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A regret-based preference elicitation approach
for sorting with multicriteria reference profiles

Nawal Benabbou and Patrice Perny and Paolo Viappiani 1

Abstract. In this paper we present an incremental elicitation method
to determine the importance of the coalitions of criteria in a multicri-
teria sorting method. The method is designed to assign alternatives to
predefined categories by comparing their performance vector to ref-
erence profiles. These comparisons lead to binary preference indices
that are aggregated to determine the membership of the alternatives to
predefined categories. We present an active learning process to deter-
mine the weighting coefficients modeling the importance of criteria
in the aggregation process. Learning examples are generated one by
one and presented to the Decision Maker to efficiently reduce the un-
certainty attached to criteria weights. The process is stopped when all
alternatives can be assigned to a category with the desired guarantee.
We present the formal elicitation method as well as numerical tests
showing its practical efficiency.

Keywords: Multicriteria sorting, capacity, Choquet integral, fuzzy
preference relations, ordered categories.

1 Introduction

The evaluation of alternatives is a critical task in all decision support
methods. When the alternatives must be evaluated with respect to
multiple criteria, several aggregation procedures have been proposed
to assess the overall value of the alternatives, either to rank them
by decreasing order of preference, or to assign them to predefined
ordered categories on the basis of their intrinsic value. In this paper, we
focus on the latter objective and we consider multicriteria evaluation
methods assessing the intrinsic value of alternatives by comparing
their performances to predefined reference levels.

In this family of methods, we can distinguish two approaches. The
‘aggregate then compare’ approach consists in a two stage process
that first aggregates the performances of every alternative to produce
an overall rating (e.g. using a weighted sum) and then compares the
resulting rating to reference levels to assign the alternative in a prede-
fined category (e.g., good, medium, bad). For example, alternatives
are labelled as ‘good’ when they rate beyond 10, as ‘bad’ when they
rate below 5, and as ‘medium’ otherwise. The main drawback of this
first approach is that it is often difficult to derive a significant rating
from criterion values expressed on different scales.

The second approach overcomes this problem by swapping the
aggregation and comparison steps; for this reason, it is named the
‘compare then aggregate’ approach. This approach requires an ordered
sequence of reference profiles to be defined, representing different
levels of requirements in the space of criteria; these profiles are totally
ordered using Pareto dominance. A category is then implicitly defined
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by all the alternatives that beat a given reference profile but no other
reference profile ranked higher in the dominance order. Thus, refer-
ence profiles act as upper and lower bounds of categories. This way of
assigning alternatives to ordered categories while using multicriteria
evaluations has been initally introduced by Roy in the Electre TRI
method [11, 15, 16, 4]. Then multiple variants of this method have
been proposed, based on a similar scheme [12, 14, 21, 8] and known
as ‘multicriteria sorting methods’. They have been widely used in
various applications (see the above references) and also investigated
axiomatically [2, 3].

The ‘compare then aggregate’ approach requires a preference re-
lation to be defined in the space of criteria in order to compare per-
formance vectors of alternatives to reference profiles. This preference
relation is usually defined by aggregating the preference relations
derived from each criterion considered separately. The aim of this
paper is to learn from examples the proper aggregation method to be
used to produce the aggregated preference relation. The most common
aggregation method used for aggregating preference relations derived
from criteria is a weighted majority rule. In this case, the weights
of criteria must be learned from examples. This problem has been
studied in [12, 13, 10, 17].

More recently, an extension of this approach has been proposed
in [18] based on a generalization of weighted majority using a set
function (namely a capacity) weighting any subset of criteria. This
generalization enhances the descriptive power of the weighted major-
ity model by allowing positive or negatives synergies among criteria
due to the use of a non-necessarily additive definition of criterion
weights. In this paper, we generalize this approach in a number of
directions. First, we consider a generalized aggregation method to
assign alternatives to categories. This method, introduced in [14],
uses fuzzy preference relations to compare alternatives to references
profiles and defines a degree of membership of any alternative to
any categories (this method will be formally specified in Section 2).
Secondly, the aggregation of fuzzy preference relations is performed
using a possibly non linear weighted aggregator, for example the
Choquet integral that combines fuzzy preferences with a non-additive
measure of the importance of criteria. The learning of classifiers based
on a Choquet integral has been investigated in [9]. Our approach is
different because we use here the Choquet integral to aggregate fuzzy
preferences rather than criterion values. Thirdly, instead of proposing
a passive learning approach aiming to assess weighting parameters
from a given database of examples, we propose here an active learning
of the capacity that progressively asks examples of assignment to the
Decision Maker (DM), selected one by one to efficiently reduce the set
of possible capacities until a complete assignment of the alternatives
can be defined with confidence.

The paper is organized as follows: in Section 2, we recall the



main features of the assignment method introduced in [14]. Then, the
incremental approach proposed to elicit the aggregation function is
presented in Section 3. Finally, numerical tests showing the efficiency
of the approach are presented in Section 4.

2 Sorting using reference profiles
Let K`, ` ∈ {1, . . . , q}, be a set of q ordered categories, K1 being
the best category and Kq being the worst one. Let X be the set of
alternatives that must be assigned into one of these categories. Let us
assume that every alternative is represented by a performance vector
x = (x1, . . . , xn) ∈ Rn where xi denotes the performance of x
with respect to criterion i, i ∈ N = {1, . . . , n}; we assume here
that criteria are to be maximized. Let us denote {r0, r1, . . . , rq} the
set of reference profiles used to defined the bounds of the categories.
Each element r` ∈ Rn defines the lower boundary of category K`,
` ∈ {1, . . . , q}, while r0 ∈ Rn represents a top performance profile
(not feasible) chosen to bound above all possible criterion values.
These reference profiles are defined in such a way that r`i > r`+1

i for
all i ∈ N and ` ∈ {0, . . . , q − 1}.

These reference profiles being defined, the principle of a preference-
based assignment method is to assign x to category K` when x is
preferred to r` and x is not preferred to r`−1. In the method introduced
in [14], this principle is implemented by comparing x to all profiles
r` using a preference index defined as follows:

P (x, r`, θ) = fθ(P1(x, r`), . . . , Pn(x, r`)) (1)

where fθ is an aggregation function (compatible with Pareto domi-
nance) parameterized by θ andPi(x, r`) is a monocriterion preference
index defined by:

Pi(x, r
`) =


1 if xi − r`i > γ+

i
xi−r`i−γ

−
i

γ+i −γ
−
i

if γ−i < xi − r`i ≤ γ+
i

0 if xi − r`i ≤ γ−i

The variation of index Pi(x, r`) as the difference xi − r`i increases is
represented here below:

xi − r`i
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|
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Figure 1. Preference index Pi(x, r
`) as a function of xi − r`i

This index represents the credibility of the statement “x is better
than r` w.r.t criterion i”. The index is maximal (i.e. equals 1) when the
score difference xi−r`i exceeds the preference threshold γ+

i . It is min-
imal when the difference xi−r`i falls below the indifference threshold
γ−i . These thresholds are part of the definition of the criterion scale
and are defined by the DM in such a way that γ+

i > γ−i . The prefer-
ence threshold γ+

i defines the minimal difference compatible with a
strict preference, whereas the indifference threshold γ−i represents the
maximal score difference compatible with an indifference (absence of

preference). Between these two thresholds, there is an area where we
may hesitate between strict preference and indifference; in this area,
the preference index grows linearly with xi − r`i (see Figure 1).

A standard choice for fθ is a compromise operator, i.e. that verifies
mini∈N{xi} ≤ fθ(x) ≤ maxi∈N{xi} for all x = (x1, . . . , xn) ∈
Rn. When using such an operator, the overall preference index
P (x, r`, θ) defined by Equation (1) necessary belongs to [0, 1]. Value
1 is achieved when the criteria are unanimously in favor of strict pref-
erence, whereas value 0 is achieved when criteria are unanimously
against preference. Between these two extreme cases, the overall
index measures the strength of arguments supporting the statement
“x is better than r`”. A common choice for fθ is the weighted sum
fθ(p1, . . . , pn) =

∑n
i=1 θipi where θi is the weight attached to crite-

rion i. A more interesting choice is to define fθ as a Choquet integral
[5, 6] which provides a more general and more flexible aggregator. In
this case, θ is the set function defining the weight of any coalition of
criteria. We will come back to this case in Section 3.2.

After the aggregation step, the index measuring on the [0, 1]
scale the membership of any alternative x to any category K`,
` ∈ {1, . . . , q}, is defined by:

m`(x, θ) = min
{
P (x,r`,θ), 1−P (x,r`−1,θ)

}
(2)

and finally, alternative x is assigned to category K`∗ where `∗ is the
smallest index such that:

m`∗(x, θ) = max
k∈{1,...,q}

mk(x, θ)

This procedure is the general preference-based filtering method in-
troduced in [14]. Equation (2) ensures that, for any fixed x and θ,
m`(x, θ) (seen as a function of `) is unimodal, with a maximum at
least equal to 0.5 (for more details see [14]).

This method is typical of the ‘compare then aggregate’ approach.
We first compare any alternative x to all reference profiles by consider-
ing each criterion separately, which leads to indices Pi(x, r`), i ∈ N .
These indices are then aggregated using function fθ to define the
membership of x to any category K`. The advantage of this approach,
compared to the more classical ‘aggregate then compare’ approach
lies in the use of reference vectors r` instead of scalar thresholds
on aggregated values. This provides a finer control in the definition
of category boundaries in the multiobjective space. The decision of
assigning an alternative is based on the scoring vector and not on an
aggregated value: two alternatives having the same “average” value
but different profiles may enter into different categories, as shown in
the following example:

Example 1. Let us consider two alternatives x, y and a sequence
of 3 reference profiles r0, r1, r2 with the following grades on three
criteria:

1 2 3

x 6 15 15
y 30 3 3

r0 50 50 50
r1 12 12 12
r2 0 0 0

The three reference profiles allow the definition of two categories
K1 and K2. We use here the same valuation scale with a preference
threshold γ+

i = 1 and indifference threshold γ−i = 0, for all i ∈ N =
{1, 2, 3}. Let us assume that fθ is the weighted sum with weights θ =
(1/3, 1/3, 1/3), i.e. fθ(z1, z2, z3) = (z1 + z2 + z3)/3 for all z ∈
Rn. We obtain P (x, r0, θ) = P (y, r0, θ) = 0 and P (x, r2, θ) =



P (y, r2, θ) = 1. The only difference between x and y are due to
profil r1. We indeed have: P (x, r1, θ) = 2/3 and P (y, r1, θ) = 1/3.
Hence, using Equation (2), we get the following membership values:

m1 m2

x 2/3 1/3
y 1/3 2/3

As a consequence, x is here assigned to category K1 whereas y is
assigned to category K2.

In this example, x obtains a better position than y (since K1 is
better thanK2). Note that alternatives x and y would be undiscernible
with the ‘aggregate then compare’ approach since they have the same
average: fθ(x) = fθ(y). Moreover, if the grade of y increases from
30 to 50 on criterion 1, it can easily be checked that y remains in K2.
There is no improvement despite the fact that the average score of
y defined by fθ increases. This is due to the fact that here, there is
no point in improving its performance on criterion 1 since it already
exceeds the value of reference profile r1 while the weaknesses of y on
criteria 2 and 3 remain. This example illustrates the non-compensatory
nature of this sorting procedure, where difference of grades does not
play any role beyond a given threshold; this is a clear difference with
procedures based on the direct aggregation of criterion values.

3 An incremental approach for sorting alternatives
using reference profiles

The procedure introduced in the previous section involves at some
step an aggregation operation fθ in which parameter θ controls the im-
portance of criteria and coalitions of criteria in the overall assessment
of alternatives. Our aim is to propose, in the framework of the ap-
proach presented above, an incremental procedure to assess parameter
θ. We assume that this parameter is initially unknown and we want to
use an active learning process to progressively reduce the uncertainty
attached to θ. Examples will be selected one by one and presented to
the DM that will be asked to classify them; these new classifications
will induce constraints restricting the space of admissible θ, and the
process will be repeated until being able to classify all the alternatives
in X .

Our procedure relies on the notion of minimax regret, allowing to
make robust decisions in face of uncertainty, and to ask informative
queries to further reduce the uncertainty on the space of admissible θ.
This can be seen as an adaptation to sorting problems of incremental
elicitation mechanisms designed for choice problems (e.g., [20, 1]).

Whenever θ is precisely known, we wish to assign x to the category
K` such thatm`(x, θ) ≥ mk(x, θ) for all k ∈ {1, . . . , q}. Therefore,
it is natural to define the loss or regret associated to assigning x to K`

rather than assigning it to Kk as:

R(x,K`,Kk, θ) = mk(x, θ)−m`(x, θ).

When we only know that θ belong to an uncertainty set Θ, we may
be interested in computing the following regrets:

Definition 1. For any alternative x ∈ X , the pairwise max regret
(PMR) of assigning x to the category K` instead of assigning it to
the category Kk is defined by:

PMR(x,K`,Kk,Θ) = max
θ∈Θ

R(x,K`,Kk, θ)

= max
θ∈Θ

{
mk(x, θ)−m`(x, θ)

}
.

PMR(x,K`,Kk,Θ) is the maximum feasible gap between the mem-
bership indices of alternative x with respect to categories Kk and K`.
It represents the worst-case loss that we may incur by assigning x to
category K` instead of category Kk when parameter θ belongs to Θ.

Definition 2. The max regret (MR) of assigning x ∈ X to category
K` is defined by:

MR(x,K`,Θ) = max
k∈{1,...,q}

PMR(x,K`,Kk,Θ)

MR(x,K`,Θ) is the worst-case loss that we may incur by as-
signing alternative x to category K` instead of any other categories.
We now define the notion of minimax regret and the regret-optimal
category associated to alternative x ∈ X:

Definition 3. The minimax regret (mMR) of alternative x ∈ X is:

mMR(x,Θ) = min
`∈{1,...,q}

MR(x,K`,Θ)

Considering the uncertainty set Θ, a cautious decision rule
would consist in assigning alternative x to the category minimizing
MR(x,K`,Θ), named the regret-optimal category of x here below.
In order to assess the maximal error on the complete assignment when
using this rule, we introduce now the notion of maximum minimax
regret:

Definition 4. The maximum minimax regret (MmMR) is:

MmMR(X,Θ) = max
x∈X

mMR(x,Θ)

In sorting problems, MmMR plays the role of measuring the cur-
rent decision quality; in particular, if MmMR = 0, then we know
that the complete assignment is valid. However, it might be the case
that the aggregate value MmMR is too large according to the DM.
In that case, it is natural to consider incremental elicitation proce-
dures to make this value decrease until a given tolerance threshold
δ ≥ 0. This is actually possible due to the fact that the inequality
MmMR(X,Θ′) ≤ MmMR(X,Θ) is true for all Θ′ ⊆ Θ, meaning
that the value MmMR cannot increase when including new prefer-
ence information obtained from the DM; actually, in the subsection
devoted to numerical tests, we will see that, in practice, it strictly
decreases when queries are chosen in a reasoned way.

As in a choice problems, comparison queries between alternatives
might be asked; however, in our context, it is less straightforward
to identify a pair of alternatives forming an informative preference
query (i.e. which is likely to induce a regret reduction). Instead, we
can ask the DM to choose, for a given alternative, the category that
fits best (either among a pair of categories, among a given subset
of categories, or among all possible categories). For this type of
queries, we will denote K` %x Kk the preference for category K`

over category Kk concerning the assignement of alternative x ∈ X .
For choosing which query to ask next, we propose to focus on an
alternative x that is associated with the largest value mMR in the
current regret-optimal assignment; by asking a query involving such
an alternative, we are indeed likely to reduce the value MmMR since
MmMR(X,Θ) = mMR(x,Θ) holds. There are at least the two
following possibilities:

• we can ask the DM to assign x to the most relevant category or
• we can ask the DM to compare the regret-optimal category K`∗ of

alternative x with its regret-maximizing adversarial category (the
one that maximizes PMR(x,K`∗ ,Kk,ΘP)) and state which one
is the most relevant among the two.



The latter approach has the advantage of requiring less effort from
the DM while focusing on the pair of categories inducing the current
value MmMR.

3.1 Determination of the optimal assignment using
mixed integer linear programming

Let P be the set gathering all preference statements of type K` %x
Kk collected so far, and let ΘP be the set containing all parameters
θ consistent with information P , i.e. such that m`(x, θ) ≥ mk(x, θ)
for all examples K` %x Kk ∈ P . We assume here that operator fθ
is linear in θ (e.g., a weighted sum or a Choquet integral). In order
to determine the regret-optimal assignment, we need a method that
efficiently computes PMR(x,K`,Kk,ΘP) for any x ∈ X and any
`, k ∈ {1, . . . , q}. This computation is challenging because it requires
a maximization of the difference of two minima. Nevertheless, we
will show that this optimization problem can be decomposed in two
mixed integer linear programs. In order to do that, we need first to
show that the answers to preference queries induce linear constraints
over the set of parameters ΘP .

Proposition 1. Let x ∈ X be any alternative and K`,Kk two cate-
gories such that ` 6= k. If ` > k, then ΘP∪K`%xKk

is:{
θ ∈ ΘP , 1−P (x, r`−1, θ) ≥ min{P (x, rk, θ), 1−P (x, rk−1, θ)}

}
otherwise ΘP∪K`%xKk

is:{
θ∈ΘP , P (x, r`, θ) ≥ min{P (x, rk, θ), 1− P (x, rk−1, θ)}

}
Proof : If we observe that category K` is preferred to category
Kk for the assignment of alternative x ∈ X , then we want to
restrict ΘP to all parameters θ such that m`(x, θ) ≥ mk(x, θ),
which can be rewritten min{P (x, r`, θ), 1 − P (x, r`−1, θ)} ≥
min{P (x, rk, θ), 1− P (x, rk−1, θ)}. This is actually equivalent to
imposing the two following constraints:

P (x, r`, θ) ≥ min{P (x, rk, θ), 1− P (x, rk−1, θ)} (3)

1− P (x, r`−1, θ) ≥ min{P (x, rk, θ), 1− P (x, rk−1, θ)} (4)

First, assume that K`,Kk are such that ` > k. In that case, we
know that we have Pi(x, r`) ≥ Pi(x, r

k) for all i ∈ N . There-
fore, since fθ is compatible with Pareto dominance, then we have
P (x, r`, θ) ≥ P (x, rk, θ) for all θ ∈ ΘP . As a consequence, Equa-
tion (3) holds for all θ ∈ ΘP and so the associated constraint is
not needed for updating the set of feasible parameters ΘP accord-
ing to the observed preference (x,K` - Kk). Hence, only Equa-
tion (4) remains in that case. Now, assuming that ` < k, we have
Pi(x, r

`−1) ≤ Pi(x, rk−1) for all i ∈ N . Therefore, since fθ is com-
patible with Pareto dominance, then P (x, r`−1, θ) ≤ P (x, rk−1, θ)
for all θ ∈ ΘP , i.e. 1−P (x, r`−1, θ) ≥ 1−P (x, rk−1, θ). Therefore,
Equation (4) holds for all θ ∈ ΘP and so the associated constraint is
not needed for updating the set of feasible parameters ΘP according
to K` %x Kk. Hence, only Equation (3) remains.

Thus, if the DM states that, for a given alternative x ∈ X , category
K` is better suited than category Kk, then it is sufficient to impose
the following constraint over the set of feasible parameters:

• 1− P (x, r`−1, θ)≥min{P (x, rk, θ), 1− P (x, rk−1, θ)} if `>k,
• P (x, r`, θ) ≥ min{P (x, rk, θ), 1− P (x, rk−1, θ)} otherwise.

These constraints can be linearized using standard linearization of
the min aggregator. In particular, this is done in the following way:

If ` > k, we impose:{
Mb+ 1− P (x, r`−1, θ) ≥ P (x, rk, θ)

M(1− b) + 1− P (x, r`−1, θ) ≥ 1− P (x, rk−1, θ)

If ` < k, we impose:{
Mb+ P (x, r`, θ) ≥ P (x, rk, θ)

M(1− b) + P (x, r`, θ) ≥ 1− P (x, rk−1, θ)

where b is a boolean variable and M is a numerical scalar value
greater than one.

Hence, we proved that ΘP can be described with linear constraints
whenP is composed of preferences of type (x,K`,Kk). Now, the fol-
lowing proposition proves that PMR-optimizations can be performed
using mixed integer linear programming.

Proposition 2. For any x ∈ X and any `, k ∈ {1, . . . , q}, we have:

PMR(x,K`,Kk,ΘP) = max{β1, β2}

where β1 and β2 are respectively the optimum values of the following
mixed integer linear programs:

max
θ∈ΘP
t∈R

{t−P (x, r`, θ)} max
θ∈ΘP
t∈R

{t+P (x, r`−1, θ)−1}

s.t. t ≤ P (x, rk, θ) s.t. t ≤ P (x, rk, θ)

t ≤ 1−P (x, rk−1, θ) t ≤ 1−P (x, rk−1, θ)

Proof : For any alternative x ∈ X and any two categories K`,Kk:

PMR(x,K`,Kk,ΘP) = max
θ∈ΘP

R(x,K`,Kk, θ)

= max
θ∈ΘP

{
mk(x, θ)−m`(x, θ)

}
Since mk(x, θ) = min{P (x, rk, θ), 1 − P (x, rk−1, θ)}, we can
compute PMR(x,K`,Kk,ΘP) by solving the following program:

max
θ∈ΘP
t∈R

{
t−m`(x, θ)

}
s.t. t ≤ P (x, rk, θ)

t ≤ 1− P (x, rk−1, θ)

This program is obtained by using standard linearization of the min
aggregator. Then, we have:

t−m`(x, θ) = t−min{P (x, r`, θ), 1− P (x, r`−1, θ)}

= t+ max{−P (x, r`, θ), P (x, r`−1, θ)− 1}

= max{t− P (x, r`, θ), t+ P (x, r`−1, θ)− 1}

Therefore, PMR(x,K`,Kk,ΘP) can be computed by solving the
following optimization problem:

max
θ∈ΘP
t∈R

{
max{t− P (x, r`, θ), t+ P (x, r`−1, θ)− 1}

}
s.t. t ≤ P (x, rk, θ)

t ≤ 1− P (x, rk−1, θ)

The result is finally obtained by interchanging the max operators.

Therefore, computing PMR(x,K`,Kk,ΘP) can be easily per-
formed by solving two mixed integer linear programs and then select-
ing the greatest optima.



3.2 Application to Choquet integrals
In this subsection, we will focus on a particular instance obtained
by interpreting fθ as a Choquet integral in Equation (1). This allows
positive or negative synergies among arguments when aggregating
preference indices Pi(x, r`) into an overall index P (x, r`, θ). We
now recall the definition of Choquet capacities and (discrete) Choquet
integrals2. A normalized Choquet capacity v is a real-valued set-
function defined on 2N such that v(∅) = 0, v(N) = 1 and v(A) ≤
v(B) for all A ⊆ B ⊆ N ; value v(A) is the weight attached to
coalition A, for any A ⊆ N . The Choquet integral is then defined by:

Cv(x) =

n∑
i=1

[
x(i) − x(i−1)

]
v(X(i)) with x(0) = 0

where (.) is a permutation of {1, . . . , n} which sorts the components
of x by increasing order (i.e. x(i)≤x(i+1) for i ∈ {1, . . . , n − 1})
and X(i) = {(i), . . . , (n)}. In the following, the uncertain capacity
function v takes the role of θ and the set of feasible parameters ΘP
is the set of all normalized capacities compatible with P . Alternative
x ∈ X is now compared to any profile r` using the preference index:

P (x, r`, v) = Cv(P1(x, r`), . . . , Pn(x, r`))

The membership of solution x to category K` is now defined by:

m`(x, v) = min{P (x, r`, v), 1− P (x, r`−1, v)}

In the particular case where ΘP is a set of strictly monotonic
capacities (i.e. v(A) < v(B) for all A ⊂ B ⊆ N ), we can linearize
the constraints induced by P in a simpler way, so that we can avoid
the use of boolean variables.

Proposition 3. For any x ∈ X and any `, k ∈ {1, . . . , q}:
If ` > k and Pi(x, r`−1) 6= Pi(x, r

k−1) for some i ∈ N , then

ΘP∪K`%xKk
= {v ∈ ΘP , 1− P (x, r`−1, v) ≥ P (x, rk, v)}

If ` < k and Pi(x, r`) 6= Pi(x, r
k) for some i ∈ N , then

ΘP∪K`%xKk
= {v ∈ ΘP , P (x, r`, v) ≥ 1− P (x, rk−1, v)}

Otherwise, ΘP∪K`%xKk
= ΘP .

Proof : Assume that `> k. According to Proposition 1, capacities
v∈ΘP that are compatible with K` %x Kk are those verifying:

1− P (x, r`−1, v) ≥ min{P (x, rk, v), 1− P (x, rk−1, v)} (5)

Since ` > k, we know that Pi(x, r`−1) ≥ Pi(x, rk−1) for all i ∈ N .
In the case where Pi(x, r`−1) = Pi(x, r

k−1) for all i ∈ N , we
have P (x, r`−1, v) = P (x, rk−1, v), i.e. 1 − P (x, r`−1, v) = 1 −
P (x, rk−1, v); therefore, for all v ∈ ΘP , Equation (5) is satisfied and
so ΘP∪K`%xKk

= ΘP . Now, consider the case where Pi(x, r`−1) 6=
Pi(x, r

k−1) for some i ∈ N . Since v ∈ ΘP is strictly monotonic,
then Cv is strictly increasing with Pareto dominance, and so we
have P (x, r`−1, v) > P (x, rk−1, v), i.e. 1 − P (x, r`−1, v) < 1 −
P (x, rk−1, v). As a consequence, Equation (5) is satisfied if and only
if we have 1−P (x, r`−1, v) ≥ P (x, rk, v). Hence, ΘP∪K`%xKk

=

{v ∈ ΘP , 1− P (x, r`−1, v) ≥ P (x, rk, v)}.
Now, assume that ` < k. In that case, according to Proposition 1,

capacities v ∈ ΘP that satisfy K` %x Kk are those verifying:

P (x, r`, v) ≥ min{P (x, rk, θ), 1− P (x, rk−1, v)} (6)

2 Refer, for instance, to [5, 6] for a much more detailed description.

Since ` < k, we have Pi(x, r`) ≤ Pi(x, r
k) for all i ∈ N . First,

assume that Pi(x, r`) = Pi(x, r
k) for all i ∈ N . In that case, we

have P (x, r`, v) = P (x, rk, v) and so Equation (6) is verified by all
capacities v ∈ ΘP ; hence ΘP∪K`%xKk

= ΘP . Now, assume that
Pi(x, r

`) 6= Pi(x, r
k) for some i ∈ N . Since v ∈ ΘP is strictly

monotonic, then Cv is strictly increasing with Pareto dominance, and
so we necessarily have P (x, r`, v) < P (x, rk, v). Therefore, Equa-
tion (6) is satisfied if and only if P (x, r`, v) ≥ 1−P (x, rk−1, v) and
so ΘP∪K`%xKk

= {v ∈ ΘP , P (x, r`, v) ≥ 1− P (x, rk−1, v)}.

Thus, according to Proposition 3, observing that category K` is
preferred to category Kk for alternative x amounts to imposing:

• the linear constraint 1− P (x, r`−1, v)≥P (x, rk, v) if `>k and
Pi(x, r

`−1) 6= Pi(x, r
k−1) for some i ∈ N ,

• the linear constraint P (x, r`, v)≥1− P (x, rk−1, v) if `<k and
Pi(x, r

`) 6= Pi(x, r
k) for some i ∈ N and

• no additional constraints otherwise.

As a consequence, when assuming that the DM’s preferences can be
modeled by a Choquet integral with a strictly monotonic capacity, the
PMR-optimization consists in solving two linear programs (instead of
mixed integer linear programs in the general case) and then selecting
the maximum between the two optima (see Proposition 2).

4 Numerical tests
In this section, we consider datasets of alternatives uniformly drawn
within [0, 1]n and simulated DMs answer to preference queries ac-
cording to a randomly generated Choquet integral (defined with a
strictly monotonic capactity). First, we want to compare the following
query selection strategies in terms of MmMR reduction:

• S0: this strategy asks the DM to state which among all the cate-
gories suits most a randomly chosen alternative in the dataset.

• S1: this strategy asks to compare the regret-optimal category of
x with its regret-maximizing adversarial category, where x is the
alternative associated with the largest mMR (see Section 3).

• S2: this strategy asks which among all the categories suits most the
alternative associated with the largest mMR value.

Linear optimizations are performed by the Gurobi solver called from
a program written in Java. The reference profiles under consideration
are constant utility profiles dividing the utility scale [0, 1] into intervals
of same size on every criterion. In Figure 2, we report the MmMR at
each iteration step of the incremental procedures; results are obtained
by averaging over 100runs.

First, we can see that the MmMR value reduces significantly faster
with S1 and S2 than with S0; for instance, after at most 20 queries
on average, the MmMR value is around 40 percent of the maximum
regret in the dataset with S1 and S2, while still remaining above 80
percent with S0. Moreover, as expected, S2 turns out to be more infor-
mative than S1 (since the MmMR reduces more quickly). However,
we also note that S1 needs just approximately 3 additional queries
on average to achieve the same level of regret as S2. This empirical
evidence suggests to use S1 instead of S2 since the former has lower
cognitive cost than the latter while still being very effective (asking
the DM to state which among all the categories suits most a given
alternative indeed requires much more cognitive effort from the DM
than the comparison of two categories).

The next numerical tests aim to evaluate the impact of the following
parameters on computation times of MmMR calculations: q the num-
ber of categories, n the number of criteria, p the number of observed



Figure 2. Maximum minimax regret reduction for strategies S0, S1 and S2
(n = 5, 150 alternatives, 5 categories).

preferences and the number of alternatives. In Table 1, computation
times are obtained by averaging over 100 runs.

In particular, computation times drastically increase with q, the
number of categories (due to the quadratic number of PMR-
computations). Moreover, computation times are significantly im-
pacted by the number of criteria. This is due to the fact that the number
of variables and constraints of the linear programs grows exponen-
tially with the number of criteria (in order to ensure monotonicity
of the Choquet capacity); note however that computation times can
be further reduced when considering some particular subclasses of
capacities (2-additive capacities, belief functions).

Table 1. Computation times (in seconds) of MmMR calculations; results
for instances with |X| = 50, 100, 200 are respectively given in lines 1,2,3.

q = 5 q = 10
n = 5 n = 7 n = 5 n = 7

p = 0 p = 5 p = 0 p = 5 p = 0 p = 5 p = 0 p = 5
0.8 1.4 1.8 2.3 3.5 5.6 6.7 8.6
1.1 1.8 2.1 3.3 4.6 6.8 9.1 10.8
2.2 3.5 6.9 7.1 7.6 10.7 18.2 21.1

5 Conclusion

The main advantage of our approach is that assignment queries are
selected using the minimax regret criterion. The constraints derived
from these examples indeed allow an efficient reduction of uncertainty
where it is decisive, thus facilitating the assignment of remaining
alternatives to a category. This applies to a wide family of weighted
aggregation functions, including weighted sums, ordered weigthed
averaging operators and Choquet integrals.

For Choquet integrals, the proposed approach is practically feasible
provided that the number of criteria is not too large (about 10). For
problems involving a larger number of criteria, the linear programs
to be solved for computing regrets is computationally demanding,
due to monotonicity constraints. In this case, a first solution consists
in using capacity admitting compact representations, e.g. k-additive
capacities [7] for a bounded k; in this particular case, the elicitation of

the capacity remains tractable (see e.g. [19] for k = 2). Another inter-
esting option would be to use fictitious alternatives with very simple
profiles as learning example. This allows to drastically simplify the
management of the monotonicity constraint, even with large numbers
of criteria, as shown for choice problems in [1].
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