Supporting Information

Use of Primary and Secondary Polyvinylamines for Efficient Gene Transfection

Mathilde Dréan, ${ }^{\text {a,b }}$ Antoine Debuigne, ${ }^{\mathrm{b}}$ CristineGoncalves, ${ }^{\text {c }}$ Christine Jérôme ${ }^{\mathrm{b}}$, Patrick Midoux, ${ }^{\text {c }}$ Jutta Rieger, ${ }^{\text {a }}$ Philippe Guégan ${ }^{\text {a }}$
a Sorbonne Universités, UPMC Univ Paris 06, CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, 4 Place Jussieu, F-75005 Paris, France.
b Center for Education and Research on Macromolecules (CERM), Department of Chemistry, University of Liege (ULg), Sart-Tilman, Allée de la Chimie 3, Bat. B6a, B-4000 Liège, Belgium.
c Centre de Biophysique Moléculaire, UPR4301 CNRS, Rue Charles Sadron, 45071 Orléans Cedex 2, France

Table S1. Determination of the hydrolysis level of the poly(N-vinylamines) (PVAm) and poly(N methylvinylamines) (PMVAm) by elemental analysis.

Entry	Polymer	\% ${ }^{\text {e }}$	\% $\mathbf{N}^{\text {e }}$	$\mathrm{C} / \mathrm{N}_{\text {exp }}{ }^{\mathrm{e}}$	$\mathbf{C} / \mathbf{N}_{\text {theor }}$ full hydrolysis	$\begin{gathered} \text { \% of } \\ \text { hydrolysis } \end{gathered}$
1	PN700-Fs ${ }^{\text {a }}$	32.115	17.650	2.904	1.716	94
2	PN150-Cs ${ }^{\text {a }}$	n.d.	n.d.	n.d.	n.d.	n.d.
3	PN255-Cs ${ }^{\text {a }}$	33.105	17.675	1.873	1.716	$91^{\text {h }}$
4	PN660-Cs ${ }^{\text {a }}$	32.595	18.085	1.802	1.716	$94^{\text {h }}$
5	PN940-Cs ${ }^{\text {a }}$	32.080	17.630	1.820	1.716	$95^{\text {h }}$
6	PN1510-Cs ${ }^{\text {a }}$	32.485	17.930	1.812	1.716	$94^{\text {h }}$
7	PN50-R ${ }^{\text {b }}$	32.420	17.920	1.809	1.716	99^{1}
8	PN170-R ${ }^{\text {b }}$	32.840	17.875	1.837	1.716	$98^{\text {i }}$
9	PN200-R ${ }^{\text {b }}$	31.825	18.150	1.753	1.716	$\geq 99^{\text {i }}$
10	PM100-Fh ${ }^{\text {c }}$	41.620	14.105	2.951	2.573	78^{j}
11	PM140-Fh ${ }^{\text {c }}$	38.945	13.410	2.904	2.573	$81^{\text {j }}$
12	PM165-Fh ${ }^{\text {c }}$	41.700	14.975	2.785	2.573	$88^{\text {j }}$
14	PM285-Fh ${ }^{\text {c }}$	46.165	15.060	3.065	2.573	$71^{\text {j }}$
15	PM110-Ch ${ }^{\text {c }}$	43.630	15.135	2.883	2.573	82^{j}
16	PM265-Ch ${ }^{\text {c }}$	43.895	15.680	2.799	2.573	$87^{\text {j }}$
17	PM310-Ch ${ }^{\text {c }}$	42.400	15.700	2.701	2.573	$93{ }^{\text {j }}$
18	PM680-Ch ${ }^{\text {c }}$	43.610	16.010	2.724	2.573	$91^{\text {j }}$
19	PM155-Fm23 ${ }^{\text {d }}$	52.480	13.450	3.902	2.573	$23^{\text {j }}$
20	PM155-Fm 37 ${ }^{\text {d }}$	50.800	13.935	3.645	2.573	37^{j}
21	PM155-Fm 44 ${ }^{\text {d }}$	48.570	13.740	3.535	2.573	$44^{\text {j }}$
22	PM155-Fm 54 ${ }^{\text {d }}$	46.665	13.940	3.348	2.573	$54^{\text {j }}$
23	PM155-Fm 64 ${ }^{\text {d }}$	44.345	13.895	3.191	2.573	$64^{\text {j }}$
24	PM155-Fm 76 ${ }^{\text {d }}$	43.760	14.670	2.983	2.573	$76^{\text {j }}$
25	PM155-Fm 94 ${ }^{\text {d }}$	42.005	15.695	2.676	2.573	$94^{\text {j }}$

${ }^{\text {a }}$ Hydrolysis conditions: HCl 2 N at $120^{\circ} \mathrm{C}$ for $14 \mathrm{~h} .{ }^{\mathrm{b}}$ Hydrazinolysis conditions:[NVPi]/[hydrazine] $=1 / 24$, in 1.4dioxane $/ \mathrm{MeOH} 1 / 2$ at $65^{\circ} \mathrm{C}$ for one night. ${ }^{\mathrm{c}}$ Hydrolysis conditions: HCl 6 N at $120^{\circ} \mathrm{C}$ for $64 \mathrm{~h} .{ }^{\mathrm{d}}$ Hydrolysis conditions: HCl 3 N at $100^{\circ} \mathrm{C}^{\mathrm{e}}$ Determined by elementary analysis. ${ }^{\mathrm{f}}$ Calculated for full hydrolysis of the amides moieties. ${ }^{\mathrm{g}} \mathrm{NVA}$ hydrolysis level $=100 \times\left(1-f_{\mathrm{NVA}}\right.$ residual $)$ where f_{NVA} residual is the molar fraction of the residual non-hydrolyzed NVA units, and NMVA hydrolysis level $=100 \times\left(1-f_{\text {NMVA residual }}\right)$ where $f_{\text {NMVA residual }}$ is the molar fraction of the residual non-hydrolyzed NMVA units. ${ }^{\text {h-j }} f_{\text {NVA residual }}, f_{\text {NMVA residual }}$ and $f_{\text {NVPi residual }}$ are determined based on formulas $\mathrm{h}-\mathrm{j}$ (see below) established by taking into account the molar fraction of each comonomer in the copolymer precursor $\left(\mathrm{F}_{\mathrm{NVA}}{ }^{0}, \mathrm{~F}_{\mathrm{NMVA}}{ }^{0}\right.$ and $\left.\mathrm{F}_{\mathrm{NVPi}}{ }^{0}\right)$ and the respective numbers of carbon and nitrogen atoms in the hydrolyzed and non-hydrolyzed monomer units. MM_{c} and MM_{N} are the molar mass of C and N , respectively.n.d. $=$ not determined.

$$
\begin{aligned}
& { }^{\mathrm{h}} F_{N V A \text { residual }}=\frac{\left[M M_{N} \times \frac{C}{N}\right]-\left[2 \times M M_{C}\right]}{2 \times M M_{C}} \\
& { }^{\mathrm{i}} F_{\text {residual } N V P i}=\frac{\left[M M_{N} \times \frac{C}{N}\right]-\left[2 \times M M_{C}\right]}{8 \times M M_{C}} \\
& { }^{\mathrm{j}} F_{N M V A} \text { residual }
\end{aligned}=\frac{\left[M M_{N} \times \frac{C}{N}\right]-\left[3 \times M M_{C}\right]}{2 \times M M_{C}} .
$$

Figure S1. (A) Titration curves of aqueous solutions of PN255-Cs (PVAm) and PM140$\mathrm{Fh}(\mathrm{PMVAm})(50 \mathrm{mg} / \mathrm{ml}$ in 10 mL of HCl 1 M$)$ with 0.5 N NaOH , (B) linear regression of the titration curves of aqueous solutions of PN255-Cs and PM140-Fhin order to determine their buffer capacities between $6.5<\mathrm{pH}<7.5$, (C) the resulting protonation curves versus the pH and (D) determination of the pKa .

Figure S2. ${ }^{1} \mathrm{H}$ NMR analyses of \mathbf{a}) PNVA ($M_{\text {nSEC-MALLS }}=56300 \mathrm{~g} / \mathrm{mol}, ~ Đ=1.18$) and b) PNMVA $\left(M_{\text {nSEC-MALLS }}=30800 \mathrm{~g} / \mathrm{mol}, ~ Đ=1.12\right)$ samples before and after acid hydrolysis $\left(6 \mathrm{~N} \mathrm{HCl} / 120^{\circ} \mathrm{C}\right)$. Spectra were recorded at 298 K in $\mathrm{D}_{2} \mathrm{O}$.

Figure S3.Agarose gel electrophoresis retardation assays of polyplexes made with different polyvinylamines (PN) (top) and poly(N-methylvinylamines) (PM) (bottom). Polyplexes were formed with various polymer/pDNA weight ratios (WR).

Table S2. Characteristics of polyvinylamine (PVAm) synthesized by RAFT polymerization of N vinylphthalimide and successive hydrazinolysis.

Entry	Name	PNVPi ${ }^{\text {a }}$					PVAm ${ }^{\text {b }}$	
		$\overline{M_{\text {n,th }}{ }^{\text {c }}}$	$\begin{gathered} M_{\mathrm{n}}^{\mathrm{LS}} \\ (\mathrm{~kg} / \mathrm{mol})^{\mathrm{d}} \end{gathered}$	$D P^{\text {n }}{ }^{\text {e }}$	$\boldsymbol{D}^{\text {f }}$	Conv. (\%)	$\begin{gathered} \% \text { of } \\ \text { hydrazinolysis }^{\text {g }} \end{gathered}$	$\begin{gathered} M_{\mathrm{n}} \\ (\mathrm{~kg} / \mathrm{mol})^{\mathrm{h}} \end{gathered}$
1	PN50-R	5	8	46	1.43	> 99	99	2.0
2	PN170-R	21	29	167	1.52	81	98	7.2
3	PN200-R	23	35	200	1.61	59	99	8.6

a Conditions for PN50-R, PN170-R and PN200-R are respectively: [NVPi]/[AIBN]/[CTA]= 25/0.25/1, 150/0.25/1 and 227/0.25/1, for $12 \mathrm{~h}, 24 \mathrm{~h}$ and 72 h . ${ }^{\text {b }}$ Conditions of the hydrazinolysis: [PNVPi]/[hydrazine]= $1 / 24$, in 1.4 -dioxane $/ \mathrm{MeOH} 1 / 2$ at $65^{\circ} \mathrm{C}$ for one night. ${ }^{\mathrm{c}} M_{\mathrm{n}, \mathrm{h}}=D P_{\mathrm{n}}{ }^{\text {th }} \mathrm{x}$ conversion $\mathrm{x}^{\mathrm{MM}} \mathrm{Mm}_{\text {moner }}{ }^{\mathrm{d}}$ $M_{\mathrm{n}}{ }^{\mathrm{LS}}$ determinedby SEC in DMF equipped with a MALLS detector, $\mathrm{dn} / \mathrm{dc}_{\mathrm{PNVPi}}=0.131$. ${ }^{\mathrm{e}}$ Calculated using the following formula: $D P_{\mathrm{n}}=M_{\mathrm{n}} / \mathrm{MM}_{\text {monomer }}{ }^{\mathrm{f}}$ Determined by SEC in DMF using a PMMA calibration. ${ }^{\mathrm{g}}$ Determined by elemental analysis (SI Table S1 for crude EA analysis and calculations). ${ }^{\text {h }}$ Number-average molar mass calculated by the molar mass of the precursor.

Table S3.Characteristics of pDNA complexes made with PVAm polymers prepared via RAFT polymerization

Entry	Polyplexes	polymer/pDNA $\mathbf{W R}^{\mathbf{a}}$	${\mathbf{N} / \mathbf{P}^{\mathbf{b}}}$$\mathbf{D}_{\mathbf{h}}^{\mathbf{c}}$ $(\mathbf{n m})$	$\zeta^{\mathbf{d}}$ $(\mathbf{m V})$	
1	PN50-R-plex	1	7	3490	+27
		3	22	150	+37
2	PN170-R-plex	1	7	460	+40
		3	21	140	+44
3	PN200-R-plex	1	7	90	+23
		3	22	130	+40
2^{\prime}	PN170-R-OAc ${ }^{\text {e }}$	1	2	185	+27
		3	5	140	+33

[^0]

Figure S4. (A) Transfection efficiency and (B) cell viability of HeLa cells. Transfection was performed with PVAm (made by RAFT) before (PN170-R) and after 50% acetylation (PN170-ROAc) polyplexes at two polymer/pDNA ratios (ratio 1 (blue) and ratio 2 (red): lower and higher amount of polymer, Table S3). The luciferase activity was measured 48h after the transfection and expressed as RLU/mg of protein. The cell viability was evaluated by MTT assay 48h after transfection and expressed as percentagerelative to untreated cells.

Figure S5.HeLa, C2C12, DC2.4 cells and fibroblasts were transfected with PM140-Fhpolyplexes at N/P $=3$ (A) and $6(B)$ containing pDNA encoding EGFP. EGFP-positive cells were analyzed by fluorescent confocal microscopy. Fluorescence images (left), phase contrast images (middle) and their merge (right).

[^0]: ${ }^{\text {a }} \mathrm{WR}=$ polymer/pDNA weight ratio. ${ }^{\text {b }}$ amine/phosphate molar ratio calculated as described in experimental part. ${ }^{\text {c }}$ Hydrodynamic diameters D_{h} of the polyplexes at 298 K in HEPES $10 \mathrm{mM}, \mathrm{pH} 7.4$. ${ }^{\mathrm{d}} \zeta$ potential of polyplexes at 298 K in HEPES $10 \mathrm{mM}, \mathrm{pH} 7.4$. $^{\circ}$ Obtained by acetylation of PN170-R (degree of acetylation $=50 \%$).

