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Abstract

We consider “super no-scale models” in the framework of the heterotic string, where the N = 4, 2, 1 → 0
spontaneous breaking of supersymmetry is induced by geometrical fluxes realizing a stringy Scherk–
Schwarz perturbative mechanism. Classically, these backgrounds are characterized by a boson/fermion 
degeneracy at the massless level, even if supersymmetry is broken. At the 1-loop level, the vacuum en-
ergy is exponentially suppressed, provided the supersymmetry breaking scale is small, m3/2 � Mstring. 
We show that the “super no-scale string models” under consideration are free of Hagedorn-like tachyonic 
singularities, even when the supersymmetry breaking scale is large, m3/2 � Mstring. The vacuum energy 
decreases monotonically and converges exponentially to zero, when m3/2 varies from Mstring to 0. We also 
show that all Wilson lines associated to asymptotically free gauge symmetries are dynamically stabilized by 
the 1-loop effective potential, while those corresponding to non-asymptotically free gauge groups lead to 
instabilities and condense. The Wilson lines of the conformal gauge symmetries remain massless. When sta-
ble, the stringy super no-scale models admit low energy effective actions, where decoupling gravity yields 
theories in flat spacetime, with softly broken supersymmetry.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
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1. Introduction and summary

String theory unifies gravitational and gauge interactions at the quantum level. To de-
scribe particle physics, one can naturally consider classical models defined in four-dimensional 
Minkowski spacetime, where string perturbation theory can be implemented to derive the quan-
tum dynamics. However, from a gravitational point of view, the question of the cosmological 
constant which can be regenerated at 1-loop, must be addressed. In non-supersymmetric models, 
such as those derived by compactifying the SO(16) × SO(16) ten-dimensional heterotic string, 
this vacuum energy density is extremely large [1]. It is generically of order M4

s , where Ms is the 
string scale, and has no chance to be naturally canceled by any mechanism involving physics at 
lower energy.

Alternatively, one can consider no-scale models [2], which by definition describe at tree level 
theories in Minkowski space, where supersymmetry is spontaneously broken at an arbitrary 
scale m3/2. More precisely, m3/2 is a flat direction of a classical positive semi-definite potential, 
Vtree ≥ 0. This very fact opens the possibility to generate by quantum effects a vacuum energy 
of arbitrary magnitude. In N = 1 supergravity language, the no-scale models involve a superpo-
tential w0 and moduli fields zi , in terms of which the scale of the spontaneous supersymmetry 
breaking can be expressed as [3],

m2
3/2 = eK |w0|2 = eK̃ |w0|2

Im z1 Im z2 Im z3
, (1.1)

where K is the Kälher potential and K̃ is the part of K that is independent of the three moduli 
zi associated to the breaking of supersymmetry. When w0 is independent of the zi ’s, m3/2 is 
undetermined by the minimization condition 〈Vtree〉 = 0. In string theory or its associated effec-
tive supergravity description at low energy, depending on the choice of supersymmetry breaking 
mechanism, the zi ’s can either be the dilaton–axion field S, or Kähler or complex structure mod-
uli TI , UI associated to the six-dimensional internal space. For instance:

– Some initially supersymmetric models can develop non-perturbative effects, such as gaug-
ino condensation [4]. In this case, some of the fields, including S, are stabilized. The magnitude 
of supersymmetry breaking is determined by |w0|2 = �6

np/M
4
P and the imaginary parts of zi , 

i ∈ {1, 2, 3}, which can be Kähler or complex structure moduli TI , UI . In the expression of the 
superpotential, MP � 2.4 · 1018 GeV is the Planck scale and �np = Ms exp (−8π2/|b|g2

s ) is 
the scale of confinement associated to an asymptotically free gauge group, of β-function coef-
ficient b. gs is the string coupling, which relates the string and Planck scales as Ms = gsMP. 
The gaugino condensation breaking mechanism leads naturally to a small gravitino mass, even 
though the moduli fields Imzi ’s are of order 1. However, this non-perturbative scenario can only 
be studied qualitatively at the effective supergravity level, since no fully quantitative derivation 
from string computations is available yet.

– Alternatively, perturbative or non-perturbative fluxes [5] along the internal space can induce 
non-trivial superpotentials that break supersymmetry. In some cases, S-, T- or U-dualities [6]
can be used to derive semi-quantitative results. In general, there is not yet available full deriva-
tion from string computations and so, one must restrict to semi-quantitative descriptions at the 
effective supergravity level. Some exception however exists, on which we now turn on.

In the present work, we focus on geometrical fluxes that realize generalized “coordinate-
dependent compactifications” [7,8]. The latter are similar to that proposed by Scherk and 
Schwarz in supergravity [9], but upgraded to string theory and furthermore to its gauge sector. 
In some cases, the mechanism can be implemented at the level of the worldsheet 2-dimensional 
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conformal field theory, thus allowing explicit quantitative string computations, order by order in 
perturbation. The scale m3/2 of spontaneous supersymmetry breaking is given by the inverse vol-
ume of the internal directions involved in the generalized stringy Scherk–Schwarz mechanism. 
For the quantum vacuum energy density to not be of order M4

s , this volume should be large, and 
the associated towers of Kaluza–Klein (KK) states should be light, with many consequences:

• When their contributions do not cancel each another (a situation that will be central to the 
present work), the KK states, whose masses are of order m3/2, dominate the quantum ampli-
tudes, while the heavier states, whose masses are of order cMs, yield exponentially suppressed 
contributions, O(e−cMs/m3/2). In practice, cMs can be the string scale, the GUT scale or a large 
Higgs scale.

• These dominant contributions are the full expressions obtained in loop computations done 
in a pure KK field theory that realizes a spontaneous breaking of supersymmetry à la Scherk–
Schwarz. No UV divergence occurs, a fact that is similar to that observed in field theory at finite 
temperature when the KK modes are Matsubara excitations along the Euclidean time circle and 
the spectrum at zero temperature is supersymmetric.

• At 1-loop, if the model does not contain any scale below m3/2, the effective potential takes 
the form [10–13],

V1-loop = ξ(nF − nB)m4
3/2 +O

(
M4

s e−cMs/m3/2
)

, (1.2)

where nF and nB count the numbers of massless fermionic and bosonic degrees of freedom, while 
ξ > 0 depends on moduli fields other than m3/2. The above result makes sense in the theories that 
are free of “decompactification problems” [14], which would invalidate the string perturbative 
approach, due to large threshold corrections to gauge couplings [15,16]. For instance, models 
realizing either the N = 4 → 0 or N = 4 → 2 → 0 or N = 2 → 1 → 0 patterns of spontaneous
supersymmetry breaking are consistent at the perturbative level [13].

Notice in Eq. (1.2) the absence of term proportional to StrM2 �2
co ∝ m2

3/2�
2
co, where M is the 

mass operator. Such a term appears in N = 1 and N = 2 supergravities spontaneously broken to 
N = 0, when the quantum corrections are regularized in the UV by a cut-off scale �2

co =O(M2
s ). 

Even if the extremely large term m2
3/2�

2
co is not present in string theory, the sub-dominant one, 

proportional to m4
3/2, still occurs when nF �= nB. This leads a serious difficulty, since it is far too 

large, compared to the cosmological constant (indirectly) observed by astrophysicists, even when 
m3/2 is about 10 TeV, which is the order of magnitude of the lowest bound of supersymmetry 
breaking scale allowed by current observations at the LHC.

This remark invites us to consider “super no-scale models” in string theory [11,12], which 
are the subclass of no-scale models satisfying the condition nF = nB. These theories generate 
automatically a 1-loop vacuum energy that is exponentially suppressed, provided m3/2 is much 
lower than cMs. The “super no-scale models” extend the notion of no-scale structure valid at 
tree level to the 1-loop level. Note that non-supersymmetric classical models satisfying the even 
stronger property of boson–fermion degeneracy at each mass level are already know in type II 
string [17,18] and orientifold descendants [19,20]. They are based on asymmetric orbifolds and 
yield an exactly vanishing vacuum energy at 1-loop. However, contrary to what was initially be-
lieved, the 2-loop contribution seems to be non-trivial, as a priori expected [21]. It is important 
to stress that when these models describe a spontaneous breaking of supersymmetry to N = 0,
they are super no-scale models in a strong sense and that, when perturbative heterotic dual de-
scriptions are found, the latter appear to be super no-scale models in the weaker sense we have 
defined i.e. with boson–fermion classical degeneracy at the massless level only [18,20].
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In Sect. 2, we display one of the simplest super no-scale models. It is realized in heterotic 
string compactified on T 2 × T 2 × T 2. The moduli T2, U2 and T3, U3, associated to the 2nd and 
3rd internal 2-tori, take values such that the right-moving gauge group is enhanced to either 
G = U(1)2 × SU(2)4 × SO(16)2 or U(1)3 × SU(2) × SU(3) × SO(16)2. The N = 4 → 0
spontaneous breaking of supersymmetry is realized via a stringy Scherk–Schwarz mechanism 
[7] that involves the 1st 2-torus only, and the supersymmetry breaking scale m3/2 is a function 
of the associated moduli T1, U1.

When m3/2 is of the order of the string scale, a fact that arises when |T1| and |U1| are O(1), 
the corrections O(M4

s e−cMs/m3/2) to the effective potential are not suppressed anymore. Even 
if these precise terms are those responsible for Hagedorn-like transitions in models where su-
persymmetry is spontaneously broken to N = 0 [8,22], we show that such instabilities are not 
present in our model. In other words, the theory does not develop classical tachyonic modes. 
Moreover, the super no-scale structure shows up as soon as m3/2 is lower than Ms. This situ-
ation is encountered in two distinct corners of the (T1, U1)-moduli space, which are T-dual to 
each other: |T1| � 1 with |U1| = O(1), and |T1| = O(1) with |U1| � 1. On the contrary, m3/2
is greater than Ms in the remaining corners of the (T1, U1)-moduli space, which are also T-dual 
to one another: |T1| � 1 with |U1| = O(1), and |T1| = O(1) with |U1| � 1. When m3/2 > Ms, 
the model is naturally interpreted as an N = 0 theory realized as an explicit breaking of N = 4
(rather than a no-scale model). It is also interesting to note that when m3/2 varies from +∞ to 
0, V1-loop decreases monotonically and converges to 0. This behavior imposes the interesting fact 
that in a cosmological scenario, m3/2 slides to lower values, thus implying the super no-scale 
structure to be reached dynamically at a low supersymmetry breaking scale.

The above statement is valid provided that there are no tachyonic instabilities, which can be 
developed at the 1-loop level. In order to study this issue, we consider in Sect. 3 the response of 
V1-loop under all possible small moduli deformations of the �6,6+16 lattice, namely the T 6-metric 
and antisymmetric tensor, and Wilson lines. The associated moduli YIJ , I ∈ {1, . . . , 6}, J ∈
{1, . . . , 6 + 16} cover the full classical moduli space SO(6,6+16)

SO(6)×SO(6+16)
around the initial extended 

symmetry point based on the gauge group U(1)2 × SU(2)4 × SO(16)2. Actually, slightly de-
forming the initial background amounts to switching on Higgs scales YIJMs smaller than m3/2. 
In this case, some of the nB + nF massless states acquire small masses. In fact, nB and nF are 
functions of the YIJ ’s, which actually interpolate between distinct integer values. Expanding 
locally around the initial background, we find

V1-loop = ξ(nF − nB)m4
3/2 − ξ̃ m2

3/2

∑
α

bα

rank Gα∑
J=1

6∑
I=1

(YIJ Ms)
2 + · · · +O

(
M4

s e−cMs/m3/2
)

,

(1.3)

where ξ̃ > 0. The structure of this result happens to be valid for any no-scale model that realizes 
the N = 4 → 0 breaking of supersymmetry. The Gα’s are the gauge group factors, and the bα’s 
are their associated β-function coefficients. The YIJ ’s are their Wilson lines along T 6. The above 
result shows that the Wilson lines associated to Cartan generators of an asymptotically free gauge 
group factor Gα (bα < 0), acquire positive squared masses at 1-loop and thus, they are stabilized 
at the origin, YIJ = 0. On the contrary, the moduli associated to a non-asymptotically free gauge 
group factor Gα (bα > 0), become tachyonic. They condense, thus inducing negative contribu-
tions to V1-loop and the Higgsing of Gα to subgroups with non-negative β-function coefficients 
but equal total rank. It is only when bα = 0 that the associated YIJ ’s remain massless.
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Note however that the stability of the super no-scale models is always guaranteed when they 
are considered at finite temperature T , as long as T is greater than m3/2. This follows from the 
fact that in the effective potential at finite temperature – the quantum free energy –, all squared 
masses are shifted by T 2, which implies that all moduli deformations are stabilized at YIJ = 0
[23]. Therefore, in a cosmological scenario where the Universe grows up and the temperature 
drops, the previously mentioned instabilities (for bα > 0) take place as soon as T 2 reaches m2

3/2
from above.

In Sect. 4, we consider chains of super no-scale models that realize an N = 2 → 0 or N =
1 → 0 spontaneous breaking of supersymmetry, via Zfree

2 or Zfree
2 ×Z2 orbifold actions on parent 

N = 4 → 0 super no-scale models. In the “descendant” theories, Zfree
2 is freely acting, which 

ensures that the sub-breaking of N = 4 → 2 is spontaneous, so that the models are free of 
decompactification problems [13]. The drawback of this chain of models is that the final spectrum 
is non-chiral, as opposed to that of the super no-scale models based on non-freely acting orbifolds 
and constructed in Ref. [11], which however suffer from decompactification problems [14–16].

Finally, additional remarks and perspectives can be found in Sect. 5.

2. N = 4 → 0 super no-scale model

In this section, we built and analyze in more details one of the simplest super no-scale 
models, already presented in Ref. [12]. It is constructed in heterotic string and realizes the 
N = 4 → 0 spontaneous supersymmetry breaking, with gauge symmetry that will appear to 
be either G = U(1)2 × SU(2)4 × SO(16)2 or U(1)3 × SU(2) × SU(3) × SO(16)2. The 1-loop 
effective potential is given as usual in terms of the partition function at genus 1, Zsss, integrated 
over the fundamental domain F of SL(2, Z),

V1-loop = − M4
s

(2π)4

∫
F

d2τ

2τ 2
2

Zsss , (2.1)

where τ = τ1 + iτ2 is the genus-1 Techmüller parameter.

2.1. Partition function

Our starting point is the “parent” N = 4, E8 × E′
8 heterotic string compactified on

T 2 × T 2 × T 2, whose partition function has the following factorized form:

ZN=4 = O
(0)
2,2 O

(1)
2,2 O

(2)
2,2 O

(3)
2,2

1

2

∑
a,b

Z
(F)
4,0

[a
b

]
Z0,8+8 , (2.2)

where Z(F)
4,0

[a
b

]
denotes the contribution of the left-moving 2-dimensional fermions, super-partners 

of the 2 +6 coordinates in light-cone gauge, and Z0,8+8 is that of the 8 +8 right-moving compact 
bosons, which give rise to the E8 × E′

8 affine characters in the adjoint representation,

Z
(F)
4,0

[a
b

]= (−1)a+b+ab
θ
[a
b

]4

η4
, Z0,8+8 =

⎛
⎝1

2

∑
γ,δ

θ̄
[γ
δ

]8

η̄8

⎞
⎠
⎛
⎝1

2

∑
γ ′,δ′

θ̄
[γ ′
δ′

]8

η̄8

⎞
⎠ , (2.3)

where the spin structure a, b and γ, δ, γ ′, δ′ ∈ Z2.
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O
(0),
d−2,d−2 denotes the contributions of the d − 2 = 2 spacetime light-cone coordinates, while 

O
(I)
2,2 , I ∈ {1, 2, 3}, arise from the coordinates of the three internal 2-tori and can be expressed in 

terms lattices:

O
(0)
d−2,d−2 = 1(√

τ2ηη̄
)d−2

, O
(I)
2,2 = �2,2(TI ,UI )

η2η̄2
, I ∈ {1,2,3} . (2.4)

We denote by �2,2 = �2,2
[0, 0

0, 0

]
the unshifted (2, 2)-lattice. More generally, the shifted lattice to 

be used in a moment is defined as �2,2
[h1, h2
g1 , g2

]
, where we limit ourselves to shifts h1, g1 and 

h2, g2 ∈ Z2,

�2,2
[h1, h2
g1 , g2

]
(T ,U) =

∑
m1,m2
n1, n2

eiπ(g1m1+g2m2) q
1
2 |pL|2 q̄

1
2 |pR |2 , (2.5)

where q = e2iπτ and

pL = 1√
2 ImT ImU

[
Um1 − m2 + T

(
n1 + 1

2
h1

) + T U
(
n2 + 1

2
h2

)]
,

pR = 1√
2 ImT ImU

[
Um1 − m2 + T̄

(
n1 + 1

2
h1

) + T̄ U
(
n2 + 1

2
h2

)]
. (2.6)

TI and UI are given as usual in terms of the internal metric Gij and antisymmetric tensor Bij , 
i, j ∈ {1, . . . , 6},

TI = i

√
G2I−1,2I−1G2I,2I − G2

2I−1,2I + B2I,2I−1 ,

UI =
i

√
G2I−1,2I−1G2I,2I − G2

2I−1,2I + G2I,2I−1

G2I−1,2I−1
, I ∈ {1,2,3} . (2.7)

In the above expressions, θ
[a
b

]
(ν|τ) (or θα(ν|τ), α ∈ {1, 2, 3, 4}, to be used later) are the Jacobi 

elliptic functions and η is the Dedekind function, following the conventions of Ref. [24].
It is also convenient to introduce the O(2N) characters defined as

O2N = θ
[0

0

]N + θ
[0

1

]N
2ηN

, V2N = θ
[0

0

]N − θ
[0

1

]N
2ηN

,

S2N = θ
[1

0

]N + (−i)Nθ
[1

1

]N
2ηN

, C2N = θ
[1

0

]N − (−i)Nθ
[1

1

]N
2ηN

, (2.8)

in terms of which we can write ZN=4 in the following factorized form,

ZN=4 = O
(0)
2,2 O

(1)
2,2 O

(2)
2,2 O

(3)
2,2

(
V8 − S8

)(
Ō16 + S̄16

)(
Ō ′

16 + S̄′
16

)
, (2.9)

where the E8 character becomes Ō16 + S̄16.
We then introduce a stringy Scherk–Schwarz mechanism [7] that simultaneously breaks N =

4 → 0 and E8 ×E′
8 → SO(16) ×SO(16)′, spontaneously. This is done by implementing a Zshift

2
orbifold action that shifts the 1st internal direction, X1. The associated lattice shifts h, g ∈ Z2
are coupled to the spin structure via a non-trivial sign SL, as well as to the SO(16) and SO(16)′
spinorial characters with another sign SR . In total, this amounts to replacing
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O
(1)
2,2 −→ 1

2

∑
h,g

SL

[a; h

b; g

] �2,2
[h, 0
g, 0

]
(T1,U1)

η2η̄2
with

SL

[a; h

b; g

] = (−1)ga+hb+hg ,

Z0,16 −→ 1

2

∑
γ,δ

1

2

∑
γ ′,δ′

SR

[γ, γ ′; h

δ, δ′ ; g

] θ̄
[γ
δ

]8

η̄8

θ̄
[γ ′
δ′

]8

η̄8
with

SR

[γ, γ ′; h

δ, δ′ ; g

] = (−1)g(γ+γ ′)+h(δ+δ′) . (2.10)

The shift g being coupled by the sign SLSR to the spacetime fermions (a = 1), to the SO(16)

spinorial characters (γ = 1) and to the SO(16)′ spinorial characters (γ ′ = 1), the model will be 
referred as “spinorial–spinorial–spinorial”, or sss-model. Its partition function is

Zsss = O
(0)
2,2 O

(2)
2,2 O

(3)
2,2

1

2

∑
h,g

�2,2
[h, 0
g, 0

]
(T1,U1)

η2η̄2
×

1

2

∑
a,b

(−1)a+b+ab
θ
[a
b

]4

η4
(−1)ga+hb+hg×

1

2

∑
γ,δ

θ̄
[γ
δ

]8

η̄8
(−1)gγ+hδ 1

2

∑
γ ′,δ′

θ̄
[γ ′
δ′

]8

η̄8
(−1)gγ ′+hδ′

, (2.11)

which leads to

Zsss = O
(0)
2,2 O

(2)
2,2 O

(3)
2,2

1

2η2η̄2

[
�2,2

[0, 0
0, 0

]
(T1,U1) (V8 − S8)

(
Ō16 + S̄16

) (
Ō ′

16 + S̄′
16

)
+ �2,2

[0, 0
1, 0

]
(T1,U1) (V8 + S8)

(
Ō16 − S̄16

) (
Ō ′

16 − S̄′
16

)
+ �2,2

[1, 0
0, 0

]
(T1,U1) (O8 − C8)

(
V̄16 + C̄16

) (
V̄ ′

16 + C̄′
16

)
− �2,2

[1, 0
1, 0

]
(T1,U1) (O8 + C8)

(
V̄16 − C̄16

) (
V̄ ′

16 − C̄′
16

)]
.

(2.12)

Defining the characters of the shifted (2, 2)-lattice associated to the 1st 2-torus as

O
(1)
2,2

[h
g

] = �2,2
[h, 0

0, 0

]
(T1,U1) + (−1)g �2,2

[h, 0
1, 0

]
(T1,U1)

2η2η̄2
, (2.13)

the partition function of the sss-model takes the final form

Zsss = O
(0)
2,2 O

(2)
2,2 O

(3)
2,2

[
O

(1)
2,2

[0
0

](
V8(Ō16Ō

′
16 + S̄16S̄

′
16) − S8(Ō16S̄

′
16 + S̄16Ō

′
16)

)
+ O

(1)
2,2

[0
1

](
V8(Ō16S̄

′
16 + S̄16Ō

′
16) − S8(Ō16Ō

′
16 + S̄16S̄

′
16)

)
+ O

(1)
2,2

[1
0

](
O8(V̄16C̄

′
16 + C̄16V̄

′
16) − C8(V̄16V̄

′
16 + C̄16C̄

′
16)

)
+ O

(1)
2,2

[1
1

](
O8(V̄16V̄

′
16 + C̄16C̄

′
16) − C8(V̄16C̄

′
16 + C̄16V̄

′
16)

)]
.

(2.14)

For comparison, we also display the model where only SL is introduced (SR ≡ 1). The latter 
realizes the N = 4 → 0 breaking but preserves the full E8 × E′ gauge symmetry. Since in that 
8
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case the shift g is only coupled to the spacetime fermions (a = 1), this model will be referred as 
“spinorial”, or s-model. The associated partition function is

Zs = O
(0)
2,2 O

(2)
2,2 O

(3)
2,2

(
O

(1)
2,2

[0
0

]
V8 − O

(1)
22

[0
1

]
S8 − O

(1)
22

[1
0

]
C8 + O

(1)
22

[1
1

]
O8

)
×(

Ō16 + S̄16
)(

Ō ′
16 + S̄′

16

)
, (2.15)

with factorized right-moving characters. Zs is similar to the partition function of the initial N = 4
model at finite temperature [8,23]. The latter is obtained by replacing the role of the 1st internal 
direction X1 with that of a compact Euclidean time X0 of perimeter β = 2πR0 = Ms/T , where 
T is the temperature.

The spectra of the s- and sss-model can be easily studied by observing that the 1st 2-torus 
characters can be written as

O
(1)
2,2

[h
g

] = 1

η2η̄2

∑
k1,m2
n1, n2

q
1
2 |p(1)

L |2 q̄
1
2 |p(1)

R |2 , (2.16)

where the momentum m1 is redefined as 2k1 + g,

p
(1)
L = 1√

2 ImT1 ImU1

[
U1(2k1 + g) − m2 + T1

2

(
2n1 + h

) + T1U1n2

]
,

p
(1)
R = 1√

2 ImT1 ImU1

[
U1(2k1 + g) − m2 + T̄1

2

(
2n1 + h

) + T̄1U1n2

]
. (2.17)

In particular, the scale m3/2 of N = 4 → 0 spontaneous supersymmetry breaking satisfies

m2
3/2 = |U1|2M2

s

ImT1 ImU1
. (2.18)

In the s-model, the sector O(0)
2,2O

(1)
2,2

[1
1

]
O

(2)
2,2O

(3)
2,2O8Ō16Ō

′
16 contains tachyonic states when the 

supersymmetry breaking scale m3/2 is of order Ms. In this case, the integrated partition func-
tion i.e. the effective potential is ill-defined and a Hagedorn-like instability actually arises [8,
22]. In the N = 4 theory at finite temperature, this phenomenon is nothing but the well known 
Hagedorn instability, which takes place when 

√
2(

√
2 − 1) < R0 <

√
2 (

√
2 + 1). On the con-

trary, the situation happens to be drastically different in the sss-model. The reason is that the 
sector with reversed GSO projection, which is characterized by the left-moving character O8, is 
dressed by right-moving characters that start at the massless level, V̄16V̄

′
16. Therefore, the level 

matching condition prevents any physical tachyon to arise for arbitrary TI , UI , {I = 1, 2, 3}. No 
Hagedorn-like instability occurs and the 1-loop effective potential based on the partition function 
Zsss is well defined.

However, marginal deformations other than TI , UI can be switched on. Beside the dilaton, the 
classical moduli space can be parameterized by the 6 scalars of the bosonic degrees of freedom 
of the N = 4 vector multiplets that realize the U(1)6+16 Cartan gauge symmetry (the fermionic 
superpartners are massive). It takes the form

SU(6) × SO(6 + 16)

SO(6) × SO(16)
(2.19)

and its dimension is 6 × (6 + 16). For small enough deformations away from the sss-model, 
tachyonic instabilities would not arise. On the contrary, some O(1) Wilson lines deforma-
tions can certainly lead to tachyonic modes, when the gravitino mass is of order Ms [1]. Note 
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however that theories where all potentially dangerous moduli deformations have been pro-
jected out do exist, as shown explicitly in a four-dimensional orientifold model constructed in 
Ref. [25].

Before concluding this subsection, we give the expression of the 1-loop effective potential of 
the s- and sss-model, when ImT1 � 1 and U1 = O(i), which implies m3/2 � Ms [13]. As we 
will be seen in details in Sect. 3, V1-loop takes in this regime the following form:

V1-loop = nF − nB

16π7

M4
s

(ImT1)2
E(1,0)(U1|3,0) +O

(
M4

s e−c
√

Im T1
)

, (2.20)

where nF and nB are the numbers of fermionic and bosonic massless degrees of freedom,2 and 
the functions

E(g1,g2)(U |s, k) =
∑

m̃1,m̃2

′ (ImU)s(
m̃1 + g1

2 + (m̃2 + g2
2 )U

)s+k
(m̃1 + g1

2 + (
m̃2 + g2

2 )Ū
)s−k

(2.21)

are shifted complex Eisenstein series of asymmetric weights, where g1, g2 ∈ Z2. While nF = 0
for the s-model and V1-loop scales like m4

3/2, we are going to see that the sss-model can be super 
no-scale.

2.2. The super no-scale regime, m3/2 � Ms

In order to show that the 1-loop effective potential of the sss-model can be exponentially 
suppressed, O(M4

s e−c
√

Im T1), when the supersymmetry breaking scale is low, we look for con-
ditions such that the massless fermions and bosons present in the regime ImT1 � 1, U1 = O(i)

satisfy nF = nB [12].
Given the fact that the states in the sectors O(1)

2,2

[1
g

]
, g = 0, 1, have non-trivial winding numbers 

2k1 + 1 along the very large compact direction X1, they are super massive. In order to find the 
massless (or more generally light) states of the sss-model, it is only required to analyze the sectors 
O

(1)
2,2

[0
g

]
, g = 0, 1.

Sector O
(1)
2,2

[0
0

]
(T1,U1)

The bosonic sector O
(0)
2,2O

(1)
2,2

[0
0

]
O

(2)
2,2O

(3)
2,2V8Ō16Ō

′
16 contains massless degrees of freedom, 

which are associated to the graviton, antisymmetric tensor, moduli fields (dilaton, Wilson lines, 
internal metric and antisymmetric tensor) and to a vector boson in the adjoint representation 
of a gauge group G = G(1) × G(2) × G(3) × SO(16) × SO(16)′, where the factor G(I) arises 
from the lattice associated to the I th 2-torus. In the regime we consider, G(1) = U(1)2 but G(I), 
I ∈ {2, 3}, may be a higher dimensional group of rank 2. For generic TI , UI , I ∈ {2, 3}, we have 
G(I) = U(1)2, which can be enhanced to SU(2) × U(1), SU(2)2 or SU(3) at particular points 
in moduli space. The degeneracy of these massless states is

2 The factor c > 0 appearing in the exponentially suppressed terms depends on all moduli but Im T1 and the dilaton. 
It is of order M/Ms, where M is the lowest mass above the pure KK mass scale m3/2. In the s- and sss-model, it is of 
order Ms, but can be in other cases a large Higgs scale or GUT scale (See Sect. 3).
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nB ≡ d(Bosons
[0

0

]
)

= d(V8)
[
d(O

(0)
2,2) + d(O

(1)
2,2

[0
0

]
) + d(O

(2)
2,2) + d(O

(3)
2,2) + d(Ō16) + d(Ō ′

16)
]

= 8 × [
2 + 2 + d(G(2)) + d(G(3)) + 8 × 15 + 8 × 15

]
= 8 × [

244 + d(G(2)) + d(G(3))
]
, (2.22)

which depends on the moduli TI , UI , I ∈ {2, 3}.
Similarly, the fermionic sector −O

(0)
2,2O

(1)
2,2

[0
0

]
O

(2)
2,2O

(3)
2,2S8(Ō16S̄

′
16 + S̄16Ō

′
16) begins at the 

massless level, with states in the spinorial representations of SO(16) or SO(16)′. Their mul-
tiplicity is

nF ≡ d(Fermions
[0

0

]
) = d(S8)

[
d(S̄′

16) + d(S̄16)
] = 8 × (128 + 128) = 8 × 256 , (2.23)

which is independent of the point in moduli space we sit at. Moreover, the above bosonic and 
fermionic degrees of freedom are accompanied by light towers of pure KK states associated to 
the 1st 2-torus. Their momenta along the directions X1 and X2, which are both large, are 2k1
and m2, and their KK masses are of order m3/2.

Sector O
(1)
2,2

[0
1

]
(T1,U1)

The bosonic sector O(0)
2,2O

(1)
2,2

[0
1

]
O

(2)
2,2O

(3)
2,2V8(Ō16S̄

′
16 + S̄16Ō

′
16) contains light towers of KK 

modes arising from the 1st 2-torus. Their momenta along X1 and X2 are 2k1 + 1 and m2, the 
oddness of the former implying they cannot be massless. Their degeneracy is

d(Bosons
[0

1

]
) = d(V8)

[
d(S̄′

16) + d(S̄16)
] = 8 × 256 , (2.24)

which equals nF.
Similarly, the fermionic sector −O

(0)
2,2O

(1)
2,2

[0
1

]
O

(2)
2,2O

(3)
2,2S8Ō16Ō

′
16 contains light KK states, 

with non-vanishing masses, their momenta being again 2k + 1 and m2. Their counting goes as 
follows:

d(Fermions
[0

1

]
) = d(S8)

[
d(O

(0)
2,2) + d(O

(1)
2,2

[0
1

]
) + d(O

(2)
2,2) + d(O

(3)
2,2) + d(Ō16) + d(Ō ′

16)
]

= 8 × [
2 + 2 + d(G(2)) + d(G(3)) + 8 × 15 + 8 × 15

]
= 8 × [

244 + d(G(2)) + d(G(3))
]
, (2.25)

which equals nB.
The fact that the number of KK towers with odd momenta equals that of those with even 

momenta is not a coincidence. In the initial N = 4 theory, among the characters with even γ +γ ′, 
those corresponding to spacetime fermions are given a KK mass in the sss-model, while those 
associated to spacetime bosons are not modified. This feature is common to the s-model,

O
(1)
2,2(V8 − S8)(Ō16Ō

′
16 + S̄16S̄

′
16) −→

(
O

(1)
2,2

[0
0

]
V8 − O

(1)
2,2

[0
1

]
S8

)
(Ō16Ō

′
16 + S̄16S̄

′
16) .

(2.26)

On the contrary, when γ + γ ′ is odd, the sign SR effectively reverses the roles of bosons and 
fermions. Among the characters with odd γ + γ ′, those corresponding to spacetime bosons are 
given a KK mass in the sss-model, while those associated to spacetime fermions are not modified. 
These facts are opposite to those encountered in the s-model. The sss case thus leads
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O
(1)
2,2(V8 − S8)(Ō16S̄

′
16 + S̄16Ō

′
16) −→

(
O

(1)
2,2

[0
1

]
V8 − O

(1)
2,2

[0
0

]
S8

)
(Ō16S̄

′
16 + S̄16Ō

′
16) .

(2.27)

The condition for the sss-model to be super no-scale is that the numbers of massless fermions 
and bosons be equal,

nF = nB ; nF = 8 × 256 , nB = 8 × [
244 + d(G(2)) + d(G(3))

]
. (2.28)

This imposes [12] d(G(2)) + d(G(3)) = 12, which leads for rk(G(2)) = rk(G(3)) = 2,

(a) G(2) × G(3) = SU(2)4 or (b) G(2) × G(3) = SU(3) × SU(2) × U(1) .

(2.29)

Modulo T-duality, Solution (a) is realized at the self-dual point T2 = U2 = T3 = U3 = i, which 
leads the enhanced G(2) ×G(3) = SU(2)4 = SO(4)2 gauge symmetry. Note that in the neighbor-
hood of this point, some of the SU(2) factors are spontaneously broken to U(1). In this case, nB
takes lower values and V1-loop, given in Eq. (2.20), becomes positive. Thus, at the above self-dual 
point, the 1-loop effective potential is positive semi-definite with respect to the variables TI , UI , 
I ∈ {1, 2, 3}, where ReT1, m3/2 and U1 are flat directions. The moduli TI , UI , I ∈ {2, 3}, are 
attracted dynamically to the self-dual point, which is characterized by a super no-scale structure. 
In Sect. 3, we will consider in great details all moduli deformations, locally around Background 
(a), and the associated response of the effective potential.

Solution (b) occurs modulo T-duality at T2 = U2 = eiπ/3, T3 = U3 arbitrary. Locally around 
this complex line, G(2) × G(3) is spontaneously broken to a subgroup and nB decreases. Thus, 
the 1-loop effective potential is locally positive semi-definite with respect to TI , UI , I ∈ {1, 2, 3}, 
where the flat directions are parameterized by ReT1, m3/2, U1 and T3 = U3. Again, the model is 
naturally super no-scale; the trajectories of the time-dependent moduli associated to the 2nd and 
3rd 2-tori being attracted to these points.

2.3. The T-dual regimes

We have seen that for T1 → i∞, U1 = O(i), the sss-model is characterized by a low super-
symmetry breaking scale m3/2 and a super no-scale structure. In the present subsection, our goal 
is to study the remaining corners of the moduli space where either T1 or U1 (but not both) is of 
order i. We thus define 4 regimes,

(I) : T1 → i∞ , U1 =O(i)

(II) : T1 → 0 , U1 =O(i)

(III) : T1 =O(i) , U1 → i∞
(IV) : T1 =O(i) , U1 → 0 , (2.30)

where the first one is super no-scale with m3/2 < Ms, while the others can be respectively ana-
lyzed by defining T-dual moduli,

(II) : (T̂1, Û1) =
(

− 2

T1
,− 1

2U1

)

(III) : (Ť1, Ǔ1) =
(

2U1,
T1

2

)

(IV) : (T̃1, Ũ1) =
(

− 1

U1
,− 1

T1

)
. (2.31)
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In terms of these new variables, Regime (II) is reached by taking T̂1 → i∞, Û1 =O(i), Regime 
(III) corresponds to Ť1 → i∞, Ǔ1 = O(i), and Regime (IV) is associated to T̃1 → i∞, Ũ1 =
O(i). The relevance of the above definitions of T-dual moduli follows from the fact that

O
(1)
2,2

[h
g

]
(T1,U1) = O

(1)
2,2

[g
h

]
(T̂1,Û1)

= O
(1)
2,2

[g
h

]
(Ť1,Ǔ1)

= O
(1)
2,2

[h
g

]
(T̃1,Ũ1)

. (2.32)

The third equality is telling us that the sss-model (as well as the s-model) is self-dual under the 
T-duality transformation (T1, U1) → (T̃1, Ũ1),

Zsss(T1,U1) = Zsss(T̃1, Ũ1) . (2.33)

Thus, the corners (I) and (IV) of the 1st 2-torus moduli space share a common behavior : The 
sss-model is super no-scale in both limits, and the supersymmetry breaking scale satisfies

m2
3/2 = |U1|2M2

s

ImT1 ImU1
� M2

s in Regimes (I) and (IV) , (2.34)

which is a T-duality invariant expression. On the contrary, the 1st equality in Eq. (2.32) allows 
us to rewrite the partition function as

Zsss(T1,U1)

= Ẑsss(T̂1, Û1)

= O
(0)
2,2 O

(2)
2,2 O

(3)
2,2

[
O

(1)
2,2

[0
0

]
(T̂1,Û1)

(
V8(Ō16Ō

′
16 + S̄16S̄

′
16) − S8(Ō16S̄

′
16 + S̄16Ō

′
16)

)
+O

(1)
2,2

[0
1

]
(T̂1,Û1)

(
O8(V̄16C̄

′
16 + C̄16V̄

′
16) − C8(V̄16V̄

′
16 + C̄16C̄

′
16)

)
+O

(1)
2,2

[1
0

]
(T̂1,Û1)

(
V8(Ō16S̄

′
16 + S̄16Ō

′
16) − S8(Ō16Ō

′
16 + S̄16S̄

′
16)

)
+O

(1)
2,2

[1
1

]
(T̂1,Û1)

(
O8(V̄16V̄

′
16 + C̄16C̄

′
16) − C8(V̄16C̄

′
16 + C̄16V̄

′
16)

)]
,

(2.35)

which shows that the sss-model is not self-dual under the T-duality transformation (T1, U1) →
(T̂1, Û1). Note that in the s-model, this transformation amounts to inter-exchanging the spinorial 
characters S8 ↔ C8 i.e. reversing spacetime chirality. The latter being a matter of convention, 
Regimes (II) and (III) describe isomorphic particle contents in the s-model.

Finally, the 2nd equality in Eq. (2.32) guaranties the sss-model (as well as the s-model) 
is T-duality invariant under the transformation (T̂1, Û1) → (Ť1, Ǔ1), which is nothing but the 
already mentioned symmetry (T1, U1) → (T̃1, Ũ1). In other words, the identity (2.33) can be 
rewritten as

Ẑsss(T̂1, Û1) = Ẑsss(Ť1, Ǔ1) . (2.36)

The above expression guaranties that the corners (II) and (III) of the 1st 2-torus moduli space 
yield a common behavior. In the following, we describe the light spectrum and effective potential 
in these regimes.

The winding numbers along the directions of the T-dual 2-torus whose Kähler and complex 
structure are T̂1 and Û1 are 2k1 + g and m2, which implies that in Regime (II), where Im T̂1 � 1, 
Û1 = O(i), the states with non-vanishing 2k1 + 1 or m2 are super massive. Therefore, the pure 
T-dual KK modes lead exponentially dominant contributions, as follows from the expression of 
the T-dual 2-torus characters in Regime (II), which for g = 0 are
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O
(1)
2,2

[0
h

]
(T̂1,Û1)

= 1

η2η̄2

∑
n1,n2

(qq̄)

∣∣∣Û(2n1+h)−n2

∣∣∣2
4 ImT̂1ImÛ1 +O(e−ĉ τ2Im T̂1)

= Im T̂1

2τ2η2η̄2

∑
ñ1,ñ2

(−1)hñ1 e
− πImT̂1

τ24ImÛ1

∣∣∣ñ1+2ñ2Û1

∣∣∣2 +O
(
e−ĉ τ2Im T̂1

)
, (2.37)

where ĉ =O(1) is positive and the second line is obtained by Poisson summation over n1 and n2. 
For g = 1, the winding numbers cannot vanish, so that

O
(1)
2,2

[1
h

]
(T̂1,Û1)

=O
(
e−ĉ τ2Im T̂1

)
. (2.38)

The light spectrum arising in Region (II) turns out to be:

Sector O
(1)
2,2

[0
0

]
(T̂1,Û1)

This sector being self-dual, its massless spectrum is that derived in Sector O(1)
2,2

[0
0

]
(T1,U1), which 

amounts to nB bosonic and nF fermionic degrees of freedom,

nB ≡ d(B̂osons
[0

0

]
) = 8 × [

244 + d(G(2)) + d(G(3))
]

nF ≡ d( ̂Fermions
[0

0

]
) = 8 × 256 . (2.39)

In Regime (II), these degrees of freedom are accompanied by light towers of pure T-dual KK 
modes (pure winding modes for the original 1st 2-torus), whose momenta are 2n1 and n2, as can 

be read in the 1st line of Eq. (2.37). Their masses are of order Ms/

√
Im T̂1/2.

Sector O
(1)
2,2

[0
1

]
(T̂1,Û1)

The fermionic sector −O
(0)
2,2O

(1)
2,2

[0
1

]
(T̂1,Û1)

O
(2)
2,2O

(3)
2,2C8V̄16V̄

′
16 contains light towers of pure T-dual 

KK modes with momenta 2n1 + 1 and m2. The former being nonzero, these states cannot be 

massless but their masses are light, of order Ms/

√
Im T̂1/2. Their degeneracy is

d( ̂Fermions
[0

1

]
) = d(C8) d(V̄16) d(V̄ ′

16) = 8 × 16 × 16 = 8 × 256 , (2.40)

which equals nF.
Note that no light bosonic state arises in Sector O(1)

2,2

[0
1

]
(T̂1,Û1)

, as can be seen from the right-

moving characters V̄16C̄
′
16 + C̄16V̄

′
16, which start at the massive level, in units of Ms. This shows 

that contrary to the large ImT1 limit with U1 = O(i), N = 4 supersymmetry is not recovered in 
the large Im T̂1 limit when Û1 =O(i). If the sss-model realizes a spontaneous breaking of super-
symmetry implemented via stringy Scherk–Schwarz compactification on the initial 1st 2-torus, 
from the T-dual picture, it realizes a compactification on the T-dual 2-torus of an initially non-

supersymmetric model in 6 dimensions. In fact, the dual KK mass scale Ms/

√
Im T̂1/2 is not 

a scale of supersymmetry breaking (spontaneous or not). The no-scale modulus i.e. the sponta-
neous supersymmetry breaking scale is always m3/2, which satisfies

m2
3/2 = |U1|2M2

s

ImT1 ImU1
=

∣∣T̂1
∣∣2

4

M2
s

Im T̂1 Im Û1
� M2

s in Regimes (II) and (III) . (2.41)

In the limit m2
3/2 → +∞, degrees of freedom decouple, leaving us with an sss-breaking of su-

persymmetry in six dimensions that is explicit.
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The above remarks suggest that the vacuum energy may be large in Regime (II). To show this 
is true, we use Eqs. (2.37) and (2.38) to write the effective potential in terms of dual moduli as

V̂1-loop = − M4
s

(2π)4

∫
F

d2τ

2τ 2
2

O
(0)
2,2 O

(2)
2,2 O

(3)
2,2

Im T̂1

2τ2η2η̄2

∑
ñ1,ñ2

e
− πImT̂1

τ24ImÛ1

∣∣∣ñ1+2ñ2Û1

∣∣∣2 ×
[(

V8(Ō16Ō
′
16 + S̄16S̄

′
16) − S8(Ō16S̄

′
16 + S̄16Ō

′
16)

)
+ (−1)ñ1

(
O8(V̄16C̄

′
16 + C̄16V̄

′
16) − C8(V̄16V̄

′
16 + C̄16C̄

′
16)

)]
+O

(
M4

s e
−ĉ

√
Im T̂1

)
. (2.42)

Contrary to the expression found in Regime (I) for large ImT1, the argument of the exponential 
in the 1st line, which is proportional to |ñ1 + 2ñ2Û1|2, can vanish. Actually, the contribu-
tion of the effective potential arising for ñ1 = ñ2 = 0 grows linearly with the dual volume 
(2π)2Im T̂1/(2M2

s ). This behavior is drastically different to that encountered in Regime (I), 
where the potential is exponentially suppressed in ImT1 (or scales like (nF −nB)m4

3/2 if nF �= nB) 
and vanishes in the limit where N = 4 supersymmetry is restored. The remaining terms, with 
(ñ1, ñ2) �= (0, 0), can be treated exactly as is done in Regime (I) and mentioned in the in-
troduction, in the paragraph above Eq. (1.2). They yield light T-dual KK modes of masses 

O
(
Ms/

√
Im T̂1/2

)
, whose contributions dominate over those arising from the remaining, su-

per heavy string modes. Moreover, as follows from the 2nd line in Eq. (2.37), these towers of 
T-dual KK modes regularize the UV, in the sense that up to exponentially suppressed terms, the 
integral over the fundamental domain F can be extended to the upper half strip, − 1

2 < τ1 < 1
2 , 

τ2 > 0, without introducing divergences. In total, one finds

V̂1-loop = C Im
T̂1

2
+ nF − nB

16π7

M4
s

(Im T̂1)2

E(0,0)(Û1|3,0) + E(1,0)(Û1|3,0)

2

+ C′Im T̂1

2
+ nF

16π7

M4
s

(Im T̂1)2

E(0,0)(Û1|3,0) − E(1,0)(Û1|3,0)

2

+O
(
M4

s e
−ĉ

√
Im T̂1

)
, (2.43)

where the 1st and 2nd lines arise respectively from the sectors O(1)
2,2

[0
0

]
(T̂1,Û1)

and O(1)
2,2

[0
1

]
(T̂1,Û1)

, 
while the quantities C and C′ depend on the 2nd and 3rd 2-tori moduli only,

C = − M4
s

(2π)4

∫
F

d2τ

2τ 4
2

�2,2(T2,U2) �2,2(T3,U3)

×
[

V8

η8

Ō16Ō
′
16 + S̄16S̄

′
16

η̄8
− S8

η8

Ō16S̄
′
16 + S̄16Ō

′
16

η̄8

]
,

C′ = − M4
s

(2π)4

∫
F

d2τ

2τ 4
2

�2,2(T2,U2) �2,2(T3,U3)

×
[

O8

η8

V̄16C̄
′
16 + C̄16V̄

′
16

η̄8
− C8

η8

V̄16V̄
′
16 + C̄16C̄

′
16

η̄8

]
. (2.44)
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The final expression of the effective potential in Regime (II) can be simplified to

V̂1-loop =
(
C + C′)Im

T̂1

2
+ M4

s

16π7 (Im T̂1)2

×
[(

nF − nB

2

)
E(0,0)(Û1|3,0) − nB

2
E(1,0)(Û1|3,0)

]

+O
(
M4

s e
−ĉ

√
Im T̂1

)
. (2.45)

Note that since C + C′ is nonzero, one obtains in the T-dual 2-torus decompactification limit∫
d4x V̂1-loop −→

Im T̂1→∞

∫
d4x Im

T̂1

2
(C + C′) =

∫
d6x V̂N6=0

1-loop , (2.46)

where V̂N6=0
1-loop is the effective potential of the obtained non-supersymmetric six-dimensional the-

ory,

V̂N6=0
1-loop = − M6

s

(2π)6

∫
F

d2τ

2τ 2
2

ẐN6=0 , (2.47)

which involves the associated partition function

ẐN6=0 = O
(0)
4,4 O

(2)
2,2 O

(3)
2,2

(
V8(Ō16Ō

′
16 + S̄16S̄

′
16) − S8(Ō16S̄

′
16 + S̄16Ō

′
16)

+O8(V̄16C̄
′
16 + C̄16V̄

′
16) − C8(V̄16V̄

′
16 + C̄16C̄

′
16)

)
. (2.48)

For instance, C +C′ can be evaluated numerically at T2 = U2 = T3 = U3 = i, which corresponds 
to the G(2) × G(3) = SU(2)4 enhanced symmetry point: C + C′ � 0.468 M4

s .
It is however important to stress that the behavior of the sss-model derived in Regimes (II) 

and (III) is actually formal. This is due to the fact that in these cases, the 1-loop correction to 
the classically vanishing vacuum energy density of the universe is very large, O(M6

s ), as can 
be seen from the r.h.s. of Eq. (2.46). This fact may cast doubts on the validity of perturbation 
theory. Moreover, it is expected that in the large T-dual 2-torus limit, the decompactification 
problem does arise. This should be the case since no N6 = 2 supersymmetry is recovered in 
six dimensions (N = 4 in four dimensions) and the towers of T-dual KK modes of masses 

O
(
Ms/

√
Im T̂1/2

)
should yield large quantum corrections to the gauge thresholds, proportional 

to the volume (2π)2Im T̂1/(2M2
s ) [13,14]. Finally, taking nF � nB, which is satisfied for arbi-

trary TI , UI , I ∈ {2, 3}, one can extremize the potential (2.45) with respect to Û1, which yields a 
solution Û1 � (1 + i)/2 modulo T-duality. However, the latter is a saddle point that destabilizes 
Im Û1 to larger and larger or lower and lower values, which brings the theory out of Regime (II).

2.4. The intermediate regime

We proceed with the description of the behavior of the sss-model when no modulus associated 
to the 1st 2-torus is large or small, i.e. T1 =O(i), U1 =O(i). In this regime, m3/2 =O(Ms) and 
the effective potential is not exponentially suppressed. Moreover, the generic massless states 
encountered in Sector O(1)[0]

(T ,U ) are not accompanied anymore by light pure KK modes, 
2,2 0 1 1
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the latter having masses of order Ms. However, states with non-trivial momentum and winding 
numbers along the 1st 2-torus may be massless at special points in moduli space.

Sector O
(1)
2,2

[0
0

]
(T1,U1)

Beside the generic massless bosons, additional ones in Sector O(0)
2,2O

(1)
2,2

[0
0

]
O

(2)
2,2O

(3)
2,2V8Ō16Ō

′
16

become massless when 1
2 |p(1)

L |2 = 1
2 |p(1)

R |2 − 1 = 0, thus increasing nB. For instance, taking 
k1 = n1 = 0, these conditions are satisfied for m2 = −n2 = ±1 when we sit on the codimension 
one submanifold of the moduli space that satisfies T1 = −1/U1. These states are 2 gauge bosons 
and their Wilson lines along the internal space,

�nB ≡ d(Extra Bosons
[0

0

]
) = d(V8) × d(O

(1)
2,2

[0
0

]
) = 8 × 2 , (2.49)

which enhance the gauge group factor associated to the 1st 2-torus to G(1) = U(1) × SU(2). On 
the contrary, nF does not vary with T1, U1.

Sector O
(1)
2,2

[1
1

]
(T1,U1)

Other extra massless bosons arise in Sector O(0)
2,2O

(1)
2,2

[1
1

]
O

(2)
2,2O

(3)
2,2O8V̄16V̄

′
16 when 1

2 |p(1)
L |2 − 1

2 =
1
2 |p(1)

R |2 = 0. For instance, taking m2 = n2 = 0, these conditions are satisfied for 2k1 +1 = 2n1 +
1 = ±1 when T1/2 = −Ū1. These modes are two scalars in the bi-fundamental representation of 
SO(16) × SO(16)′, thus with multiplicity

�nB ≡ d(Extra Bosons
[1

1

]
) = d(O1

2,2

[1
1

]
) d(V̄16) d(V̄ ′

16) = 2 × 16 × 16 . (2.50)

Unlike the situation encountered in Regimes (I)–(IV), no subset of string states, such as pure 
KK or winding modes, dominates the expression (or part of it) of the effective potential. More-
over, the latter now depends on ReT1. Even if finding an explicit expression of V1-loop in the 
intermediate regime is a hard task, a numerical integration of the full partition function Zsss can 
always be done over the fundamental domain F . We choose to present the result as a function of 
ImT1 only, fixing ReT1 = 0 and U1 = i, while T2 = U2 = T3 = U3 = i. Generically, the gauge 
group is G = G(1) × SU(2)4 × SO(16) × SO(16)′, where G(1) = U(1)2. Fig. 1 presents the 
curve V1-loop as a function of ImT1 in these conditions. We see that the 1-loop effective po-
tential is a positive and monotonically decreasing function, which connects Regime (II), where 
m3/2 = Ms/

√
ImT1 � 1, to the super no-scale Regime (I), where m3/2 � 1. This behavior im-

plies that the term e4φV1-loop, which appears in the effective action in Einstein frame, creates a 
tadpole for the dilaton φ and imposes the latter to slide at early cosmological times to the weak 
coupling regime.

Our choice of ReT1 and U1 is such that the curve passes through the lines T1 = −1/U1 and 
T1/2 = −Ū1, when ImT1 = 1 and 2, respectively. However, no extremum occurs at these points. 
In Ref. [1], it is shown in general that in non-supersymmetric classical models, the integrated 
partition function at arbitrary genus-g admits extrema at all “points of maximal enhanced sym-
metry”. The latter are the loci in moduli space where the gauge group is enhanced, with no U(1)

factor left. In our case, since G(1) = U(1) × SU(2) and G(1) = U(1)2 at ImT1 = 1 and 2, there 
is no contradiction in not having extrema at these points. Fig. 1 shows that there exist initial con-
ditions with m3/2 of order Ms, such that the super no-scale Regime (I) of Solution (a) is reached 
dynamically. However, as mentioned after Eq. (2.19), Wilson lines may also develop expectation 
values in the intermediate regime, so that the theory may end with a distinct gauge group of equal 
rank, or even suffer (for large deformations) from a classical tachyonic instability.
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Fig. 1. Effective potential of the sss-model as a function of Im T1, for ReT1 = 0, U1 = T2 = U2 = T3 = U3 = i. Regime 
(II), which corresponds to small Im T1, is connected to the super no-scale Regime (I), where ImT1 is large.

3. T 6-moduli and Wilson lines deformations

Once we have found a classical model that yields an exponentially suppressed effective po-
tential at 1-loop, the question of the quantum stability of this background must be addressed. 
Actually, the worldsheet CFT admits marginal deformations, which from the spacetime point of 
view correspond to classical moduli. Since the 1-loop effective potential depends on these scalar 
deformations, the initial vacuum may be destabilized. In this section, we will study the response 
of the 1-loop effective potential to all worldsheet small marginal deformations, in the super no-
scale regime. As an example, we consider in details the case of Background (a) of the sss-model 
but the structure of the result remains valid in any generic N = 4 → 0 no-scale model i.e. with 
nF and nB not necessary equal, and which is based in a gauge symmetry U(1)2 ×H, where the 
rank of H is 20 and otherwise arbitrary.

3.1. Deformation of Background (a)

The worldsheet operators we consider are YIJ ∂XI ∂̄XJ and YII∂XI ∂̄φ̄I for I, J ∈ {1, . . . , 6}, 
I ∈ {7, . . . , 22}, where the φ̄I ’s are the 16 extra right-moving compact bosons of the heterotic 
string. In Background (a), we have initially T2 = U2 = T3 = U3 = i, the gauge group is

G = U(1)2 × SU(2)4 × SO(16)2 , (3.1)

and the partition function is given in Eq. (2.14), with ImT1 � 1, U1 = O(i). Denoting GIJ and 
BIJ the initial internal metric and antisymmetric tensor, 6 × 6 real Y ’s are introduced to define 
their deformed counterparts as

(B ′ + G′)αβ = (B + G)αβ + √
2Yαβ , α,β ∈ {1,2} , (3.2)

(B ′ + G′)ij = δij + √
2Yij , i, j ∈ {3,4,5,6} , (3.3)

(B ′ + G′)αi = √
2Yαi , (3.4)

(B ′ + G′)iα = √
2Yiα , (3.5)

while the 6 × 16 remaining ones,
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YαI , YiI , α ∈ {1,2} , i ∈ {3,4,5,6} , I ∈ {7, . . . ,22} , (3.6)

are the Wilson lines of SO(16)2 along T 6. Our goal is to determine which of the above 6 × 22
deformations acquire at 1-loop positive squared masses or remain massless, while the leftover 
ones induce tachyonic instabilities.

We first derive a general expression for the 1-loop effective potential, in the regime ImT1 � 1, 
U1 =O(i). Let us consider the contribution to the 1-loop partition function arising from a single 
state s,

(−1)F
1

τ2
q

1
4 M ′ 2

L /M2
s q̄

1
4 M ′ 2

R /M2
s = (−1)F

1

τ2
e−πτ2M

′ 2
L /M2

s q̄
1
4

(
M ′ 2

R −M ′ 2
L

)
/M2

s , (3.7)

where F is its fermion number. The left- and right-moving squared masses take the following 
form, where the “primes” mean that the expressions refer to the deformed background [26],

M ′ 2
L = M2

s

[
P ′

I G′−1
IJ P ′

J + 4
(
NL − 1

2

)]
,

M ′ 2
R = M2

s

[
P̄ ′

I G′−1
IJ P̄ ′

J + Q′
IQ′

I + 4(NR − 1)
]
, (3.8)

where NL, NR denote the oscillator numbers and we have defined

PI = mI + YII QI + 1

2
YII YJI nJ + (B ′ + G′)IJ nJ ,

P̄I = mI + YII QI + 1

2
YII YJI nJ + (B ′ − G′)IJ nJ ,

Q′
I = Q′

I + YII nI . (3.9)

In the above expressions, PI and P̄I are generalized left- and right-moving momenta that depend 
on the T 6 momenta and winding numbers mI and nI , while QI , I ∈ {7, . . . , 22}, denote the 
components of a weight in a representation of the gauge group realized by the extra right-moving 
φ̄I ’s [27]. Physically, this weight is the charge vector under SO(16)2 of the state s and its squared 
length is an even integer. An immediate consequence of the r.h.s. of Eq. (3.7) is that invariance 
under the modular translation τ → τ +1 implies that M ′ 2

L −M ′ 2
R = 4LsM

2
s , for some integer Ls . 

Therefore, M ′ 2
L −M ′ 2

R must be invariant under the 6 × 22 continuous deformations, a fact that is 
easily verified using Eqs. (3.9), which yield Ls = 4mInI − 2QIQI + 4(NL − 1

2 ) − 4(NR − 1).
Next, we note that for small Y -deformations, the term (3.7) integrated over the fundamental 

domain F leads a contribution of order e−Im T1 to the effective potential if s has non-trivial 
winding numbers along either of the two 1st internal directions, which are large. Therefore, we 
concentrate on the dominant contributions, which arise from the pure momentum states (i.e. with 
2n1 + h = n2 = 0 in Eq. (2.17)). Choosing one of them, s0, with vanishing momenta m1 =
m2 = 0 (m1 ≡ 2k1 + g in Eq. (2.17)), let us gather the contributions to V1-loop of the KK towers 
associated to X1, X2 and based on this state. In the initial Background (a), one obtains

− M4
s

(2π)4
(−1)F0

∫
F

d2τ

2τ 3
2

∑
m1,m2

(−1)m1 e
−πτ2

|U1m1−m2 |2
Im T1Im U1 q

1
4 M2

0L/M2
s q̄

1
4 M2

0R/M2
s

= − M4
s

(2π)4
(−1)F0

∫
F

d2τ

2τ 4
2

ImT1

∑
m̃1,m̃2

e
− πIm T1

τ2Im U1
|m̃1+ 1

2 +U1m̃2|2 q
1
4 M2

0L/M2
s q̄

1
4 M2

0R/M2
s ,

(3.10)
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where F0, M0L, M0R are the fermion number and left- or right-moving masses of s0. The inser-
tion (−1)m1 in the l.h.s. arises from the fermion number F = F0 + m1. It translates the fact that 
a mass splitting of order 1/ImT1 exists between bosons and fermions, as follows from the spon-
taneous breaking of supersymmetry and can be seen in the partition function (2.14). This phase 
eiπm1 yields in the r.h.s., which is obtained by Poisson summation, a 1

2 -shift of the integer m̃1. 
This shift implies that the integral in Eq. (3.10) can be extended to the full upper half-strip, 
−1 < τ1 ≤ 1, τ2 > 0, without introducing UV divergences, and that the result differs from that 
obtained by integrating over F by terms of order e−c

√
Im T1 .

When the Y -deformations are switched on, M0L, M0R and more importantly the KK mass 
are slightly modified. The latter is initially the degree 2 polynomial in m1, m2, which appears 
in the argument of the exponential function in the l.h.s. of Eq. (3.10), (and becomes the expres-
sion in Eq. (3.26)). However, for small enough Y ’s, the full expression after Poisson summation 
is still integrable over the upper half-strip (see Eq. (3.27)). It follows that the integration over 
τ1 is straightforward, implying that the surviving dominant contributions to V1-loop arise from 
KK states s that are level-matched, Ls = 0. Moreover, since the states with vanishing winding 
numbers along X1 and X2 satisfy

4LsM
2
s = M ′ 2

L − M ′2
R = M2

L − M2
R = M2

0L − M2
0R , (3.11)

which is independent of m1, m2, the whole towers of KK modes based on the level-matched 
states s0 are level matched as well. Writing the associated contribution,

− M4
s

(2π)4
(−1)F0 ImT1

∑
m̃1,m̃2

+∞∫
0

dτ2

2τ 4
2

e
− πIm T1

τ2Im U1

[
|m̃1+ 1

2 +U1m̃2|2+O(Y )
]
e−πτ2(M

2
0L+O(Y ))/M2

s ,

(3.12)

and changing the dummy variable of integration τ2 into x = τ2/ImT1, we see that when the mass 
M0L of the state s0 in the initial Background (a) is not vanishing, the result is exponentially 
suppressed. Therefore, we obtain the general expression of the 1-loop effective potential

V1-loop = − M4
s

(2π)4

nB+nF∑
s0=1

(−1)F0

+∞∫
0

dτ2

2τ 3
2

∑
m1,m2

(−1)m1 e−πτ2M
′2
L /M2

s +O
(
M4

s e−c
√

Im T1
)
,

(3.13)

where the sum extends over the set of massless states present in the initial Background (a), and 
M ′

L is the mass of the associated KK mode with momenta m1, m2 along X1, X2, once the moduli 
deformations are switched on.

To proceed, we resume the states s0 of the sss-model in Background (a), which satisfy M2
0L =

M2
0R = 0. The first condition imposes NL = 1

2 , the second yields NR = 0 or 1, and we recall that 
their quantum numbers along X1, X2 are m1 = m2 = n1 = n2 = 0.
– In Sector

O
(0)
2,2

(
O

(1)
2,2

[0
0

]
V8 − O

(1)
2,2

[0
1

]
S8

)
O

(2)
2,2 O

(3)
2,2 Ō16Ō

′
16

= 1

τ2 η̄24

(
�2,2

[0, 0
0, 0

]
(T1,U1)8 − �2,2

[0, 0
1, 0

]
(T1,U1)8

)
�Adj SU(2)4 �Adj SO(16)2 +O(qq̄) ,

(3.14)
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where �Adj SU(2)4 and �Adj SO(16)2 are the root lattices of SU(2)4 and SO(16)2, we find that:

• At oscillator level NR = 1, 8 copies of 24 states with F0 = 0 arise from the factor 8/η̄24. 
They are neutral with respect to the gauge group G. 8 × 2 realize the gravity sector, while the 
remaining 8 × 22 ones live in the Cartan subalgebra of G. Their quantum numbers are

mi = ni = 0 , i ∈ {3,4,5,6} , QI = 0 , I ∈ {7, . . . ,22} . (3.15)

• At oscillator level NR = 0, massless states with F0 = 0 arise from the SU(2)4 enhancement 
of the gauge symmetry. For any given i ∈ {3, 4, 5, 6} and ε ∈ {−1, 1}, there are 8 states with 
quantum numbers

mi = −ni = −ε , mj = nj = 0 , j ∈ {3,4,5,6}, j �= i , QI = 0 , I ∈ {7, . . . ,22} .

(3.16)

Note that the generalized momentum pi
R = −1√

2
(mi/Ri − niRi) of the compact direction Xi of 

radius Ri = 1 is pi
R = ε

√
2, which is a root of squared length equal to 2 of �Adj SU(2)4 .

• Similarly, 8 copies of massless states with F0 = 0 arise at oscillator level NR = 0 from the 
root lattice �Adj SO(16)2 . Their quantum numbers are

mi = ni = 0 , i ∈ {3,4,5,6} , QI , I ∈ {7, . . . ,22} where

QI =

⎧⎪⎨
⎪⎩

(±1,±1,06;08) or permutations between the entries Q7 to Q14,

or

(08;±1,±1,06) or permutations between the entries Q15 to Q22.

(3.17)

In the above formula, 0k means k consecutive null entries [27]. In total, there are 2 × 112 such 
roots QI of squared lengths equal to 2.

Altogether, we recover the nB = 8 × (24 +4 ×2 +2 ×112) = 8 ×256 bosonic massless states 
described in Sect. 2.2.
– In Sector

O
(0)
2,2

(
O

(1)
2,2

[0
1

]
V8 − O

(1)
2,2

[0
0

]
S8

)
O

(2)
2,2 O

(3)
2,2 (Ō16S̄

′
16 + S̄16Ō

′
16)

= 1

τ2 η̄24

(
�2,2

[0, 0
1, 0

]
(T1,U1)8 − �2,2

[0, 0
0, 0

]
(T1,U1)8

)
�Spin SO(16)2 +O(qq̄) , (3.18)

�Spin SO(16)2 is the weight lattice of the spinorial representation of SO(16)2. 8 copies of massless 
states with F0 = 1 occur at oscillator number NR = 0 from this lattice. Their quantum numbers 
are

mi = ni = 0 , i ∈ {3,4,5,6} , QI , I ∈ {7, . . . ,22} where

QI =

⎧⎪⎨
⎪⎩

(±1,±1,±1,±1,±1,±1,±1,±1;08) with even number of −1’s,

or

(08;±1,±1,±1,±1,±1,±1,±1,±1) with even number of −1’s.

(3.19)

QI is actually one of the 2 × 128 weights of squared lengths equal to 2 [27]. As said in Sec. 2.2, 
we have a total of nF = 8 × (2 × 128) = 8 × 256 fermionic massless states.

We are ready to compute the contribution to the effective potential (3.13) that arises from the 
KK towers of states s based on each of the nB + nF states s0, which are initially massless in 
Background (a). The momenta, winding numbers and SO(16)2 charges of each state s are those 
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of s0, up to the momenta m1, m2 along the X1, X2, which are arbitrary. We first consider the 
non-Cartan states of SU(2)4. For given i ∈ {3, 4, 5, 6} and ε ∈ {−1, 1}, the contribution of s to 
the potential involves its squared mass M ′ 2

L given in Eq. (3.8), which is expressed in terms of

P ′
α = mα + ε

(√
2Yαi + YαIYiI

)
, α ∈ {1,2} ,

P ′
j = ε

(√
2Yji + YjIYiI

)
, j ∈ {3,4,5,6} , (3.20)

and the inverse of the metric

G′
IJ = GIJ + √

2Y(IJ ) where Y(IJ ) = 1

2
(YIJ + YJI ) , (3.21)

which is

G′−1
IJ =

(
G−1

αβ − √
2G−1

αγ Y(γ δ) G
−1
δβ +O(Y 2) −√

2G−1
αγ Y(γ,k) +O(Y 2)

−√
2Y(jγ ) G

−1
γ,β +O(Y 2) δjk − √

2Y(jk) +O(Y 2)

)
. (3.22)

In the above equation, G−1
αβ is the inverse of the 2 × 2 matrix Gαβ = Gαβ , α, β ∈ {1, 2}. The 

contribution of the 8 copies of KK states associated to the SU(2)4 root i, ε is

V i,ε
1-loop = − 8M4

s

2(2π)4

+∞∫
0

dτ2

τ 3
2

∑
m1,m2

(−1)m1 e
−πτ2(mα+ξα)G′−1

αβ (mβ+ξβ ) ×
[
1 − 2πτ2 mα

√
2G−1

αγ Y(γj) ε
√

2 Yji +O(Y 3)
]
×[

1 − πτ2
(
Yji ε

√
2
)2 +O(Y 3)

]
+O

(
M4

s e−c
√

Im T1
)

, (3.23)

where ξα = ε
(√

2Yαi + YαIYiI
)

and we have expanded at second order in Y ’s the

e
−πτ22P ′

α G′−1
αj P ′

j and e−πτ2P
′
j G′−1

jk P ′
k contributions in the integrand. However, the 2nd line in 

Eq. (3.23) can be omitted, since its linear term in mα must be dressed, at the order we are 

interested in, by e−πτ2mαG−1
αβ mβ coming from the 1st line, and we sum over m1, m2. Recalling the 

definition of the component B ′
21 of the deformed antisymmetric tensor and choosing the 2 × 2

matrix G′−1
αβ as follows,

B ′
21 = B21 + 1√

2
(Y21 − Y12) , G′−1

αβ = G′−1
αβ , α,β ∈ {1,2} , (3.24)

we can use the inverse matrix3 G′
αβ to define deformed moduli

T ′
1 = i

√
G′

11G
′
22 − G′ 2

12 + B ′
21 , U ′

1 =
i

√
G′

11G
′
2,2 − G′2

12 + G′
21

G′
11

, (3.25)

in terms of which we have

(mα + ξα)G′−1
αβ (mβ + ξβ) = |U ′

1(m1 + ξ1) − (m2 + ξ2)|2
ImT ′

1 ImU ′
1

. (3.26)

3 Note that G′ differs from G′ at quadratic order in Y ’s.
αβ αβ
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A Poisson summation on m1, m2 in V i,ε
1-loop then leads

V i,ε
1-loop = − 8M4

s

2(2π)4

+∞∫
0

dτ2

τ 3
2

ImT ′
1

τ2

∑
m̃1,m̃2

e
− πIm T ′

1
τ2Im U ′

1
|m̃1+ 1

2 +U ′
1m̃2|2

e
2iπ

Re [(m̃1+ 1
2 +U ′

1m̃2)ξ̄ ]
Im U ′

1

[
1 − πτ2

(
Yji ε

√
2
)2 +O(Y 3)

]
+O

(
M4

s e−c
√

Im T1
)

, (3.27)

where ξ = U1ξ1 − ξ2. Expanding the phase in ξ or ξ̄ and integrating over τ2, one obtains the final 
contribution,

V i,ε
1-loop = − 8

16π7

M4
s

(ImT ′
1)

2
E(1,0)(U

′
1|3,0) + 8

16π5

M4
s

ImT1
E(1,0)(U1|2,0) × (3.28)

1

2

⎛
⎝ 6∑

j=3

(
Yji ε

√
2
)2 + 2

∣∣Yi ε
√

2
∣∣2 − ρ

(
Yi ε

√
2
)2 − ρ̄

(
Ȳi ε

√
2
)2

⎞
⎠

+O(M4
s Y 3) +O

(
M4

s e−c
√

Im T1
)

,

(3.29)
where we have redefined complex moduli as

Yi = U1Y1i − Y2i√
ImT1ImU1

, i ∈ {3,4,5,6} , (3.30)

and introduced the dressing coefficient

ρ = E(1,0)(U1|2,1)

E(1,0)(U1|2,0)
. (3.31)

In Eq. (3.28), the scalars Yji and Yi , for j ∈ {3, 4, 5, 6}, are actually the Wilson lines of the ith
SU(2) factor along T 6, weighted by the associated root ε

√
2.

We proceed with the contribution VQ
1-loop of the effective potential that arises from the KK 

modes s based on the state s0 of right-moving charge QI , which is either a root of �Adj SO(16)2

or a weight of �Spin SO(16)2 whose length squared equals 2. The novelty is that the former have 
F0 = 0, while the latter have F0 = 1. For such a mode s, we have

P ′
α = mα + YαI QI , α ∈ {1,2} , P ′

j = YjI QI , j ∈ {3,4,5,6} . (3.32)

Comparing with Eq. (3.20), we see that at second order in Y ’s, the 8 copies of KK modes yield a 
contribution identical to V i,ε

1-loop, up to the overall dressing (−1)F0 and the exchanges

Yαi ε
√

2 −→ YαI QI , α ∈ {1,2} ,

Yji ε
√

2 −→ YjI QI , j ∈ {3,4,5,6} . (3.33)

Thus, we immediately conclude that

VQ
1-loop = − (−1)F0 8

16π7

M4
s

(ImT ′
1)

2
E(1,0)(U

′
1|3,0) + (−1)F0 8

16π5

M4
s

ImT1
E(1,0)(U1|2,0) ×

1

2

⎛
⎝ 6∑

j=3

( 22∑
I=7

YjI QI
)2 + 2

∣∣∣ 22∑
I=7

YI QI
∣∣∣2 − ρ

( 22∑
I=7

YI QI
)2 − ρ̄

( 22∑
I=7

ȲI QI
)2

⎞
⎠

+O(M4
s Y 3) +O

(
M4

s e−c
√

Im T1
)

, (3.34)
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where YjI , j ∈ {3, 4, 5, 6}, and

YI = U1Y1I − Y2I√
ImT1ImU1

, I ∈ {7, . . . ,22} , (3.35)

are the Wilson lines of SO(16)2 along T 6.
Finally, we consider the 8 × 24 KK towers of states that are neutral with respect to the gauge 

group. In this case, F0 = 0 and P ′
α, P ′

j are like those of Eq. (3.32), with QI = 0. Therefore, the 
effective potential contribution Ve

1-loop, for e ∈ {1, . . . , 24}, which arises from the 8 copies of such 
states, is

Ve
1-loop = − 8

16π7

M4
s

(ImT ′
1)

2
E(1,0)(U

′
1|3,0) +O

(
M4

s e−c
√

Im T1
)

. (3.36)

In order to combine all contributions to the effective potential we have computed, we note that

1

2

∑
Q∈Adjoint

of SO(16)2

22∑
I=7

AIQI
22∑

J=7

BJ QJ = C(ASO(16))

22∑
I=7

AIBI , for C(ASO(16)) = 14 ,

1

2

∑
Q∈Spinorial

of SO(16)2

22∑
I=7

AIQI
22∑

J=7

BJ QJ = C(SSO(16))

22∑
I=7

AIBI , for C(SSO(16)) = 16 ,

(3.37)

where C(RG)δab = tr(T aT b) and T a , a ∈ {1, . . . , dimG}, are the generators in the represen-
tation RG of a gauge group G. Given that, summing over the 4 × 2 roots i, ε of SU(2)4, the 
2 × (112 + 128) charges Q of SO(16)2 and the 24 sets of neutral KK towers, one obtains the 
final result,

V1-loop = nF − nB

16π7

M4
s

(ImT ′
1)

2
E(1,0)(U

′
1|3,0) − 3

16π5

M4
s

ImT1
E(1,0)(U1|2,0)

×
(

bSU(2)

6∑
i=3

[ 6∑
j=3

(Yji)
2 + 2|Yi |2 − ρ(Yi)

2 − ρ̄(Ȳi )
2
]

+ bSO(16)

22∑
I=7

[ 6∑
j=3

(YjI)2 + 2|YI |2 − ρ(YI)2 − ρ̄(ȲI)2
])

+O(M4
s Y 3) +O

(
M4

s e−c
√

Im T1
)

. (3.38)

In this expression, bSU(2) and bSO(16) are the β-function coefficients of each SU(2) and SO(16)

factors,

bSU(2) =
(

−11

3
+ 6 × 1

6

)
C(ASU(2)) = −8

3
2 ,

bSO(16) =
(

−11

3
+ 6 × 1

6

)
C(ASO(16)) + 4 × 2

3
C(SSO(16))

= −8

3

(
C(ASO(16)) − C(SSO(16))

) = −8

3
(−2) , (3.39)
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which are obtained using the following contributions of massless degrees of freedom in the rep-
resentation RG of G,

b
gauge boson
G = −11

3
C(RG) , breal scalar

G = 1

6
C(RG) , b

Majorana fermion
G = 2

3
C(RG) .

(3.40)

Note that in the derivation of Eq. (3.38), the fact that nF = nB in the sss-model plays no role. 
Thus, the above structure of the effective potential in terms of arbitrary nF, nB and β-function 
coefficients associated to the simple gauge group factors is valid for arbitrary no-scale model 
realizing the N = 4 → 0 spontaneous breaking. In such a generic model, with nF �= nB, the 
dominant term appearing in the 1st line in Eq. (3.38) is proportional to m′ 4

3/2, where m′
3/2 is the 

deformed gravitino mass,

m′ 2
3/2 = |U ′

1|2M2
s

ImT ′
1 ImU ′

1
. (3.41)

Observe that since the moduli Y(αi), α ∈ {1, 2}, i ∈ {3, 4, 5, 6}, are switched on, the T 2 × T 4

factorized form of the internal space of the initial Background (a) is broken, implying m′
3/2 to 

depend on the whole metric of T 6.4 Clearly, the stability of an initial no-scale model background 
requires the term m′ 4

3/2 to be absent, which is nothing but the super no-scale condition nF = nB. 
If this is satisfied, we are left with the 2nd and 3rd lines in Eq. (3.38), which are proportional 
to m2

3/2M
2
s . The eigenvalues of the squared mass matrices of the dimensionful scalars YiMs, 

i ∈ {3, 4, 5, 6} and YIMs, I ∈ {7, . . . , 22} are

− 3bG

16π5

M2
s

ImT1
E(1,0)(U1|2,0)

(
1 ± |ρ|) , for G = SU(2) or SO(16) , (3.42)

which are proportional to m2
3/2, as expected for moduli not involved in the supersymmetry break-

ing [3]. Since |ρ(U1)| < 1, Eq. (3.42) leads to the conclusion that any simple gauge group 
factor that is neither asymptotically free nor conformal, i.e. with bG > 0, yields to local in-
stabilities.

In the sss-super no-scale model we consider here, the SU(2)4 Wilson lines Yji and Yi , j, i ∈
{3, 4, 5, 6}, are attracted dynamically to the origin Yji = Yi = 0, while the SO(16)2 ones YjI and 
YI , j ∈ {3, 4, 5, 6}, I ∈ {7, . . . , 22}, condense. Due to the periodicity properties of the Wilson 
lines, this instability is only local and some of the YjI ’s and/or YI ’s are expected to develop 
large but finite expectation values. Note that since we started with a vanishing effective potential 
in the super no-scale Background (a), these instabilities imply that V1-loop becomes negative. 
We should reach another no-scale model, with new numbers of massless fermions and bosons 
satisfying n′

F < n′
B, and without non-asymptotically free gauge group factors. At this stage, the 

model would still be in the regime m′
3/2 � Ms, which guaranties no tachyonic instability may 

arise. However, the scaling of the effective potential now being like −m′ 4
3/2, the gravitino mass 

would be dynamically attracted to larger values. Once it reaches the order of magnitude of the 
string scale, several scenarios may occur:

4 The gravitino mass m′
3/2 involves T ′

1, U ′
1 i.e. B21 and G′

αβ only, but the latter is the inverse 2 × 2 matrix of G′−1
αβ =

G−1 − √
2G−1

αγ Y(γ δ) G−1 + 2 G−1
αγ Y(γ δ) G−1 Y(ρσ) G−1 + 2 G−1

αγ Y(γj) Y(jδ) G−1 +O(Y 3).
αβ δβ δρ σβ δβ
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• A tachyon may arise at tree level, thus inducing a severe Hagedorn-like instability.
• m3/2 may be stabilized at a (local) minimum, thus yielding an anti-de Sitter vacuum, where 

a restoration of supersymmetry may or may not occur.
• m3/2 may continue increasing, with runaway behavior. The model would lead (after 

T-duality) to an anti-de Sitter theory in higher dimensions, explicitly non-supersymmetric.

3.2. Lifting the instabilities

In the previous sub-section we have shown the existence of two different types of instabilities. 
The first ones, arise in the no-scale models having nF �= nB, which are due to the non-vanishing 
of V1-loop. Actually, the vanishing of the effective potential is required by the dilaton and no-scale 
modulus stationary condition; namely the absence of dilaton and no-scale modulus tadpoles. 
The second ones are tachyonic instabilities that arise in all no-scale models having positive 
β-function coefficients. Therefore, it would be relevant to look for super no-scale models without 
non-asymptotically free gauge group factors. Possibly, one could consider no-scale models with 
nF > nB, and switch on discrete Wilson lines of order 1 in order to break the non-asymptotically 
free gauge group factors to products of asymptotically free and/or conformal subgroups.

Another approach is to consider the super no-scale models at finite temperature T . Note that 
this point of view can be relevant when the models are used in cosmological scenarios. At fi-
nite T , the effective potential is nothing but the quantum free energy and all squared masses are 
shifted by T 2 [23]. Thus, as long as T 2 is greater than m2

3/2, the tachyonic instabilities arising 
from positive β-function coefficients are lifted. For instance, Background (a) of the sss-model is 
stable during early stages of the cosmological evolution, when T is high. As the Universe grows 
and the temperature drops, the breaking of SO(16) ×SO(16)′ occurs when T 2 crosses m2

3/2 and 
becomes lower. It would be interesting to investigate this phase transition in a dynamical cos-
mological framework where all moduli fields, including the dilaton and the no-scale modulus, 
evolve with the temperature.

Another way to bypass the tachyonic instabilities occurring at 1-loop in super no-scale models 
may be to impose correlations among deformations, in order to preserve those which respect 
at the quantum level the flatness condition V1-loop = 0. In the case of Background (a), since 
−bSU(2) = bSO(16), ideally the constraint

Y 2 = H 2 (3.43)

may be implemented, where Y is the total “attractive” Wilson line deformation associated to 
SU(2)4, while H is the total “repulsive” one, associated to SO(16)2,

Y 2 =
6∑

i=3

[ 6∑
j=3

(Yji)
2 + 2|Yi |2 − ρ(Yi)

2 − ρ̄(Ȳi )
2
]
,

H 2 =
22∑
I=7

[ 6∑
j=3

(YjI)2 + 2|YI |2 − ρ(YI)2 − ρ̄(ȲI)2
]
. (3.44)

Differently stated, one would demand the negative energy density created by any breaking of 
SO(16)2 to be compensated by the positive one, generated by a breaking of SU(2)4. It may be 
relevant to investigate this possibility by implementing additional orbifold actions.
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4. N = 2 → 0 and N = 1 → 0 super no-scale models

In the super no-scale models presented so far, with exponentially suppressed vacuum energies 
at the 1-loop quantum level, N = 4 supersymmetry is spontaneously broken to N = 0. It is then 
legitimate to look for less symmetric super no-scale theories, realizing either an N = 2 → 0 or 
N = 1 → 0 spontaneous breaking. For this purpose, one may consider no-scale parent theories 
describing an N = 4 → 0 breaking, and implement Z2 or Z2 × Z2 orbifold actions that yield 
descendent models satisfying the super no-scale property. However, as was shown in Ref. [13], 
if no precautions are taken in the choice of orbifold actions, the N = 2 sectors of these models 
lead generically to gauge coupling threshold corrections [15,16] proportional to the large internal 
volume [14]. In this case, a fine tuning of the string coupling gs is required to cancel the 1-loop 
threshold corrections of the gauge couplings of the asymptotically free gauge group factors. In 
the following, we present a simple strategy that yields N = 2 → 0 or N = 1 → 0 super no-scale 
models, while evading the above mentioned “decompactification problem”.

4.1. Chains of N = 4, 2, 1 → 0 super no-scale models

Our goal is to derive a class of N = 2 → 0 and N = 1 → 0 super no-scale models from 
parent ones that realize the N = 4 → 0 breaking. The next subsection will describe the gauge 
threshold corrections arising in this case. To begin, we consider any N = 4 heterotic no-scale 
vacuum obtained by “moduli-deformed fermionic construction” [13,28]. Let us implement a Z2
or Z2 × Z2 orbifold action where at least one of the Z2’s is freely acting and thus realizes a 
spontaneous N = 4 → 2 breaking. The resulting vacuum is N = 2 or N = 1 supersymmetric, 
which is further spontaneously broken to N = 0 by a stringy Scherk–Schwarz mechanism [7]
realized along the 1st internal 2-torus. The latter is chosen to be large, for the supersymmetry 
breaking scale to be small, m2

3/2 ∝ M2
s /ImT1. In total, the model describes the N = 4 → 2 → 0

or N = 2 → 1 → 0 pattern of supersymmetry breaking. To be more specific, we request the 
following [13]:

• The generator of the free Z2 action, denoted as Zfree
2 , twists the coordinates of the 2nd and 

3rd 2-tori, and shifts at least one of the coordinates of the 1st 2-torus, e.g.

Zfree
2 : (X1,X2,X3,X4,X5,X6) −→ (X1,X2 + 1/2,−X3,−X4,−X5,−X6) . (4.1)

• In the Zfree
2 × Z2 case, there is no restriction on the second Z2. However, in most cases, its 

generator as well as the product of the latter with the generator of Zfree have fixed points. If this 
happens, in order not to induce large threshold corrections to the gauge couplings, we impose 
the 2nd and 3rd 2-tori moduli T2, U2 and T3, U3 not to be far from i. For instance, they can sit at 
extended symmetry points.

• The stringy Scherk–Schwarz mechanism responsible for the final supersymmetry breaking 
is realized as a 1

2 -shift along the 1st 2-torus, say X1, coupled to one of the R-symmetry charges, 
such as the helicity a.

Once the above restrictions are satisfied and m3/2 � Ms, the effective potential of the Zfree
2

and Zfree
2 × Z2 models turn out to be 1

2 and 1
4 of that of the “parent” N = 4 → 0 theory, up to 

exponentially suppressed contributions [13],

V1-loop

∣∣∣
N=4→2→0

= 1

2
V1-loop

∣∣∣
N=4→0

+O
(
M4

s e−cMs/m3/2
)

,
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V1-loop

∣∣∣
N=2→1→0

= 1

4
V1-loop

∣∣∣
N=4→0

+O
(
M4

s e−cMs/m3/2c
)

. (4.2)

Therefore, considering any N = 4 → 0 super no-scale model, such as the sss one, as a “parent” 
theory, one obtains automatically a chain of “descendant” models realizing the N = 2 → 0 or 
N = 1 → 0 breaking, with exponentially suppressed vacuum energy at 1-loop.

4.2. Threshold corrections without decompactification problem

As shown in Ref. [13], the gauge coupling threshold corrections of the Zfree
2 and Zfree

2 × Z2
descendant theories derived from no-scale models realizing the N = 4 → 0 breaking of super-
symmetry turn out to have a universal form, free of decompactification problem. In the following, 
we present the running gauge coupling associated to a gauge group factor Gα, in the Zfree

2 × Z2
case. At low supersymmetry breaking scale m3/2, it is expressed in terms of moduli-dependent 
masses of order m3/2 that encode the dominant contributions arising from five conformal blocks, 
which naturally appear in the left-moving piece of the partition function,

Z
(F)
4,0

[a; H1, H2
b; G1, G2

]
SL

[a; h

b; g

]
= 1

2

∑
a,b

(−1)a+b+ab
θ
[a
b

]
η

θ
[a+H2
b+ G2

]
η

θ
[a+H1
b +G1

]
η

θ
[a−H1−H2
b −G1−G2

]
η

(−1)ga+hb+hg , (4.3)

associated to the 8 twisted worldsheet fermions. In our conventions, H1, G1 ∈ {0, 1} refer to the 
freely acting twists of Zfree

2 , while H2, G2 ∈ {0, 1} are those of the second Z2.
The five dominant sectors are denoted as B , C, D and I ∈ {2, 3}, and their mass threshold 

scales are the following [13], when no Wilson line deformations are switched on:

M2
B = M2

s

|θ2(U1)|4 ImT1 ImU1
, M2

C = M2
s

|θ4(U1)|4 ImT1 ImU1
,

M2
D = M2

s

|θ3(U1)|4 ImT1 ImU1
, M2

I = M2
s

16
∣∣η(TI )|4

∣∣η(UI )|4 ImTI ImUI

,

I ∈ {2,3} . (4.4)

• In the conformal block B , the supersymmetry breaking takes place, (h, g) �= (0, 0), while 
the Zfree

2 × Z2 twists are trivial, (H1, G1) = (H2, G2) = (0, 0). It realizes the N = 4 → 0 spon-
taneous breaking.

• The conformal block C, with (H1, G1) �= (0, 0) and (h, g) = (H2, G2) = (0, 0), preserves 
an NC = 2 supersymmetry.

• The conformal block D, with (h, g) = (H1, G1) �= (0, 0) and (H2, G2) = (0, 0), preserves 
an ND = 2 supersymmetry.

In the above three sectors, the 1st 2-torus is untwisted, (H2, G2) = (0, 0), and its shifted lattice 
�2,2

[ h, H1
g, G1

]
(T1,U1) is coupled non trivially to Z(F)

4,0

[a; H1, 0
b; G1, 0

]
via the phase SL

[a; h

b; g

]
. The mass scales 

MB, MC, MD arise from the towers of KK states along the 1st 2-torus. In the blocks C and D, 
where (H1, G1) �= (0, 0), the 2nd and 3rd 2-tori are twisted but the 1st one is shifted. Thus, there 
are no massless twisted states arising from the blocks C and D (no fixed points to localize them).

• In the remaining relevant conformal blocks I ∈ {2, 3}, the 1st 2-torus is twisted, (H2, G2) �=
(0, 0). The 2nd 2-torus in untwisted for I = 2, where (H1, G1) = (0, 0), while the 3nd one is 
untwisted for I = 3, where (H1, G1) = (H2, G2). These blocks preserve distinct NI = 2 super-
symmetries. In Eq. (4.4), the expressions of the threshold mass scales MI ’s are valid when the 
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generator of the 2nd Z2 and its product with the generator of Zfree
2 have fixed points, namely 

when both �2,2(TI ,UI ) lattices are unshifted.
All other conformal blocks give either vanishing contributions, like the N = 4 block A, 

(h, g) = (H1, G1) = (H2, G2) = (0, 0), or the N = 1 ones, which have 
∣∣H1 H2
G1 G2

∣∣ �= 0. Or, their 
contributions are exponentially suppressed, as is the case for the blocks E and F , which have 
(H2, G2) = (0, 0) and 

∣∣h H1
g G1

∣∣ �= 0, and realize NC = 2 → 0 and ND = 2 → 0 spontaneously 
broken phases.

Absorbing in a “renormalized string coupling” the universal contribution to the gauge cou-
pling [16],

16π2

g2
renor

= 16π2

g2
s

− 1

2
Y(T2,U2) − 1

2
Y(T3,U3) , with

Y(T ,U) = 1

12

∫
F

d2τ

τ2
�2,2(T ,U)

[(
Ē2 − 3

πτ2

) Ē4Ē6

η̄24
− j̄ + 1008

]
, (4.5)

where E2,4,6 = 1 + O(q) are the holomorphic Eisenstein series of modular weights 2,4,6 and 
j = 1/q + 744 + O(q) is holomorphic and modular invariant, the final result for the running 
gauge coupling gα(Q) at energy scale Q is [13],

16π2

g2
α(Q)

= kα 16π2

g2
renor

− 1

4
bα
B log

(
Q2

Q2 + M2
B

)
− 1

4
bα
C log

(
Q2

Q2 + M2
C

)

− 1

4
bα
D log

(
Q2

Q2 + M2
D

)
− 1

2
bα

2 log

(
Q2

M2
2

)
− 1

2
bα

3 log

(
Q2

M2
3

)
+O

(
m2

3/2

M2
s

)
.

(4.6)

It only depends on the Kac–Moody level kα of the gauge group factor Gα and on 5 model-
dependent β-function coefficients bα

B,C,D and bα
2,3. The terms in the 1st line are associated to 

the N = 0, NC = 2 and ND = 2 spectra, which arise respectively in the conformal blocks B , 
C and D, while those in the 2nd line arise from the NI = 2 spectra, I ∈ {2, 3}. Note that in the 
1st line of Eq. (4.6), we have shifted M2

B,C,D → Q2 + M2
B,C,D , in order to extend the validity 

of the result to values of Q above the threshold scales MB,C,D at which the conformal blocks 
B , C or D decouple. Therefore, Q is allowed to be as large as the lowest mass, which is of 
order cMs, of the massive states we have neglected the exponentially suppressed contributions. 
At low energy, i.e. Q lower than the three scales MB, MC, MD , the r.h.s. of Eq. (4.6) behaves 
as − 1

4 (bα
B + bα

C + bα
D) log ImT1 + O(1) when ImT1 is large and U1 = O(i). No volume term 

O(ImT1) being present, the models evade the decompactification problem.
As already stated in the previous subsection, up to exponentially suppressed terms, the 1-loop 

effective potentials in the Zfree
2 × Z2 models we consider here come only from the conformal 

block B where N = 4 supersymmetry is spontaneously broken to N = 0,

V1-loop

∣∣∣
N=2→1→0

= 1

4
V1-loop

∣∣∣
N=4→0

+O
(
M4

s e−cMs/m3/2
)

= 1

4
ξ(nF − nB)m4

3/2 +O
(
M4

s e−cMs/m3/2
)

. (4.7)

In this expression, nF − nB is the number of massless fermions minus the number of mass-
less bosons in the “parent” N = 4 → 0 theory. Actually, 1 (nF − nB) turns out to be the same 
4
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quantity in the final N = 1 → 0 “descendant” model. This is a consequence of the underlying 
“non-aligned” NC = 2, ND = 2 and NI = 2, I ∈ {2, 3}, supersymmetries. Thus, when the ini-
tial N = 4 → 0 model is super no-scale, we have nF − nB = 0, which guaranties the Zfree

2 and 
Zfree

2 ×Z2 descendant orbifold theories to be super no-scale models as well.

4.3. T 2 × T 2 × T 2-moduli and Wilson lines deformations

Starting from an N = 4 → 0 no-scale model, the moduli space that survive Z2 or Z2 × Z2
orbifold actions in the “descendant” models is reduced. This follows from the fact that several 
deformations are frozen to some discrete values, in order to respect the factorization of the in-
ternal 6-torus as T 2 × T 4 or T 2 × T 2 × T 2. For instance, in the sss-model, the scalars Yi in 
Eq. (3.30) are fixed to 0. However, new moduli fields arise generically from the massless scalars 
of the twisted sectors. Therefore, the stability and quantum flatness condition of the N = 2 → 0
and N = 1 → 0 no-scale models must be reconsidered.

An exception however exists, for the models arising from N = 4 → 0 no-scale theories, on 
which a Zfree

2 or Zfree
2 × Z2 orbifold action is implemented, as described in Subsect. 4.1. In 

this case, modulo the constraint of the �6,6 lattice factorization, the structure of the deformed 
effective potential is as in Eq. (3.38), up to the multiplicative factor 1

2 or 1
4 , and fully arises from 

the untwisted sector. Due to the free action of Zfree
2 , the 1st 2-torus is not fixed under any orbifold 

group element, so that no twisted massless states and thus no new moduli sensitive to the stringy 
Scherk–Schwarz mechanism is introduced. On the contrary, twisted massless states are allowed 
in the conformal blocks where the 2nd or 3rd 2-tori are fixed. However, being N2 = 2 or N3 = 2
supersymmetric at tree level, new moduli deformations exist, but remain exactly flat directions 
at 1-loop and therefore do not show up in the effective potential at this order. Thus, in the study 
of the quantum stability of the N = 4 → 2 → 0 or N = 2 → 1 → 0 models obtained by Zfree or 
Zfree

2 × Z2 orbifold actions, only the β-function coefficients of the “parent” N = 4 → 0 theory 
are relevant. The resolution of an instability in a chain of N = 4, 2, 1 → 0 no-scale models is thus 
universal, in the sense that it is independent of the specific spectra of the “descendant” theories.

5. Conclusion

In this work, we focus on no-scale string models [2] where the spontaneous N = 4, 2, 1 → 0
breaking of supersymmetry is implemented at the perturbative level by geometrical fluxes. This 
setup realizes a “coordinate-dependent string compactification” [7,8], in the spirit of the Scherk–
Schwarz mechanism introduced in supergravity [9]. The gravitino mass scale m3/2 is related to 
the inverse volume of the compact space involved in the supersymmetry breaking. Even thought 
supersymmetry is broken, the classical effective potential is positive semi-definite, Vtree ≥ 0 [2], 
while the supersymmetry breaking scale 〈m3/2〉 is undetermined by the flatness condition.

At the quantum level, the 1-loop effective potential receives non-trivial corrections. The latter 
are however under control, at least in the regime of low supersymmetry breaking scale, m3/2 <

cMs, in which case one has

V1-loop = ξ(nF − nB)m4
3/2 +O

(
M4

s e−cMs/m3/2
)

. (5.1)

The above formula arises from the contributions of the light KK towers of states associated to the 
large internal space, and remains valid in the string context we consider even when the no-scale 
models realize the N = 2 → 0 or N = 1 → 0 breaking. These facts lead us to consider the 
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situation where the numbers of massless fermionic and bosonic degrees of freedom are equal, 
nF = nB [11,12]. In this case, V1-loop vanishes modulo exponentially suppressed terms and we 
refer to these theories as “super no-scale string models”. At the 1-loop level, they satisfy the 
flatness condition, as well as the absence of dilaton and no-scale modulus tadpoles.

Simple examples of “super no-scale models” are constructed in the framework of the heterotic 
string compactified on T 2 × T 2 × T 2. They realize the N = 4 → 0 spontaneous breaking via a 
stringy Scherk–Schwarz mechanism along the 1st internal 2-torus and their right-moving gauge 
symmetry is either

(a) G = U(1)2 × SU(2)4 × SO(16)2 or (b) U(1)3 × SU(2) × SU(3) × SO(16)2 .

(5.2)

In both examples, if V1-loop is exponentially suppressed when m3/2 < Ms, it is not suppressed 
when m3/2 = O(Ms). However, no Hagedorn-like instability takes place in this regime [8,22], 
which means that no state becomes tachyonic at any point of the (T1, U1)-moduli space. More-
over, in the regime where m3/2 > Ms, the model is more naturally interpreted as an explicitly 
non-supersymmetric theory, rather than a no-scale model. Altogether, V1-loop turns out to be pos-
itive and increases monotonically with m3/2. Therefore, in a cosmological context, the dynamics 
drives naturally these models to the super no-scale regime, where the supersymmetry breaking 
scale is small.

We also examine the local stability of the model with gauge symmetry G = U(1)2 ×SU(2)4 ×
SO(16)2, under small moduli perturbations of the internal �6,6+16 lattice. The analysis actually 
applies to all no-scale string models realizing an N = 4 → 0 breaking via stringy Scherk–
Schwarz mechanism [7,8] along a large 1st internal 2-torus, weather they are super no-scale, 
i.e. with nF = nB, or not. The rank of the gauge group being always 6 +16, we find the following 
three possible behaviors of the moduli YIJ , I ∈ {1, . . . , 6}, J ∈ {1, . . . , 6 + 16}:

• For J associated to a Cartan generator of an asymptotically free gauge group factor Gα

(bα < 0), the YIJ ’s acquire 1-loop masses of order m3/2, and are therefore stabilized at the 
origin, YIJ = 0.

• For J corresponding to a Cartan generator of a non-asymptotically free gauge group factor 
(bα > 0), the YIJ ’s acquire negative squared masses, which leads instabilities. They condense 
and break Gα to subgroups with non-negative β-function coefficients.

• The last YIJ ’s, associated to gauge group factors with bα = 0, remain massless.
Thus, in the examples we considered, the SO(16) × SO(16)′ Wilson lines yield a desta-

bilization of the initial background. However, we stress that in all super no-scale models, the 
quantum instabilities are harmless when the theories are considered at finite temperature T , pro-
vided that T > m3/2. This follows from the fact that finite temperature induces effective mass 
terms proportional to T 2(YIJ )2, which screen all tachyonic contributions −m2

3/2(YIJ )2. There-
fore, in the framework of string cosmology at finite temperature [23], a phase transition happens 
when T approaches m3/2 from above, which drives the initial model to a new phase without 
non-asymptotically free gauge group factors.

A particular class of super no-scale models, which realize the spontaneous N = 2 → 0 or 
N = 1 → 0 breaking of supersymmetry, can be constructed easily. They are built from parent 
N = 4 → 0 super no-scale models, on which a Zfree

2 or Zfree
2 ×Z2 orbifold action is implemented. 

The fact that the Zfree
2 group is freely acting ensures that the partial N = 4 → 2 breaking is spon-

taneous, which yields important consequences [13]. First, the 1-loop effective potential in the 
descendant models is simply 1

2 or 1
4 of that of the parent theory. Second, the threshold correc-

tions to the gauge couplings are not proportional to the volume of the large internal submanifold 
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involved in the stringy Scherk–Schwarz mechanism. This fact guaranties the validity of the string 
perturbative expansion, i.e. solves the so-called “decompactification problem”. In the descendent 
theories, the space of untwisted moduli, which are those appearing in the effective potential, is 
reduced, as follows from the factorization of the internal space required by the orbifold action.

To conclude, we mention that it would be very interesting to study in super no-scale models 
the higher order corrections in string coupling to the effective potential. This would allow to see 
weather insisting on the flatness condition would yield additional restrictions on the models. One 
can also construct super no-scale theories by implementing Z2 or Z2 × Z2 orbifold actions on 
N = 4 → 0 no-scale models, where each Z2 admits fixed points [11]. In this case, our analysis of 
the moduli deformations must be completed, since the effective potential does depend on twisted 
moduli sensitive to the final breaking of supersymmetry to N = 0. However, if these models are 
compatible with the physical requirement of possessing chiral spectra, the decompactification 
problem has to be readdressed.
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