream
comprises the Semantic events of a given context. This
“context-specific splitting” is possible in most CEP engines
by the concept of a stream partition (a.k.a. context). Then,
depending on the SEv rule, it might consume, filter, modify
or even insert new RDF triples in some SEv streams, a feature
that is supported by CEP. This manipulation is achieved by
querying the Knowledge base about all the concepts and
relations pertaining to the sub-streams analyzed. For example,
the inference might deduce that the kicking ball with
a given ID has Bob as its owner, and that the yard
where the ball is kicking is the one where Bob
lives. By this, the new piece of knowledge may be derived

such as someone is kicking Bob’s ball on his
house’s yard. And maybe with the context information
Bob has finished his homework, it is possible to
deduce — with high probability — that Bob is kicking
his ball in his house’s yard.

The Knowledge base is organized as nested contexts [5],
which allows a much more efficient checking of concepts and
relations when compared to single-layer (or flat) ontologies.
For example, the ontology of the Knowledge Base may be
organized as following nested contexts.

o Spatial nested contexts: Green Way district D
house at 10 Rodeo Dr. D its yard D its
lawn;

e Temporal nested contexts: Bob’ s leisure time D
Thursday D afternoon DO Bob’s homework
finished;

o Containment nested context, such as, Bob’s toys D
Balls D basket ball with ID, etc.

Figure 2 shows how Semantic Event rules analyze all RDF
triples in the sliding time window (e.g. 180 s.) of sub streams
of Semantic Events, trying to find event patterns, filtering,
manipulating or adding RDF triples into “their” main context
sub-stream or also of sub-streams of semantically related
contexts, such as, the front yard and the street in
front of the yard.

C. Deriving Situations

Using the Facts of the stream and checking them against
the Semantic Graph (Ontology) of the Knowledge base,
complex situations may be identified such as Bob is
playing basketball in the front yard, but
should be notified that a strong storm is
approaching his house’s yard. Moreover, some of
the complex facts may be used for expanding, reinforcing or
removing some the knowledge about a subject, an object or
a place. For example, after Bob’s pen has finishes writing
QED on the page with the exercises of his Math’s homework
notebook, the latter has been closed, and Bob house’s main
door has been opened and closed, sensing that someone left
the house, then the Knowledge Base will be expanded with the
following facts: (Bob, finished, Math homework),
(Bob, left, house) and (Bob, stepped into,
yard).

IV. AN EXAMPLE OF REASONING OVER DATA STREAMS

In this section we show how the aforementioned two-
phase reasoning could be done with off-the-shelf components
and current wireless WPAN technologies, such as Bluetooth
Low Energy (BLE). Consider a scenario where smart ambi-
ent sensors are everywhere: in houses, offices, public trans-
portation, in the streets and in private cars, and that these
smart devices include a temperature and an accelerometer
sensor, have a unique UUID and Bluetooth Low Energy
interface. Now consider a user, Silva, lives in Rio de Janeiro
and carries a smartphone running our Internet of Things
middleware ContextNet [6], [7]. This middleware uses the
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smartphone as the bridge between Bluetooth-enabled smart
devices/objects/sensors and IoT application servers executing
in a cloud. The mobile middleware (Mobile Hub) periodically
issues a BLE scan, discovers nearby BLE devices, connects
to them, subscribes to the smart device’s sensors and writes
commands to the smart objects that have some actuator.
Figure 3 shows the Mobile Hub with four Texas Instruments
SensorTags that have 6 different sensors, including temperature
and accelerometer. Assume that it is summertime and that
some IoT application needs to know if Silva is in his office,
if he is walking on the street or if he is in a bus or car.
Whenever Silva’s smartphone encounters a BLE smart sensor,
it is possible to deduce if he is in an air conditioned space or
not, and whether he is in movement or not (due to the smart
device’s accelerometer). Moreover, if the location of each
deployed smart device is previously registered, it is further
possible to deduce if Silva is in his office or elsewhere. And

Mapping Semantic Events to Knowledge Facts

this can be deduced even without the use of GPS, either
because of its signal is not available (indoors), or because
Silva decides to keep it off to save the smartphone’s battery.

In this case, it would be possible to deduce the RDF
triple (Silva, rides, BusLine435) from the fol-
lowing simpler semantic events in the stream: (Silva’s
Portable, connectedTo, sensorX), (sensorX,
in, BusKKZ8674), (sensorX, Abs (Accelerator)
> 10) and (sensorX, temp=20) and from the fact that
BusKKZ8674 operates the BusLine 435. Moreover, it would
be possible to deduce that Silva is moving in the traffic, but
that he is in an air-conditioned bus, which may be very im-
portant during Rio’s summertime, when outdoor temperature
can reach more than 45 Degrees Celsius.

V. RELATED WORK

In an early work, Adi er al. [8] presents abstractions that
describe semantic relationships between events, object and



Fig. 3.

tasks. These are defined as generalizations and associations
and through attributes that may reference events. Their ab-
stractions are suitable for specification but cannot be computed
efficiently. On the other hand, the work [9] describes a system
(ETALIS) that can perform reasoning over streaming events
with respect to background knowledge, similar to our Knowl-
edge Base. It implements two languages for specification of
event patterns: the rule based ETALIS Language for Events
(ELA), and Event Processing SPARQL. ETALIS can evaluate
domain knowledge on-the-fly, thereby proving semantic rela-
tions among events and reasoning about them. Their semantic
relations among events are time-based, but don’t have the
synchronicity requirement. Another difference is that they
do not generate a RDF Stream which they check against a
knowledge base. Thus, their inference is much simpler than
the one proposed in our project.

Tachmazidis et al. [10] propose a reasoning method over
RDF triples based on defeasible logic (i.e., a non-monotonic
logic) which can be implemented in a massively parallel
way. They used Hadoop, an open-source implementation of
the MapReduce paradigm, and a stratified rule set for a
more efficient processing of the knowledge base. Unlike our
proposal, they do not handle Stream Processing and do not
apply their method to reasoning for time-critical systems, such
as CPS. Moreover, their choice for defeasible logic limits the
sorts of knowledge that can be inferred by their system, as
opposed to temporal logic, which shall have render highly
paralleliizable implementations.

The following projects CityPulse [11], Star-City [12] and
FIESTA-IoT [13] also present research toward the use of
Semantic Stream reasoning. All of these projects use the
knowledge base in order to deduce new context/facts. Also,
they use a single-layer (or flat) ontology model, which differs
from our ontology model that is organized as nested contexts.
Moreover, none of these projects focus on the problem of
delivering real-time reasoning.

The FIESTA-IoT project [13] integrates several other
projects and one of them is the CityPulse project [11]. The

ContextNet Mobile Hub with four SensorTags

main goal of these projects is to achieve semantic interop-
erability at different levels (hardware, data, model, query,
reasoning and application levels). The StarCity project has a
similar idea, but it is aimed at using semantics to provide
interoperability at the data level.

On the other hand, the work by Teymourian et al. [14]
has the same focus as our work. They use a similar idea and
combine the use of SCEP rules (Semantic Web plus CEP) with
a semantic knowledge base to deliver real-time reasoning. The
difference is that our work uses an ontology model organized
as nested context to represent context information, rather then
a flat ontology model. As a result, it could be more efficient on
query processing, because when we execute a query, the query
will be processed only using a sub set of the knowledge base (a
partition of the knowledge base). Furthermore, other difference
is that we purpose to insert new SCEP rules on-the-fly, based
on new facts generated by the reasoning over the knowledge
base. Consequently, it is a more efficient approach for the
application to adapt to different situations. For example, in a
monitoring application, we only need a CEP rule that triggers
an action based on an altitude situation only if the monitored
person is in a high altitude, until then this rule does not need
to be there.

VI. DISCUSSION

Combining symbolic reasoning based on Ontologies with
Complex Event Processing has several advantages. Firstly, it
allows to leverage CEP efficient processing of dense flows
of simple events, not just over raw sensor events but also
over RDF triples. Secondly, CEP’s ability to produce complex
events is also necessary for the iterative generation of higher
level information from lower level bits of information.

On the other hand, while CEP is appropriate for processing
data that is carried by the incoming events, it is incapable
of detecting domain-specific relationships between events that
are produced by distinct entities/objects that apparently have
no relation with each other, or when this relationship can-
not be directly encoded by the (meta-)information carried
by the events. Symbolic reasoning using ontologies, on the



other hand, can very well model these “indirect” relation-
ships among the monitored entities and/or their corresponding
events. And hence, by using the results of a query over
a domain-specific ontology during a CEP-based continuous
processing, it becomes possible to generate new sorts of events
(i.e., fact events), which are produced independently by the
Semantic Event reasoners in response to the consumption of
some RDF triples. These Fact events, which in some sense
embody some semantic knowledge that was forked off the
knowledge base, can in turn be further processed by other
CEP engines and may be used to predict events that actually
did not yet happen, but which are a natural consequence of
initial events that have been detected by CEP.

This makes us consider the Semantic Web reasoners as a
special kind of CEP engines, which have access to knowledge
base, consume RDF events and eventually produce fact events
that are passed onto other CEP engines in the Event Processing
Network. See Figure 1 for a general architecture.

VII. CONCLUSION AND FUTURE WORK

This paper presented a real-time reasoning approach based
on semantic events and fact streams for IoT systems. The
reasoning approach is based on the assumptions that all
objects, people, buildings, places, vehicles, environments, etc.
will have many embedded tiny sensors that will emit simple
events whenever some action is performed with/to it by an
actor and that each event will carry the items’ unique UUID
and an accurate time-stamp. By enforcing the restriction that
predicates in a RDF triple must be action-based, such as kick,
put, grab, etc., rather than state-based, such as has, is,
belongs to, etc., we are of course limiting the amount
of information that the data/event streams are capable to
express. However, we believe that the action-based predicates
are the really important ones for reasoning in IoT applications.
All the state predicates, on the other hand, should instead
be represented by the nested context-based ontology in the
Knowledge Base.

We are aware that this is only a first and initial step towards
adding semantics to real-time reasoning over data streams and
that much more theoretical and practical research is required to
validate our approach, evaluate it under a broader perspective
and show its feasibility for large-scale and distributed IoT
applications. However, we are confident that it is a promising
first step. As next steps, we will develop simple Context
Mappers and Semantic Event Rules using Esper’s EPL and
deploy them on the mobile component Mobile Hub and on
cloud-based Complex Event Processing engines in the cloud
of our IoT middleware. In parallel, we will model a simple
scenario and the main entities and their relationships, as
described in Section IV and represent it as nested contexts.

Last, we have already started investigating various machine
learning techniques (autoencoders, k-means, Markov chains,
recurrent networks and inductive logic programming) to auto-
mate features extraction, clustering, temporal patterns induc-
tion and knowledge induction, as ways to automatically extract
useful knowledge at various stages of our architecture. One

important issue is the dynamicity of the data produced, i.e. we
need to find good trade-offs depending on the usage, the nature
of the data and the computing and communicating resources
available, between the demand for higher level knowledge, the
cost for extracting it and the risk of it being obsolete because
of the constant stream of data. This preliminary study will be
presented in another paper to appear.

ACKNOWLEDGEMENT

Our ESMOCYP (Efficient Semantic MOdels and Fault-
tolerant Middleware for CYber-Physical Systems) Project is
being supported by CAPES (Brazil) and DAAD (Germany)
cooperation program PROBRAL (Process No 8148/2015-05)
and by a CAPES PVE fellowship to J.-P. Briot. We would like
to thank the researchers and students from the University of
Stuttgart for fruitful discussions.

REFERENCES

[1] D. C. Luckham, The Power of Events: An Introduction to Complex Event
Processing in Distributed Enterprise Systems.  Boston, MA, USA:
Addison-Wesley, 2001.

[2] K.S. Candan, H. Liu, and R. Suvarna, “Resource description framework:
Metadata and its applications,” SIGKDD Explor. Newsl., vol. 3, no. 1,
pp. 6-19, Jul. 2001.

[3] A. Arasu, S. Babu, and J. Widom, “The CQL continuous query language:
Semantic foundations and query execution,” The VLDB Journal, vol. 15,
no. 2, pp. 121-142, Jun. 2006.

[4] O. Etzion and P. Niblett, Event Processing in Action, st ed. Greenwich,
CT, USA: Manning Publications Co., 2010.

[5] I. Cafezeiro, J. Viterbo, A. Rademaker, E. H. Haeusler, and M. Endler,
“Specifying ubiquitous systems through the algebra of contextualized
ontologies,” The Knowledge Engineering Review, vol. 29, no. 02, pp.
171-185, 2014.

[6] M. Endler, G. Baptista, L. D. Silva, R. Vasconcelos, M. Malcher,
V. Pantoja, V. Pinheiro, and J. Viterbo, “ContextNet: Context reasoning
and sharing middleware for large-scale pervasive collaboration and so-
cial networking,” in ACM/IFIP/USENIX 12th International Middleware
Conference — Workshop, Posters and Demos Track. Lisbon, Portugal:
ACM, Dec. 2011, pp. 2:1-2.

[7]1 L. E. Talavera, M. Endler, I. Vasconcelos, R. Vasconcelos, M. Cunha,
and F. Silva, “The Mobile Hub concept: Enabling applications for
the internet of mobile things,” in International Conference on Perva-
sive Computing and Communication Workshops (PerCom Workshops).
IEEE, March 2015, pp. 123-128.

[8] A. Adi, D. Botzera, and O. Etzion, “Semantic Event Model and
its Implication on Situation Detection,” in European Conference on
Information Systems (ECIS 2000), 2000, Paper 2.

[91 D. Anicic, S. Rudolph, P. Fodor, and N. Stojanovic, “Stream Reasoning

and Complex Event Processing in ETALIS,” Semantic Web, no. 1, pp.

1-5, 2009.

I. Tachmazidis, G. Antoniou, G. Flouris, S. Kotoulas, and L. McCluskey,

“Large-scale parallel stratified defeasible reasoning,” in 20th European

Conference on Artificial Intelligence (ECAI’2012), Montpellier, France,

Aug. 2012, pp. 738-743.

M. Giatsoglou, D. Chatzakou, V. Gkatziaki, A. Vakali, and L. Anthopou-

los, “CityPulse: A platform prototype for smart city social data mining,”

Journal of the Knowledge Economy, vol. 7, no. 2, pp. 344-372, 2016.

F. Lécué, S. Tallevi-Diotallevi, J. Hayes, R. Tucker, V. Bicer, M. L.

Sbodio, and P. Tommasi, “Star-City: semantic traffic analytics and

reasoning for city,” in /9th International Conference on Intelligent User

Interfaces (IUI'14). Haifa, Israel: ACM, Feb. 2014, pp. 179-188.

Y. Al-Hazmi and T. Magedanz, “Towards semantic monitoring data

collection and representation in federated infrastructures,” in 3rd In-

ternational Conference on Future Internet of Things and Cloud (FI-

Cloud’2015). IEEE, 2015, pp. 17-24.

K. Teymourian, M. Rohde, and A. Paschke, “Fusion of background

knowledge and streams of events,” in 6th ACM International Conference

on Distributed Event-Based Systems (DEBS’12). ACM, 2012, pp. 302—

313.

(10]

[11]

[12]

(13]

[14]



