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The three-dimensional development of instabilities and the subsequent spray forma-

tion in a gas-liquid mixing layer are important fundamental problems in the area of

multiphase flows. It is highly desirable to visualize this detailed atomization process

and to analyze the instabilities and mechanisms involved, and massive numerical

simulations are required, in addition to experiment. Rapid development of numerical

methods and computer technology in the last decade now allows large-scale three-

dimensional direct numerical simulations of atomization to be performed. Never-

theless, the fundamental question, whether all the physical scales involved in the

primary breakup process are faithfully resolved, has eluded researchers until now. In

the present study, we conduct direct numerical simulations of spray formation in a

gas-liquid mixing layer with state-of-the-art computational resources (using up to 4

billion cells and 16384 cores), in order to obtain a high-fidelity numerical closeup of

the detailed mechanisms of spray formation. We also aim to examine whether present

computational resources are sufficient for a fully resolved direct numerical simulation

of atomization.
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I. INTRODUCTION

The breakup of fluid masses is a phenomenon of enormous complexity, with diverse physi-

cal setups and mechanisms. When the fluid masses break rapidly into large numbers of small

droplets one speaks of atomization1,2. Such atomization in a gas-liquid mixing layer, where

a high-speed gas stream emerges from an orifice parallel to a lower-speed liquid stream,

has been studied in great detail3,4. The resulting Kelvin-Helmholtz instability generates

large coherent structures that grow in size as they propagate downstream, together with

equally growing wave-like structures5 on the liquid-gas interface. The standard picture

of atomization1 is that two-dimensional wave structures form near the orifice, develop into

sheets, which in turn develop Taylor-Culick end rims. The flow then becomes more markedly

three dimensional: finger branching from the end rim, and then various threads, fibers or

ligament-like structures parallel to the flow appear, which eventually break into droplets.

This sequence and its variants are called primary atomization, which is supposed to be fol-

lowed by secondary atomization, the breakup of large drops further downstream whenever

they interact with sufficiently high-velocity gas flow. Several types of probability distribu-

tions of droplet sizes have been proposed and compared to experiments3,6. Another mecha-

nism for primary atomization is the formation of holes in the thin-sheet-like structures that

appear in the waves prior to the formation of ligaments and fingers. These holes-in-thin-

sheets structures are quite similar, but not identical, to the holes that form in bag-breakup

secondary atomization7 and in splashes8. The hole formation has not been visualized as

frequently in primary atomization and is thus less firmly documented.

In order to better understand the mechanisms underlying atomization, experimentalists

have switched from the coaxial round jets typical of industrial applications to a quasi-

planar setup that is more favorable for detailed analysis9–11. This setup has allowed precise

measurements and detailed visualizations of the droplet-forming process. In the quasi-planar

configuration it is possible to compare the growth and frequency of the Kelvin-Helmholtz

instability in the linear regime as predicted by numerical simulation, linear stability theory

and experiments12. Three-dimensional analysis is, for obvious reasons13–15, less advanced,

despite a large number of results in the references already cited. In this work we simulate

a model of the quasi-planar experiment of Matas et al.9 in order to better understand the

mechanisms of droplet formation.
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II. METHODOLOGY

A. Problem description and simulation setup

The computational setup of the present problem is shown in Figure 1. The domain is a

box of dimensions Lx × Ly × Lz, where we inject two streams, liquid and gas, separated by

a solid separator plate of size `x × `y × Lz. The liquid and gas streams enter through the

boundary at x = 0. The thickness of the liquid stream is H while that for the gas stream is

H − `y.

The inflow velocity is specified as (uinflow, 0, 0) at the left boundary of the domain, where

the streamwise component u|inflow is expressed as follows,

uinflow =


Ul erf 2(H−y)

δ
, 0 ≤ y < H ,

Ug erf 2(y−H−ly)

δ
erf 2(2H−y)

δ
, H ≤ y < 2H ,

0, y > 2H .

(1)

The outflow condition is invoked at the right (x = Lx). The bottom boundary (y = 0)

is taken as a slip wall and periodic boundary conditions are applied to the front and the

back (z = 0 and Lz). In order to minimize the effect of the finite size of the domain, the

dimensions of the box are large in the x and y dimensions Lx = 16H and Ly = 8H (while

Lz is set to 2H). Furthermore, we allow the fluid to freely enter or leave the top boundary

(y = Ly) by applying a Neumann boundary condition for the normal velocity.

The boundary layers of the injected streams are represented by an error function. The

thickness of the boundary layers on the liquid and gas sides of the separator plate are taken

to be identical and denoted by δ, and we take δ = H/4. The length `x and the thickness

`y of the separator plate are H/2 and H/32, respectively and it has been shown that the

details of the separator plate is immaterial to the atomization process as long as `y � δ.12

It is infeasible with the present computational capability and numerical methodology

to perform direct numerical simulations (DNS) in this setup using the physical parameters

exactly as in the experiments9. This is due to the very wide range of relevant physical scales.

Indeed the tiny submicron droplets generated are four orders of magnitudes smaller than H.

A 3D mesh to resolve such a wide range of length scales would easily exceed a trillion cells

(for H = 1 cm and the cell size ∆ ≈ 1 µm), the computational cost for such simulations is

clearly far beyond the current computer power. To alleviate these problems we reduce the
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physical scale (H = 0.8 mm is used here compared to H = 5 to 20 mm in experiments9)

and choose a set of parameters that allows faster and easier simulations while still placing

the flow in the high-speed atomization regime. (As shown later, even for the reduced-scale

setup here we barely achieved well-resolved results using 16384 cores.)

The physical parameters and the corresponding dimensionless parameters are given in

Tables I and II, using standard notations and international units.

ρl ρg µl µg σ U0,l U0,g H δg ly

(kg/m3) (kg/m3) (Pa s) (Pa s) (N/m) (m/s) (m/s) (m) (m) (m)

1000 50 10−3 5× 10−5 0.05 10 0.5 8× 10−4 2× 10−4 2.5× 10−5

TABLE I. Physical parameters.

M r m Reg,δ Weg,δ Reg

ρgU
2
g /(ρlU

2
l ) ρl/ρg µl/µg ρgUgδ/µg ρgU

2
g δ/σ ρgUgH/µg

20 20 20 2000 20 8000

TABLE II. Key dimensionless parameters.

B. Numerical methods

We solve the Navier-Stokes equations for incompressible flow with sharp interfaces and

constant surface tension using the Volume-of-Fluid method as described in Tryggvason et

al.16. The fields are discretized using a fixed regular cubic grid (with cell size ∆), and we use

a projection method for the time stepping to incorporate the incompressibility condition.

The temporal integration is conducted by a second-order predictor-corrector method.16 The

interface is tracked using a Volume-of-Fluid (VOF) method with a Mixed Youngs-Centered

inplementation of Aulisa et al.17 to determine the normal vector and a Lagrangian-Explicit

scheme of Li18 for the VOF advection19. The advection of momentum near the interface

is conducted in a manner consistent with the VOF advection20 with the superbee limiter

applied in flux calculation. The viscous term is treated explicitly. Curvature is computed

using the height-function method by Popinet21. Surface tension is computed from curvature

by a balanced Continuous-Surface-Force method (see Renardy and Renardy22, Francois et
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al.23 and Popinet21). Density and viscosity are computed from the VOF fraction by an

arithmetic mean. To capture the dynamics of poorly resolved droplets accurately, droplets

of size smaller than 4 cells are converted to Lagrangian point-particles24. The overall method

is implemented in the free code PARIS25 and validation studies can be found in Ling et al.24

C. Simulation cases and computational costs

To assess whether the present simulation is a full DNS of atomization, simulations are

performed on four grids called M0, M1, M2, and M3 so that Mn has H/∆ = 32× 2n points

in the liquid layer H.

The time step for each mesh is computed based on the CFL condition, i.e., |u|max∆t/∆ <

θ, where θ is the CFL number and is taken to be 0.4 for all cases. The average time steps

for the M0, M1, M2, and M3 meshes are approximately 0.53, 0.28, 0.14, and 0.068 µs,

respectively.

The domain is initially filled with stationary gas (at t = 0) and then liquid and gas

streams progressively enters it. It takes a period of about 16 ms for the flow to reach a

statistically steady state (more details are shown in section III A). For the M0, M1, and M2

meshes, the simulations all start from t = 0 and end at about t = 70 ms. For the M3 mesh,

the simulation was performed using about 4 billion cells using 16,384 processors. Due to

the extreme cost for the M3 simulation, the simulation starts from a checkpoint of the M2

simulation at about t = 16 ms, and is continued only up to about t = 28 ms.

The M3 simulations are split into multiple runs, which are conducted on the supercomput-

ers CINECA-FERMI in Italy, LRZ-superMUC in Germany, and TGCC-CURIE in France.

The M0, M1, and M2 simulations are all performed on TGCC-CURIE. The total simulation

time for all four meshes took over 15 million CPU hours. The results presented correspond

to the M3 mesh, unless stated otherwise.

III. RESULTS

A. Overall atomization process

A global view of the atomization in a gas-liquid mixing layer is shown in Fig. 1. The single-

phase (gas-gas) and the two-phase (gas-liquid) mixing layers can be identified from the z-
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Run ∆(µm) H/∆ Cells # Cores # Total core-hrs

M0 25 32 8.39× 106 32 ∼ 6× 103

M1 12.5 64 6.71× 107 256 ∼ 1× 105

M2 6.25 128 5.37× 108 2048 ∼ 1.7× 106

M4 3.125 256 4.29× 109 16384 ∼ 14× 106

TABLE III. Summary of simulation runs.

vorticity plotted on the backplane. Both of the mixing layers are unstable due to the velocity

difference across the layers. The gas-liquid mixing layer develops faster and evolves a Kelvin-

Helmholtz-like wave on the interface. The interfacial wave grows and a thin liquid sheet forms

at the wave crest. A Taylor-Culick rim appears at the edge of the liquid sheet. The sheet folds

and creases under the action of the turbulent gas stream, and this leads to perturbations of

the rim. These perturbations produce small fingers which later develop into long ligaments.

There is an important difference between the rim instabilities observed here and those seen

for example in droplet splashes where interaction with energetic air motion is absent. The

ligaments eventually break into small droplets due to Rayleigh-Plateau instability. The

unbroken part of the liquid sheet reattaches to the domain bottom. Compared to the

gas-liquid mixing layer, the gas-gas mixing layer evolves more slowly. The invasion of the

turbulent vortices from the gas-liquid mixing layer accelerates the development of the gas-

gas mixing layer. Eventually, the two mixing layers merge and the downstream flows become

fairly violent and chaotic.

The domain is initially filled with stationary gas and the liquid and gas streams are then

injected progressively. As a result, it takes a transition time for the turbulent multiphase

flow and the resulting atomization processes to reach a statistically steady state. The tem-

poral evolutions of the average gas and liquid kinetic energy over the whole domain, i.e.,

1
VU2

g

∫
V
u2

2
(1 − C)dV and 1

VU2
g

∫
V
u2

2
CdV , are shown in Fig. 2, where C and V represent the

liquid volume fraction and the volume of the computational domain, respectively. It is ob-

served both the gas and liquid kinetic energy reach the approximate steady state at about

t = 16 ms. The simulations for the M0, M1, and M2 meshes are then continued to t = 70

ms. Due to the extreme cost of the M3 case, the simulation is run only up to about t = 28

ms.
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FIG. 1. Spray formation in a gas-liquid mixing layer. The z-vorticity is shown on the backplane.

The sampling region for droplets statistics is indicated by green lines.
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FIG. 2. Temporal evolution of mean kinetic energy of gas and liquid over the computational domain

for different meshes. The kinetic energy is normalized by U2
g .
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The formation, development, and breakup of the sequential interfacial waves significantly

perturbed the gas flow, resulting in the large-scale low-frequency oscillations in the temporal

evolution of the gas or liquid kinetic energy (the small-scale high-frequency oscillations may

be due to turbulence and its interaction with the wave). Therefore, we can approximately

estimate the number of waves captured by the simulation. For the M0, M1, and M2 meshes,

about twenty waves are captured after the steady state is reached. For the M3 mesh, due

to the shorter simulation time, only about four waves are observed.

B. Formation of sheets

Due to the velocity difference between the gas and liquid across the interface, a Kelvin-

Helmholtz-like wave develops on the interface and propagates downstream. As the interfacial

wave grows the radius of curvature at the wave crest continues to decrease and eventually

liquid sheets form.

It is generally believed that the wave that appears first is a two-dimensional one and

then transverse instabilities (such as Rayleigh–Taylor (RT) and Rayleigh–Plateau (RP) in-

stabilities) develop at the rim of the liquid sheet. This quasi-2D wave and its development

are shown in Figs. 3(a)-(d). The temporal evolution of the wave can be seen more clearly

by a sequence of snapshots of the interface at the plane z = H (see Fig. 3(e)). The wave

initially takes an Gaussian-like shape. The minimum radius of curvature is located near the

wave crest, and decreases from 189.7 µm at 17.3 ms to 43.1 µm at 17.6 ms. Then the wave

tends to fold forward. At a time between 17.7 and 17.9 ms, the two interfaces on both sides

of the wave crest become parallel and form a liquid sheet. At this point, the thickness of

the liquid sheet, denoted by e, is 174 µm. As the sheet is pulled and stretched by the fast

gas stream, its thickness decreases in time. At t = 18.2 ms (the last profile in Fig. 3(e))

the minimum sheet thickness decreases to about 50 µm. At this scale the capillary time is

τca = (ρle
3/σ)1/2 ≈ 0.05 ms and the Ohnesorge number is Oh= µl(σρle)

−1/2 ≈ 0.02. There

are still e/∆ = 16 grid points for the sheet thickness. It is seen that at this time of t = 18.2

ms the tip of the liquid sheet starts to fold. The radius of curvature at the hinge point is

about 25 µm. The fact that the tip of the sheet folds, instead of forming a Taylor-Culick end

rim as expected for this time scale and Oh number, is a testimony of the strong interaction

of the liquid sheet with the gas stream. The wave amplitude at t = 18.2 ms is comparable
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FIG. 3. Development of a quasi-2D interfacial wave, forming a liquid sheet: (a)-(d) time snapshots

of the interface; interface profiles at plane z = H with (e) original scale and (f) x-axis scaled by

the Dimotakis speed UD.

to H bringing the interaction to a maximum.

The celerity of the interfacial wave is approximately a constant, and agrees well with the

Dimotakis speed,

UD =
Ul +

√
rUg

1 +
√
r

, (2)

which is about 2.23 m/s for the present case. If the x-axis is shifted by UD with respect

to the origin of wave formation x0 and t0, the waves at different times collapse, except the

amplitude, as shown in Fig. 3(f). The agreement between the computed interfacial wave

celerity with the Dimotakis speed is a robust observation affirmed by other waves captured

in the simulation. This is also consistent to the well documented 2D case10.

Beyond the conventionally known quasi-2D waves, it is observed from the simulation

results that the liquid sheet also forms in a fully three-dimensional manner (see Figs. 4(a)-

(d)), resulting in a significant transversely deforming rim at the sheet edge. This transverse

wavelength is of the order of the width of the domain. (This may indicate that the domain

width is too small for the long wavelength modes in transverse instabilities.) It has been

shown before that the Rayleigh-Plateau instability can induce transverse deformation of the

rim, which later develops into fingers26,27. However, here the formation of 3D structures

is clearly much faster than the Rayleigh-Plateau rim instability would be, and even occurs

before the rim is formed at about t = 19.6 ms in Fig. 4(c).

Other different mechanisms can contribute to the formation of the 3D wave. In particular,
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it has been shown by the transient growth theory that the 3D perturbations of a two-phase

mixing layer can be more unstable than the 2D ones28.

Furthermore, the turbulent gas flow on top of the interface impose significant 3D forc-

ing on the interfacial wave. As the Reynolds number of the gas boundary layer is large

(Reδ = 2000), the gas stream becomes turbulent at about x/H=2 to 3. Two instantaneous

turbulent vortical structures of the gas flow above the interface are shown in Figs. 4(e) and

(f). Due to the low speed of the liquid stream, the interface serves as a deformed “wall”

and imposes a shear to the gas flow like in typical turbulent boundary layers. As a result,

the early streamwise development of vortices is quite similar to that observed in turbulent

boundary layers29. Quasi-streamwise vortices near the transition region30 are clearly seen in

Fig. 4(e). The “foot prints” of these turbulent vortices on the interface are clearly seen in

Fig. 4(a), which corresponds to the same time snapshot as Fig. 4(e), evidencing the effect

of the gas turbulence on perturbing the interface. The later growth of the interfacial wave

introduces significant modulation to the gas turbulence, for example, the flow separation at

the downstream of the wave enhances turbulence development (see Fig. 4(f)). The interac-

tion between turbulence and the interfacial wave formation is very complex and is beyond

the scope of the present paper, detailed investigations of the related topics are relegated to

our future works.

Finally, complex capillary wave interactions on the interface also contribute to triggering

irregular 3D waves. As shown in Fig. 5, the capillary waves propagate both upstream (waves

A and C) and downstream (wave B). The capillary wave speed can be estimated as

Uca =

√
πσ

ρlλ
, (3)

where λ is the wave length. For λ = 2∆M2, Uca ≈ 3.54 m/s. Therefore, small-scale capillary

waves indeed can overcome the Dimotakis speed (UD ≈ 2.23 m/s) and move upstream. The

upstream and downstream propagating waves B and C meet and accelerate the development

of the C wave.

C. Effect of mesh resolution

It has been shown previously that the boundary layer of the injected gas stream must be

well resolved, since otherwise the gas-assisted atomization and the frequency of the interfacial
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FIG. 4. Development of a fully 3D interfacial wave: (a)-(d) time snapshots of the interface and

(e)-(f) turbulent vortical structures in the gas-liquid mixing layer (visualized by the λ2 criterion).
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FIG. 5. Interfacial waves interaction (results by M2 mesh). Symbols indicate locations of the wave

crests at plan z = H. The Dimotakis speed (black dashed line) is plotted for comparison.

instability will not be accurately captured12. In the present study, we found that requiring

sufficient numerical resolution to compute the formation of the sheet and the rim indeed

introduce a stricter requirement on mesh size. As shown in Fig. 3(b), the radii of the wave

crest can go down to about 43.1 µm (t = 17.6 ms) or even lower to 25 µm when the sheet

folds, which is much smaller than the injected gas boundary layer thickness δ (≈ 200µm).

Furthermore, the thickness of the shear layer above the wave crest significantly decreases as

the wave develops, see Fig. 6. The shear layer thickness is initially similar to the boundary
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FIG. 6. Temporal evolution of the shear layer near the wave crest. (a)-(c) Streamwise velocity

contours near the wave crest (gas-liquid interfaces are indicated by white lines). The line plots are

the streamwise velocity profiles in y direction at the wave crest. The y location of the interface is

denoted by yinfc.

layer thickness of the injected gas stream δ (see t = 17.1 ms), then it drops rapidly as the

wave grows to about 15 µm at t = 17.7 ms. The M0 mesh (∆ = 25 µm) is clearly insufficient

to resolve the wave crest curvature and the shear layer, as a result, the formation of the

sheet is not properly captured. As shown in Fig. 7(a), the rim is completely missed and the

tip of liquid sheet breaks erroneously, forming numerous tiny ligaments and droplets. The

result for the M1 mesh (∆ = 12.5 µm) is better but two sides of the rim are still poorly

resolved. For the M2 and M3 meshes (∆ = 6.25 and 3.125 µm), about 4 and 7 cells are used

to resolve the minimum radius of the wave and about 3 and 6 cells for the shear layer above

the wave crest. As a result, the sheet formation and the rim dynamics are well captured,

see Figs. 7(c)-(d). In such cases, no fingers or droplets are formed at this early stage.
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(a) M0 (b) M1 (c) M2 (d) M3

FIG. 7. A closeup at sheet formed at the wave crest for different mesh resolution.
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FIG. 8. Ligaments formation due to fingering at the tip of a liquid sheet. The color on the interface

indicates the streamwise velocity.

D. Formation of ligaments

The transverse instability of the rim is known to generate fingers at the tip of a liquid

sheet27. The formation of a finger at the rim is well captured by the present simulation as

shown in Fig. 8. The streamwise fluid velocity is also plotted on the interface and it is seen

that the velocity increases gradually from the base to the round tip of the finger, indicating

that the finger is stretched by the surrounding fast gas stream. Eventually the short finger

develops into a long ligament, which breaks later to form droplets.

Beyond fingering at the rim of the liquid sheet, holes appearing in the liquid sheet are

observed to be another way to break the liquid sheet and to produce ligaments. Similar

to the fingers, the liquid sheet is also stretched by the gas stream and becomes thinner

and thinner. At a certain stage, holes are formed in the liquid sheet, see Fig. 9. The two

holes are initially very small (highlighted by different dashed lines) but later they expand

rapidly, causing the liquid sheet to rupture. Several small ligaments are generated and the

orientations of these ligaments are more diverse, different from the ligaments formed by

fingering which tend to align with the streamwise direction.

For a stationary liquid sheet, holes are formed only when the sheet thickness is very small

(e ∼ O(10)nm) and the disjoining pressure becomes active. For a dynamic liquid sheet

it has been shown in recent experiments that holes can form at a much larger thickness
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FIG. 9. Ligaments formation due to holes in a liquid sheet. The color on the interface indicates

the streamwise velocity.

(e ∼ O(10)µm)7,8. For example, in the experiment of splashes by Marston et al.8, the sheet

thickness estimated by the hole expansion velocity and the Taylor-Culick theory is about 9 to

16 µm. Several effects may explain the piercing of a liquid sheet at such large thicknesses,

and among them are Marangoni effects and perturbations from bubbles or droplets too

small to be visible. Random perturbations from unseen objects are difficult to model, and

Marangoni forces are not included in the present simulation. Here holes appear when the

thickness of the liquid sheet decreases to about the cell size ∆. This numerical cut-off length

scale (the smallest ∆ used is about 3.1 µm) is much larger than breakup thickness of a

stationary sheet but is comparable or even smaller than the length at which dynamic liquid

sheets are seen to break in experiments.

An example of the evolution of a hole formed in a liquid sheet is shown in Fig. 10.

The measured hole expansion velocities in the streamwise and transverse directions are

Uh,x ≈ 2.70 m/s and Uh,z ≈ 0.978 m/s, respectively. As can be seen from the cross sections

of the hole in the y−z and x−y planes, the sheet thickness near the hole is very uneven. The

minimum sheet thickness just before the hole appears is about 22 µm, and after the sheet

rupture the thickness in the vicinity of the hole varies from 27 to 85 µm. The Taylor-Culick

velocity,

Uh,TC =

√
2σ

ρle
(4)

can be calculated based on the sheet thickness, yielding Uh,TC = 0.95 ∼ 1.68 m/s. It is seen

that Uh,z agrees well with Uh,TC . The excess of Uh,x over the Taylor-Culick prediction is due

to the streamwise stretching the liquid sheet, which causes the hole to expand faster in the

x than in the z direction.

It should be mentioned that the measurement of the hole expansion speed is indeed chal-

lenging. Since several holes usually form simultaneously and then merge quickly, to measure

the hole expansion speed one needs to have enough time snapshots of the interface before

14



Y

Z
(g) 21.2 ms (h) 21.25 ms (i) 21.3 ms(d) 21.25 ms

(e) 21.3 ms

(f) 21.35 ms

Y

X

21.25 ms 21.3 ms 21.35 ms

(a) (b) (c)

FIG. 10. Evolution of a hole formed in a liquid sheet. (a)-(c) A closeup a the hole expansion.

Liquid volume fraction (red) at y− z and y− x planes cutting through the holes are also shown in

(d)-(f) and (g)-(i), respectively.

the holes merging. Due to the high storage requirement for such large-scale simulations, this

is in general quite difficult to achieve. Therefore, although many holes are observed, there

are indeed limited number of them we can accurately measure the expansion speed. More

efficient methods in characterizing of the statistics of holes are still to be explored in future

works.

Since mechanisms of sheet rupture, such as disjoining pressure, are absent in the present

study, the initial formation of the holes is mesh dependent. However, it is quite clear that

the subsequent hole development and the rim around the hole are well resolved with the M3

mesh. As a consequence, further increase of mesh resolution will only delay the pinch-off

point but will not affect the ligaments formed from the expansion of the holes.
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FIG. 11. Droplets generation due to ligament breakup. The turbulent vortices surrounding the

ligament is plotted in (b) by the λ2 criterion.

E. Formation of droplets

Eventually the ligaments break into small droplets and one realization of the breakup

process is shown in Fig. 11. The ligament here is the same one as shown in Fig. 8. The

ligament exhibits a very irregular shape compared to typical Rayleigh-Plateau breakup of

a stationary ligament. The ligament diameter varies from 72 to 244 µm along its axis.

The stretching by the surrounding turbulent gas stream (see Fig. 11(b)) clearly contributes

to the irregular breakup. The neck behind the tail of the ligament pinches off, forming a

big droplet of d ≈ 200µm. The retraction of the ligament tail from the pinch-off point

forms a big liquid blob in the middle of the ligament. Similar behavior is also observed in

experiments3. Coalescence of small droplets are also seen in Fig. 11(c). At the end, a series

of droplets varying from 95 to 230 µm are produced.

To have a more general analysis of the droplets formed in atomization, we investigate the

size distribution of droplets in a cubic box located downstream of the breaking wave. The

sampling region is indicated in Fig. 1. The edge length of the cubic box is 2H (8 ≤ x/H ≤ 10,
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0.5 ≤ y/H ≤ 2.5, and spanning the whole width of the domain). The average number of

droplets, nd(d), as a function of the droplet volume-based diameter, d, is plotted in Fig.

12(a)-(d), where nd(d) is defined as

nd(d) =
N(d)

Ns

, (5)

where N(d) is the total number of droplets collected within the bin centered at d and Ns

is the number of samples. The bin width is varied in d, starting from 6.25 µm and then

increasing by a constant ratio 1.2. The reason for using wider bins for larger d is to reduce

the fluctuations due to low numbers of larger droplets. Furthermore, it should be noted

that the generation of droplets of size smaller than 2∆ for each mesh is quite likely not well

captured in the present simulation. As a result, the droplets on the left of the dashed line

(d = 2∆) are less trustworthy.

The droplets statistics are collected after the atomization has reached a statistically steady

state (see Fig. 2) and over time intervals of about 54 ms for the M0 to M2 meshes and 5.6

ms for the M3 mesh. Sampling is conducted every 10 time steps for the M0, and M1 meshes,

and every 25 and 50 time steps for the M2 and M3 meshes, respectively. The sensitivity of

droplet size distributions for the sample number Ns is tested for the M2 and M3 meshes,

see Figs. 12(e) and (f). The size distribution of droplet number for the M2 mesh is clearly

converged for Ns > 1680 (sampling time interval about 6 ms). Due to shorter simulation

time for the M3 mesh, the sample number is also smaller compared other cases. When Ns

is small, such as Ns = 500 in Fig. 12(f), the overall trend of nd remains similar but exhibits

more fluctuations. The fluctuations are more profound for large d as the value of nd is low.

The maximum samples we collect for the M3 mesh is about Ns = 1671 over a time interval

about 5.6 ms, during which about three to four waves break and produce droplets. From

the M2 results (Fig. 12(e)) it seems like 5.6 ms is about the minimum sampling time that is

required to achieve statistically-converged size distribution.

As shown in Fig. 12(g) the profiles of nd for the M1, M2, and M3 meshes are quite similar.

The M0 result is significantly different from others, indicating that the coarse M0 mesh is

insufficient for accurate prediction of droplet statistics. When the mesh size decreases, not

only are more small droplets (d . 50 µm) captured (as expected), but we also observe

that more large droplets (d & 180 µm) are collected. These large droplets (d & 180 µm),

such as those shown in Fig. 11, are typically generated from thicker ligaments, which are in
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FIG. 12. The size distribution of droplet number. Histograms of nd for different meshes are

shown in (a)-(d). The bin width increases with d by a constant ratio 1.2 from 6.25 µm. The

size distribution of nd for different sample number is shown in (e) and (f) for the M2 and M3

meshes,directly. The comparison of nd for different meshes is shown in (g). The vertical dash lines

in (a)–(d) indicate d = 2∆ for different meshes.

turn produced by fingering at the end rim of the sheet (see Fig. 8) or holes-induced sheet

rupture (see Fig. 9). If the mesh is not sufficiently fine to capture the Taylor-Culick rim at

the edge of a liquid sheet (or at the edge of a hole) as shown in Fig. 7, then such a thick

ligament may not get a chance to form. Instead, many tiny ligaments will be produced due

to numerical breakup. As a consequence, the number of large droplets appear in the M0

result is significantly lower than that for M3.

The probability distribution function (PDF) of droplet number (Pn) and mass (Pm) are

shown in Figs. 13(a) and (c), respectively, where Pn and Pm are defined as

Pn(d) =
N(d)

∆d

∑
N(d)

(6)
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and

Pm(d) =
m(d)

∆d

∑
m(d)

(7)

where ∆d is the bin width and m(d) represent the total mass of droplets collected in the bin

centered at d. It can be shown that Pm can be related to Pn as

Pm(d) = Pn(d)

(
d

dv

)3

, (8)

where dv is the mean volume-based diameter, expressed as

d
3

v =

∫∞
0
Pn(d)d3dd∫∞

0
Pn(d)dd

. (9)

Due to the fact that more large droplets (d & 180 µm) are captured when the mesh is

refined, Pn is observed to be increasingly convex from M0 to M3. The shape of Pn for the

M1 to M3 meshes indeed agrees quite well for d > 200 µm. It is clear that the number

of tiny droplets (d . 10 µm) increases when the mesh is refined and thus is still mesh

dependent. The peak of Pn is still not well captured even with the finest mesh used here.

However, these tiny droplets consist of only a small fraction of the total mass as shown in

Fig. 13(c). Compared to the droplet number distribution, for some applications the droplet

mass distribution is indeed more important in characterizing sprays. It is observed that the

main contribution to the mass is from droplets of d & 40 µm (the peak of Pm locates in

50 . d . 100 µm and), which are well captured by the fine meshes like M2 and M3 used in

the present study.

Finally, the log-normal and gamma distribution functions are employed to fit the PDF

results. The log-normal distribution function is given as

Pn,L(d) =
1

dσ̂
√

2π
exp

[
−(ln d− µ̂)2

2σ̂2

]
, (10)

where the mean and the variance of ln d are µ̂ and σ̂2. The gamma distribution can be

expressed as

Pn,G(d) =
βα

Γ(α)
dα−1 exp (−βd) , (11)

where α = (µ̃/σ̃)2 and β = α/µ̃, and the mean and variance of d are denoted as µ̃ and σ̃2 .

A comparison between the present simulation results and the PDF models are shown in

Fig. 13. The log-normal distribution is fit with σ̂ ' 1.2 and µ̂ ' 2.2; while the gamma with

α ' 1.2 and β ' 0.04. The corresponding distributions of droplet mass for log-normal and

gamma models are obtained by Eq. (8) (dv,L = 54 µm and dv,G = 51 µm).
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FIG. 13. Comparison of droplet (a, b) number and (c) mass PDF profiles with the log-normal and

gamma distribution functions. The bin width increases with d by a constant ratio 1.2 from 3.125

µm. The mesh size for different cases are indicted by vertical dash lines with corresponding colors.

Both the log-normal and gamma distributions have been observed in liquid atomization

processes.6,31 For the present simulation results, an impressive agreement between the log-

normal distribution and the M3 result is observed. In Fig. 13(b) we plot dPn as a function

of d in a log-log scale to show more clearly the distribution for small d. From Eq. (10) it is

known that for a log-normal distribution, log(dPn,L) is a parabolic function of log(d) and the

M3 results well match the right branch of the parabola. The gamma distribution fits well

for d . 150 µm for the M1 and M2 meshes, yet seems to underpredict the droplet number

for large droplets.

The recent experiments by Marty32 with a similar setup also show that the log-normal

distribution is a good approximation of droplet number distribution for a wide range of

parameters. The experimentally observed log-normal shape of the droplet number PDF

is qualitatively consistent with the present simulation results. As shown in Eq. (10), the

variance of ln d, σ̂, is an interesting dimensionless number to characterize the distribution

profile and is independent of the mean diameter. It is also shown by Marty32 that σ̂ remains

in between 1 and 1.8 for a wide range of parameter combinations (M varying from about

1.5 to 16 and Reδ from about 500 to 2000). The value of σ̂ = 1.2 obtained in the present

simulation (M = 20 and Reδ = 2000) lies in the range of experimental measured values.

To further comment on these results, it is worth noting that the PDF of droplet size is

indicative of the distribution of scales in two-phase turbulence. It supplements the power

spectrum P (k) as a rich diagnostic of the presence of large and small scales simultaneously.
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In the power spectrum of single phase turbulence, an algebraic range, close to the theoret-

ical prediction of the k−5/3 Kolmogorov spectrum, has been observed experimentally and

numerically. The ratio between the largest and the smallest wavenumber in that range,

lI/lK , is a measure of the width of the spectrum and also the degree of “full” development

of turbulence, where lI and lK are the scale of energy injection and the Kolmogorov scale,

respectively. In the PDF of droplet size, a scaling with the obvious character of the Kol-

mogorov scaling has not been found yet. However, as some evidence points to a log-normal

PDF at high velocity, the standard deviation σ̂ that scales as | ln(dmin/dmax)| then can pro-

vide a diagnostic of the presence of a wide range of scales. A large σ̂ corresponds to a “fully

developed multiphase turbulence”. The fact that σ̂ falls in a similar range is an indication

that the experiments and the simulations are in the same degree of “full” development of

atomization.

In spite of the reasonable performance of the distribution models, the physical reasons for

the agreement are still not fully understood. The idea behind the log-normal model is that

the formation of droplets is a sequential cascade of breakups, where the larger mother drops

break into smaller daughter drops. The ratio between the daughter and mother drops in each

breakup is a random fractional number which follows a normal distribution. As a result,

the size of the droplets formed at the end follows a log-normal distribution. In contrast to

the breakup process, the coalescence between droplets introduces an inverse cascade, i.e.,

smaller droplets collide and merge to form bigger droplets or the coalescence of the smaller

blobs constitutive of a ligament forms bigger blobs. These aggregation scenarii will result

in a gamma distribution for the droplet size6. The simulations presented here show that

the spray formation is through a sequence of different complex mechanisms, and neither of

these two PDF models are therefore likely to completely capture these mechanisms. We

have observed breakups in sequence, the bulk liquid first breaks into thin liquid sheets, then

the sheets into fingers and ligaments, and at last the ligaments into droplets of different

size. However, the process of spray formation is clearly not a sequence of random breakups

like suggested in the log-normal distribution model. (We rarely see a droplet, once formed,

further break into smaller droplets in the fine mesh runs.) On the other hand, coalescences

of droplets, the assumption behind the gamma distribution model, are only occasionally

observed. Therefore, it is also quite likely that the aggregation would not have a significant

impact on the droplet size, either.
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Notice that both of these classical distributions, the log-normal and the gamma, are

obtained when a scaling process is observed, that is when nonlinear effects occur over a large

range of scales. For example, Kolmogorov turbulent cascade for the log-normal distribution,

or Einstein-Smoluchowski aggregation dynamics for the gamma distribution, both span over

a wide range of scales from `min to `max. The fact that ln(`max/`min) is large is a condition

of applicability of the central limit theorem in these theories. Here the best fit to the log-

normal distribution indicates that ln(`max/`min) ∼ 2σ̂ ≈ 2.4. Compared to many scaling

observations performed in physics over a moderate range of scales, to be specific with just

one decade as ln(`max/`min) ≥ ln 10 ≈ 2.3, the present system has a sufficiently large range

of scales to consider scaling hypotheses, but not yet a “truly” large range of scales as in

Kolmogorov turbulent cascade experiments at large Reynolds numbers. The absence of a

truly large range of scales makes it difficult to draw definite conclusions from the fit of the

droplet size probability distribution to the classical theories, but it also indicates that none

of these theories is without doubt in its range of validity.

Another analysis of the droplet size distributions, that does not involve a single scaling

process, is to consider several distinct processes at different scales, for instance ”rim drops”

from the disintegration of the Taylor-Culick rims and ”film drops” from the disintegration of

the thin sheets. In some experiments,4 hints of the bimodal distributions that would result

from two distinct processes have been seen. We observe no such effects in our distributions.

IV. CONCLUSIONS

Spray formation in a gas-liquid mixing layer is investigated by DNS in the present study.

To examine whether the simulation fully resolves all the physical scales the mesh resolution

is varied and the finest mesh consists of about 4 billion cells. The simulation results clearly

show the detailed processes of how the bulk liquid jet breaks into sheets, then ligaments, and

finally droplets. The development of the interfacial wave is crucial to the sheet formation.

Both quasi-2D and fully 3D waves are observed. For the 3D waves, the development of

the 3D structure is clearly much faster than the Rayleigh-Plateau instability in the end

rim. Ligaments are shown to be generated by fingering at end rims of liquid sheets and

also by expansion of holes in liquid sheets. A sequence of hole evolutions are shown and

the measured expansion velocity is found to agree well with the Taylor-Culick theory. Due
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to the interaction with the surrounding turbulent gas stream, ligaments generally exhibit

irregular shapes and complex dynamics when they break into droplets. The size distributions

of droplets in a sampling box at the downstream of the breaking wave is investigated for

different meshes. It is found that the coarse M0 mesh will not only miss the small droplets

but also the larger ones. The reason is that if the development of the wave is not well

resolved (the mesh is not sufficiently fine for the curvature of the wave crest or the shear

layer above the wave), the sheet formation will be erroneous, resulting in fake breakups and

many tiny ligaments and drops, instead of larger droplets and thicker ligaments as observed

in the fine mesh results. At the end, the log-normal and gamma distributions are employed

to fit the PDF data and the log-normal model seems to fit better with the simulation results

of the fine meshes.
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