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Motivated by the recent update on LHC searches for narrow and broad resonances decaying into 
diphotons we reconsider the possibility that the observed peak in the invariant mass spectrum at 
Mγ γ = 750 GeV originates from a closed string (possibly axionic) excitation ϕ (associated with low mass 
scale string theory) that has a coupling with gauge kinetic terms. We reevaluate the production of ϕ
by photon fusion to accommodate recent developments on additional contributions to relativistic light–
light scattering. We also study the production of ϕ via gluon fusion. We show that for both a narrow 
and a broad resonance these two initial topologies can accommodate the excess of events, spanning 
a wide range of string mass scales 7 � Ms/TeV � 30 that are consistent with the experimental lower 
bound: Ms > 7 TeV, at 95% CL. We demonstrate that for the two production processes the LHC13 data 
is compatible with the lack of a diphoton excess in LHC8 data within ∼ 1σ . We also show that if the 
resonance production is dominated by gluon fusion the null results on dijet searches at LHC8 further 
constrain the coupling strengths of ϕ, but without altering the range of possible string mass scales.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Recently, the ATLAS [1] and CMS [2] Collaborations reported 
excesses of events over expectations from standard model (SM) 
processes in the diphoton mass distribution around 750 GeV, using 
(respectively) 3.2 fb−1 and 2.6 fb−1 of data recorded at a center-
of-mass energy 

√
s = 13 TeV. This could be interpreted as decays 

of a new massive particle ϕ . For a narrow width approximation 
hypothesis, the ATLAS Collaboration gives a local significance of 
3.6σ and a global significance of 2.0σ when accounting for the 
look-elsewhere-effect in the mass range Mϕ/ GeV ∈ [200–2000]. 
Signal-plus-background fits were also implemented assuming a 
large decay width for the signal component. The most signifi-
cant deviation from the background-only hypothesis is reported 
for Mϕ ∼ 750 GeV and a total width �total ≈ 45 GeV. The local and 
global significances evaluated for the large width fit are about 0.3 
higher than that for the fit using the narrow width approximation, 
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corresponding to 3.9σ and 2.3σ , respectively. The CMS data yields 
a local significance of 2.6σ and a global significance smaller than 
1.2σ . Fitting the LHC13 data with a resonance yields a cross sec-
tion times branching ratio of

σLHC13(pp → ϕ + anything) × B(ϕ → γ γ )

≈
{

(10 ± 3) fb ATLAS
(6 ± 3) fb CMS

, (1)

at 1σ [3]. On the other hand, no diphoton resonances were seen 
in the data at 

√
s = 8 TeV, although both ATLAS [4] and CMS [5]

data show a mild upward fluctuation at invariant mass of 750 GeV. 
The lack of an excess at 

√
s = 8 TeV allows a quite precise limit 

to be placed on the corresponding cross section at 
√

s = 13 TeV. 
The most stringent limit comes from the CMS search σLHC8(pp →
ϕ + anything) × B(ϕ → γ γ ) < 2.00 fb at 95% CL [5]. This implies 
that if the diphoton cross section grows by less than about a factor 
of 3 or 3.5 the LHC8 data are incompatible with the LHC13 data at 
95% CL.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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More recently, we proposed a model [6] to explain the data in 
which the resonance production mechanism is calculable in string 
based dynamics, with large extra dimensions [7]. In our proposal 
the observed diphoton excess originates from a closed string ex-
citation ϕ living on the compact space of generic intersecting D-
brane models that realize the SM chiral matter contents and gauge 
symmetry [8,9]. There are two properties of the scalar ϕ that are 
necessary for explaining the 750 GeV signal. It should be a spe-
cial closed string state with dilaton-like or axion-like coupling to 
F 2 (respectively to F F̃ ) of the electromagnetic field, but may be 
decoupled from G2 of color SU (3). The couplings of closed string 
states to gauge fields do indeed distinguish between different D-
brane stacks, depending on the localization properties of D-branes 
with respect to ϕ in the compact dimensions. More specifically, it 
is quite natural to assume that ϕ is a closed string mode that is 
associated to the wrapped cycles of the (lepton) U (1)L and (right 
isospin) U (1)I R stack of D-branes, however it is not or only weakly 
attached to the wrapped cycle of (left) Sp(1)L or the color SU (3)

stack of D-branes. In this way, we may avoid unwanted dijet sig-
nals. Actually, within a selection of string based explanations of 
the resonance [10–19] our proposal is uniquely exemplified by the 
possible suppression of dijet topologies in the final state.1 By choice, 
as we already advertised in [6], we may also allow a coupling ϕ
to G2. This is possible by modifying the localization properties of 
D-branes with respect to ϕ in the internal space.

Very recently, the ATLAS and CMS Collaborations updated their 
diphoton resonance searches [26–28]. The ATLAS Collaboration re-
ported two separate analyses performed with 3.2 fb−1 of data at 
13 TeV, targeting spin-0 and spin-2 resonances. For spin-0, the 
largest deviation from the background-only hypothesis is reported 
for Mϕ ∼ 750 GeV and �total ≈ 45 GeV. While the local significance 
somewhat increases to 3.9σ the global significance remains at the 
2σ level. For the spin-2 resonance, both the local and global sig-
nificances are somewhat smaller: 3.6σ and 1.8σ , respectively. The 
new CMS analysis is based on 3.3 fb−1 collected at 

√
s = 13 TeV. 

The additional data was recorded in 2015 while the CMS magnet 
was not operated. The largest excess is observed for Mϕ = 760 GeV
and �total ≈ 11 GeV and has a local significance of 2.8σ for spin-
0 and 2.9σ spin-2 hypothesis. After taking into account the ef-
fect of searching for several signal hypotheses, the significance of 
the excess is reduced to < 1σ . The CMS Collaboration also re-
ported a combined search on data collected at 

√
s = 13 TeV and √

s = 8 TeV. For the combined analysis, the largest excess is ob-
served at Mϕ = 750 GeV and �total = 0.1 GeV. The local signifi-
cance is ≈ 3.4σ and the global significance 1.6σ .

In this short note we extend our previous discussion in three 
directions. The first is a calculation to accommodate recent de-
velopments on additional contributions to relativistic light–light 
scattering [29–31]. The second is the explicit calculation for pro-
duction via gluon fusion disclosed in [6]. The third is a scan of the 
parameter space to entertain the possibility of a narrow width fa-
vored by the recent CMS analysis that combines data from LHC8 
and LHC13. Before proceeding we note that the ATLAS excess is 
quite broad and probably with a large uncertainty. The CMS excess, 
however, is smaller and has no clear preference for a large width. 
This seems to indicate that the ATLAS excess could be a real sig-
nal combined with a large fluctuation, making the excess appear 
larger and wider than the underlying physical signal. Throughout 
we assume the resonance needs to have a signal [32]

σLHC13(pp → ϕ + anything) × B(ϕ → γ γ ) ≈ 3–6 fb . (2)

1 A related stringy explanation in which ϕ can be produced through photon fu-
sion has been put forward in [20]. Alternative axion and dilaton models have been 
discussed in [21–25].
Fig. 1. Contours of constant partial width �γγ . The color encoded scales are in GeV. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

Since the string mass scale is now known to be larger than 
Ms ≈ 7 TeV [33], the mass Mϕ ≈ 750 GeV must be suppressed 
with respect to the string scale by some anomalous loop correc-
tions. Because ϕ is a twisted closed string localized at an orbifold 
singularity, its coupling to γ γ should be suppressed by M−1

s , pro-
vided the bulk is large [34]. With this in mind, we parametrize the 
coupling of ϕ to the photon by the following vertex

cγ γ

Ms
ϕ F 2 . (3)

To remain in the perturbative range, we also require cγ γ � 2π . The 
partial decay width of ϕ to diphotons then follows as

�γγ = c2
γ γ

4π

M3
ϕ

M2
s

. (4)

In Fig. 1 we exhibit a scan of the parameter space (cγ γ , Ms) for 
constant values of �γγ as obtained from (4).

Let us first assume the diphoton signal is produced via photon–
photon fusion with ϕ as the resonance state. Following [30], herein 
we include the elastic–elastic processes (already considered in [6]) 
as well as elastic–inelastic and inelastic–inelastic contributions. 
The elastic production is suppressed with respect to inelastic by 
about an order of magnitude. However, elastic photoproduction 
events result in forward and backward protons which can be de-
tected by forward detectors installed by ATLAS [35] and CMS [36]. 
Therefore, the detection of two unbroken protons in the final state, 
with Mpp paired to Mγ γ , may be a promising way to reduce the 
background in the future [29,31].

The total photo-production cross section at LHC13 is [30]

σLHC13(γ γ → ϕ → γ γ ) = 4.1 pb

(
�total

45 GeV

)
B2(ϕ → γ γ ) , (5)

where

B(ϕ → γ γ ) = 2.3 × 106c2
γ γ

π

(
Ms

GeV

)−2 (
�total

45 GeV

)−1

. (6)

Substituting (6) into (5), and demanding (5) reproduces the dipho-
ton signal (2) we obtain an equation connecting cγ γ with Ms for 
given �total. In Fig. 2 we show the best fit contours for σLHC13 ∼
5 fb and total widths �total = 45, 10, 1, 0.1 GeV. We assume that 
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Fig. 2. Best fit contours of diphoton cross section σLHC13 ∼ 5 fb produced via 
photon fusion γ γ → ϕ → γ γ . The four lines (blue, red, yellow, green) are for 
�total = 45, 10, 1.0, 0.1 GeV, respectively. (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this arti-
cle.)

Fig. 3. Contours of constant partial width �gg . The color encoded scales are in GeV. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.)

for a broad resonance the missing fraction of the decay width 
arises from the coupling of ϕ to some fermion bulk fields. These 
hidden fermions could make a contribution to the dark matter 
content of the universe [37–39]. We conclude that for both the 
narrow and the broad resonance hypotheses there is an allowed 
region of the parameter space which is consistent with the ex-
perimental lower bound of Ms � 7 TeV [33] and reproduces the 
LHC13 signal. For the broad resonance hypothesis, 7 � Ms/TeV �
30.

The total photo-production cross section at LHC8 is [30]

σLHC8(γ γ → ϕ → γ γ ) = 1.4 pb

(
�total

45 GeV

)
B2(ϕ → γ γ ) , (7)

showing consistency with the 95% CL upper limit [5]. Actually, the 
ratio of the LHC13/LHC8 partonic luminosity is largely dominated 
by systematic uncertainties driven by the parton distribution func-
Fig. 4. Contours of constant string scale Ms for best fit of diphoton cross sec-
tion (σLHC13 = 5 fb) produced via gluon fusion (Mϕ � 750 GeV, √

s = 13 TeV). 
The color encoded scales are in TeV. The different panels correspond to �total =
45, 10, 0.1 GeV, downwards. (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

tions. The luminosity ratio is [30]

Lγ γ (
√

s = 13 TeV)

L (
√

s = 8 TeV)
= 3+0.1

−0.2, 2.65 ± 0.15, 2.1 ± 0.4, (8)

γ γ
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Fig. 5. Allowed parameter space on the cgg vs cγ γ plane for Ms = 7 TeV (left) and Ms = 12 TeV. The blue curves indicate the best fit of diphoton cross section (σLHC13 = 5 fb) 
for Ms = 7 TeV (left) and Ms = 12 TeV (right). The (red and orange) shaded regions are excluded at 95% CL by null results on dijet searches. The slanted (brown) curve 
determines the transition between cgg and cγ γ dominance at production. Gluon fusion dominates above this curve. Results for three possible total widths are exhibited in 
the vertical columns, �total = 45, 10, 0.1 GeV, downwards. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this 
article.)
for CT14QED [41], MRST2004 [42], and NNPDF2.3 [43]; respec-
tively. We note that the predictions of NNPDF2.3 are only mar-
ginally compatible with LHC8 data [5].

The assumed coupling of ϕ to the hypercharge field strength 
yields additional decay channels in the visible sector, namely ϕ →
γ Z and ϕ → Z Z , with

�γ Z

�γγ
= 2 tan2 θW ≈ 0.6 and

�Z Z

�γγ
= tan4 θW ≈ 0.08 . (9)

This prediction is in agreement with the recent upper limit re-
ported in by the ATLAS Collaboration from searches in the γ Z
channel [40].

We now turn to discuss the production via gluon fusion. We 
parametrize the coupling of ϕ to the gluon by the following vertex

cgg

Ms
ϕ G2. (10)

The partial decay width of ϕ to dijets is

�gg = 8
c2

gg

4π

M3
ϕ

2
. (11)
Ms
In Fig. 3 we show a scan of the parameter space (cgg , Ms) for con-
stant values of �gg as obtained from (11).

In the narrow width approximation the cross section for dipho-
ton production via gluon fusion is given by [29]

σLHC13(gg → ϕ → γ γ ) = 5.8×103 pb c2
gg

(
Ms

TeV

)−2

B(ϕ → γ γ )

(12)

and

σLHC8(gg → ϕ → γ γ ) = 1.2×103 pb c2
gg

(
Ms

TeV

)−2

B(ϕ → γ γ ) .

(13)

Substituting (2) and (6) into (12) we arrive at the targeting con-
straint equation connecting cgg , cγ γ , and Ms , for given �total. 
In Fig. 4 we show contours of constant string scale Ms for the 
best fit of the diphoton cross section (σLHC13 = 5 fb) produced 
via gluon fusion, with different values of the total decay width, 
�total = 45, 10, 0.1 GeV. By comparing the different panels of the 
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figure we can see that the phase space critically shrinks with de-
creasing �total. For ϕ production via gluon fusion, there is an addi-
tional constraint due to the null result on dijet searches above SM 
expectations. It is this that we now turn to study.

As of today the upper limit on dijet production at M jj =
750 GeV is dominated by LHC8 data, σLHC8(pp → j j) < 2.5 pb at 
95%CL [44]. The cross section for dijet production is

σLHC8(gg → ϕ → gg) = 7.6 × 103 pb c4
gg

(
Ms

TeV

)−4 (
�total

45 GeV

)
.

(14)

Imposing the dijet constraint, σLHC8(pp → j j) < 2.5 pb, on (14)
we obtain the excluded region of the (cgg, cγ γ ) plane. The al-
lowed region of the (cgg, cγ γ ) parameter space, which explains the 
observed diphoton excess at LHC13 and is consistent with LHC8 
data, is shown in Fig. 5 for illustrative values of the string scale, 
Ms = 7 TeV and 12 TeV. From (12) and (13) the LHC13/LHC8 lumi-
nosity ratio is found to be

Lgg(
√

s = 13 TeV)

Lgg(
√

s = 8 TeV)
= 4.7. (15)

Therefore, the production of ϕ by gluon fusion is consistent 
with the lack of a diphoton excess in LHC8 data. As we have 
seen, imposing the LHC8 dijet limit [44] further constrains the 
(cgg, cγ γ ) parameter space. However, it remains the case that 
for 7 � Ms/TeV � 30 there is always some allowed region of the 
(cgg, cγ γ ) plane.

Summarizing, we embrace this joyous moment that appears 
to be the emergence of non-standard model physics in collider 
data, by investigating low-mass-scale string compactifications en-
dowed with D-brane configurations that realize the SM by open 
strings. We have shown that generic D-brane constructs can ex-
plain the peak in the diphoton invariant mass spectrum at 750 
GeV recently reported by the LHC experiments. Under reasonable 
assumptions, we have demonstrated that the excess could origi-
nate from a closed string (possibly axionic) excitation ϕ that has a 
coupling with gauge kinetic terms. We estimated the ϕ production 
rate from photon and gluon fusion. For string scales above todays 
lower limit Ms ≈ 7 TeV, we can accommodate the diphoton rate 
observed at Run II while maintaining consistency with Run I data.
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