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ABSTRACT

Context. Lags observed between the light curves of a gamma-ray burst (GRB) seen in different energy bands are related to its spectral
evolution. Moreover the lags have been found to correlate with burst luminosity, therefore providing a potential distance indicator.
Aims. We want to quantify the nature of the link between lags and spectral evolution to better understand the origin of the lag-
luminosity relation and evaluate its interest as a distance indicator.
Methods. We directly relate the lag of a pulse to the spectral parameters (peak energy Ep, low and high energy indices, α and β,
and their time derivatives) evaluated at pulse maximum. Then, using a Yonetoku-like relation we obtain a theoretical lag-luminosity
relation that is confronted with data.
Results. We first apply our model to the initial pulse of GRB 130427A, for which high quality data are available, to check quantita-
tively whether the measured lags are consistent with the observed spectral evolution. We then use a Monte Carlo approach to generate
a sample of synthetic lags, which we compare to an observed sample of Swift bursts. The dispersion of both the observed and modelled
lag-luminosity relations appears large, which questions the value of this relation as a reliable distance indicator.

Key words. gamma-ray burst: general – radiation mechanisms: non-thermal – distance scale

1. Introduction

It is well known that lags between gamma-ray burst (GRB) light
curves observed in different spectral bands are a direct conse-
quence of spectral evolution (Kocevski & Liang 2003; Schaefer
2004; Ryde 2005; Hakkila & Preece 2011). Obviously, with an
invariant spectrum, all light curves would simply be propor-
tional, therefore yielding zero lag. Lags provide an insight into
the spectral evolution in GRBs from a temporal perspective.
Moreover spectral lags have been found to correlate with burst
luminosity and can be used as distance indicators (Norris et al.
2000; Norris 2002). In the present Swift and Fermi era more
lags have been obtained in bursts with known distance, which
allows the testing of the lag-luminosity relation with larger sam-
ples (Ukwatta et al. 2010, 2012; Bernardini et al. 2015; Heussaff
2015) or with better spectral coverage in individual events
showing several pulses of different intensities (Zhang 2012;
Shenoy et al. 2013).

Spectral evolution in GRBs generally goes from hard to soft
within each pulse of the light curve. As a result, the pulse peaks
earlier at high energy than at low energy, which corresponds (by
definition) to a positive lag. Various mechanisms have been pro-
posed to explain the spectral evolution, from a geometric origin
resulting from the curvature of the emitting shells in the ejecta
(Shen et al. 2005; Lu et al. 2006) to an intrinsic effect related to
a true decrease of the peak energy with time (Kocevski & Liang
2003; Daigne & Mochkovitch 2003) or both (Peng et al. 2011).

To clarify the relationship between lags and spectral evo-
lution Hafizi & Mochkovitch (2007) and Boçi et al. (2010)

developed a simple analytical approach where the lag for a given
pulse in the light curve is obtained from a linear expansion of the
spectral parameters at pulse maximum. It appears from their re-
sult that the lag depends on the full spectral evolution, including
Ep and the spectral indices α and β at low and high energy. In
addition, the pulse shape and duration also affect the lag value
for a given spectral evolution.

In the present work we use this approach to (i) analyse in
some detail the lags measured with Fermi in the first pulse of the
very bright burst GRB 130427A (Preece et al. 2014) and (ii) to
statistically study a sample of lags obtained from the analysis of
70 Swift bursts (49 with known peak energy and luminosity). In
Sect. 2 we present our analytical model and summarize its main
results; the model is confronted with data in Sect. 3 and Sect. 4
is our conclusion.

2. A simple theory of lags

2.1. Analytical approach

The result obtained by Hafizi & Mochkovitch (2007) can be
summarized by the following expression:

δt12 =
f12,Ep ėp + f12,α ȧ + f12,β ḃ

C1
, (1)

where the lag δt12 between two energy bands 1 [E1,min, E1,max]
and 2 [E2,min, E2,max] is defined as the difference in time between
the pulse maxima in the two bands. This relation clearly es-
tablishes the link between lags and spectral evolution through
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Fig. 1. x2B(x) spectra (with x = E/Ep) for α = −1, β = −2.3 and n = 1
in Eq. (4) (original Band function; full line), n = 2 (dotted line), and
n = 0.67 (dashed line).

the three quantities ėp, ȧ, and ḃ, which are the logarithmic time
derivatives of the peak energy Ep, and low and high energy spec-
tral indices α and β, evaluated at pulse maximum t1 in the low
energy band 1. The three functions f12,X in Eq. (1) are defined by

f12,X =
∂LogF12

∂Log X

∣∣∣∣
t1
, (2)

where

F12 (Ep, α, β) =

∫ E2,max/Ep

E2,min/Ep
Bαβ(x) dx∫ E1,max/Ep

E1,min/Ep
Bαβ(x) dx

, (3)

and Bαβ(x) is the spectral shape1, which we approximate by a
modified Band function

B(x) =

 xα exp
[
−(α + 2) xn

n

]
for x ≤ xL =

(
α−β
α+2

)1/n

xβ xα−βL exp
(
β−α

n

)
otherwise.

(4)

The case with n = 1 represents the original Band function while
n > 1 (resp. n < 1) corresponds to a narrower (resp. broader)
transition between the two power laws as shown in Fig. 1, in
which we represented x2B(x) for n = 1, 2 and 0.67.

Finally, the C1 parameter in Eq. (1) is the curvature of the
pulse at time t1

C1 =
N̈1(t1)
N1(t1)

, (5)

where N1(t) is the photon flux in band 1.
We can rewrite Eq. (1) in dimensionless form by introducing

the pulse duration tp,

δt12

tp
=

f12,Ep δep + f12,α δa + f12,β δb

C1
, (6)

1 We note that F12 is just the hardness ratio between the two spectral
bands.

where δx = ẋ × tp and C1 = C1 × t2
p. Equation (6) then shows

that, for a given spectral evolution over the duration of the pulse
(represented by the δx values), the lag is proportional to the pulse
duration and inversely proportional to the “spikiness” C1. Equa-
tion (6) therefore provides a simple explanation for the fact that
short bursts generally have small lags.

2.2. Lags as a function of energy

2.2.1. Fixed Ep, different energy bands

We first consider a pulse with a Band spectrum of peak energy
Ep, spectral indices, α and β, and temporal properties repre-
sented by the ratio tp/C of the pulse duration to the curvature at
pulse maximum (in a low energy band [10–20] keV). We com-
pute the lag between this band and another band covering the in-
terval [E–1.25E], where E is varied from 15 keV to 10 MeV. We
adopt Ep = 500 keV, α = −1, β = −2.3, and tp/C = 0.3 s, and
we consider three cases of spectral evolution with δep = −0.5
and δa = δb = 0, 0.1, and 0.2. The results are shown in Fig. 2a.
The low energy band is always in the α part of the spectrum
so that a change of behaviour takes place when the high energy
band crosses Ep. The evolution of α (resp. β) mainly affects the
lag below (resp. above) the break at E ≈ Ep. For a fixed spec-
tral evolution, δep = −0.5 and δa = δb = 0.1, we also show
in Fig. 2b the results for a modified Band spectrum with n = 2
and n = 0.67 in Eq. (4) and for the case of a power law with an
exponential cut-off.

2.2.2. Fixed energy bands, different Ep

We now fix the two energy bands, 1 [100–150] keV and 2 [200–
250] keV, which were used to obtain the lags in the source frame
by Ukwatta et al. (2012), Bernardini et al. (2015), and Heussaff
(2015), and in Fig. 3a we represent the lag as a function of
the peak energy of the pulse spectrum. We first adopt a Band
spectrum with α = −1, β = −2.3 and tp/C = 0.3 s and con-
sider the same three cases of spectral evolution, δep = −0.5,
δa = δb = 0, 0.1 and 0.2. As expected the lag is maximum
when the peak energy lies just between the two bands, at about
Ep,∗ = 175 keV. If the spectral evolution is limited to the peak en-
ergy (i.e. δa = δb = 0) the lag vanishes at low or high Ep values
when the two energy bands are both in the same power-law part
of the spectrum. Then the hardness ratio F12 (Ep, α, β) does not
depend on Ep any more (see Eq. (3)) so that f12,Ep = 0, leading
to a zero lag if α and β do not evolve. Conversely, if the spec-
tral evolution also affects the spectral indices (which is generally
the case) the lag at low (resp. high) Ep is fixed by the evolu-
tion of β (resp. α). Then in Fig. 3b we show, for δep = −0.5,
δa = δb = 0.1, the results for a modified Band spectrum with
n = 2 or n = 0.67 and for a power law with an exponential
cut-off. In this last case, the lag steadily rises at low Ep. This
runaway feature however corresponds to the situation in which
the flux in the high energy band shrinks owing to the exponen-
tial cut-off in the spectrum, which in practice would make the
lag measurement very difficult.

2.3. Comparison to a pulse model

To check the validity of the previous first order derivation of the
spectral lag, we constructed a simple pulse model with a typical
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Fig. 2. a) Left panel: lags between the low energy band [10–20] keV and a moving band [E-1.25E] as a function of E (in keV) for a pulse with
tp/C = 0.3 s and a Band spectrum (n = 1 in Eq. (4)) with Ep = 500 keV, α = −1, β = −2.3 for three different cases of spectral evolution:
δep = −0.5 and δa = δb = 0 (dotted line), 0.1 (full line), and 0.2 (dashed line); b) right panel: same as a) for the case δep = −0.5 and δa = δb = 0.1
(full line), but also with a modified Band spectrum with n = 2 (dotted line) and n = 0.67 (dashed line). The full line with no break at 500 keV
corresponds to a power-law spectrum with α = −1 and an exponential cut-off.

Fig. 3. a) Left panel: lags between the two bands, [100–150] and [200–250] keV, as a function of the peak energy of the pulse spectrum. The
spectral indices at low and high energy are α = −1 and β = −2.3. The curves correspond to the same three cases of spectral evolution considered
in Fig. 2; b) right panel: same as a) for the case δep = −0.5 and δa = δb = 0.1 (full line), but also with a modified Band spectrum with n = 2
(dotted line) and n = 0.67 (dashed line). The full line that continuously rises at low Ep corresponds to a power-law spectrum with α = −1 and an
exponential cut-off.

fast rise and an exponential decay luminosity profile

L(t) = L0 ×

{
2x − x2 for x = t

tp
≤ 1.5

0.75 exp (−4/3x + 2) for x > 1.5,
(7)

so that the luminosity and its first derivative are continuous at
x = 1.5 and where the spectral evolution takes the form

Ep = Ep,0 × exp (δep x)
α = α0 × exp (δa x)
β = β0 × exp (δb x),

(8)

where δep, δa, and δb have been defined in Eq. (6). From Eqs. (7)
and (8) and assuming a Band spectrum (n = 1 in Eq. (4)), it is
possible to compute the pulse profile in any spectral band. The
results are shown in Fig. 4 for Ep,0 = 1000 keV, α0 = −1, β0 =
−2.3, δep = −0.5, and δa = δb = 0.1, and the two bands 1 [10–
20] and 2 [100–125] keV. The spectral lag δt12 is calculated as
the time difference between the pulse maxima at tmax,1 = 1.34 tp
and tmax,2 = 1.22 tp, so that δt12 = 0.12 tp.

We used this pulse model to check the analytical results. A
comparison is shown in Fig. 5 for the lag-energy relation. As the
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Fig. 4. Light curves for the pulse model. The black curve shows the lu-
minosity while the red and blue curves represent the photon flux in the
[10–20] and [100–125] keV range, respectively. The flux unit is arbi-
trary, but the flux ratio between the two bands is respected.

Fig. 5. Lags between the low energy band [10–20] keV and a mov-
ing band [E–1.25E] as a function of E (in keV); comparison of the re-
sult from the pulse model (full line) and analytical expression (Eq. (1);
dashed line).

analytical expression of the lag is obtained from a linear expan-
sion around pulse maximum in the low energy band, we use in
Eq. (6) the values of Ep, α, and β at t = tmax,1 = 1.34 s (i.e.
assuming tp = 1 s), which gives Ep = 512 keV, α = −1.14 and
β = −2.63. The curvature is computed from the pulse model. We
obtain |C 1| = 3.1, which is somewhat larger than the curvature
of the luminosity light curve |C L| = 2, resulting from Eq. (7). It
can be seen from Fig. 5 that the accuracy of the analytical ex-
pression is satisfactory, as the error does not exceed 20%, even
at the large energy difference between the two spectral bands.

2.4. The lag-luminosity relation

From the relation between the lag and peak energy at pulse max-
imum shown in Fig. 3, it is possible to obtain a lag-luminosity
relation (LLR) if Ep is linked to the luminosity by a Yonetoku-
like relation (Yonetoku et al. 2004) of the form

Ep = E0 Lε52. (9)

Adopting E0 = 300 keV and ε = 0.5, we can directly trans-
form Fig. 3a into the LLR shown in Fig. 6a. The LLR has
two branches at low (L < L∗) and high (L > L∗) luminos-
ity, where L∗ ∼ 3.4 × 1051 erg is the luminosity corresponding
to Ep = Ep,∗ = 175 keV. If the spectral indices do not vary
(δa = δb = 0), the lag in the low luminosity branch vanishes
when the two considered spectral bands both lie above Ep. Then,
the Band function simply reduces to a power law and f12,Ep = 0.
If δb , 0, the lag takes the fixed value

δt12 =
f12,β δb

C1
tp. (10)

The situation is different when the spectrum is a power law
with an exponential cut-off. In this case, the lag at low lumi-
nosity continuously increases. However (as already mentioned
in Sect. 2.2.2 above) the flux in the high energy Band then be-
comes very low, making the lag measurement very difficult in
practice.

In the high luminosity branch (i.e. at large Ep), the function
f12,Ep behaves as E−1

p so that, if δa = 0, we get

δt12 ∝ L−ε . (11)

If δa > 0 the LLR is steeper, becoming quasi-vertical when δa >
0.2. Finally, the variation of the LLR when the curvature of the
spectrum is changed is shown in Fig. 6b for δep = −0.5, δa =
δb = 0.1, and three values of n = 1, 0.67 and 2 in Eq. (4).

3. Comparison to observations

3.1. Lags of pulses and global lags

A potential problem in the comparison between data and model
predictions comes from the fact that in the case of a complex
burst, the measured lag is generally obtained by cross correlation
of the light curves in the two considered spectral bands, while
our model focuses on the lag of a single pulse, which is obtained
as the time difference between the maxima in the two bands.

We first checked that for a single pulse this simple approach
gives results that are close (within 10%) to those obtained by
cross corelation. Then, in a complex burst with many pulses,
where the global lag represents some average of the individ-
ual lags, we want to estimate the weight of each pulse in this
average.

This can be carried out in a simple way when the pulses in
the light curve do not overlap. Then for each pulse i the cross-
correlation function of the profiles in two spectral bands 1 and 2
can be expanded around the maximum,

Ci(δt) ≈ Ci(δt12,i) − N1,iN2,i
(δt − δt12,i)2

2tp,i
Ci, (12)

where N1,i and N2,i are the peak photon fluxes, δt12,i is the spec-
tral lag (for which Ci(δt) is maximum), tp,i is the duration of
the pulse, and Ci, a dimensionless measure of the pulse curva-
ture (see Eq. (6)). The cross correlation for a profile with several
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Fig. 6. a) Left panel: lag-luminosity relation for α = −1, β = −2.3, tp/C = 0.3 s, δep = 0.5, and δa = δb = 0 (dotted line), 0.1 (full line), and 0.2
(dashed line). The full line that extends to large lag values at low luminosity corresponds to a power-law spectrum with α = −1 and an exponential
cut-off; b) right panel: same as a) for the case δep = −0.5 and δa = δb = 0.1 (full line), but also with a modified Band spectrum with n = 2 (dotted
line) and n = 0.67 (dashed line).

well-separated pulses can be approximated by the sum of the in-
dividual functions,

C(δt) ≈
∑

i

Ci(δt). (13)

The global lag δt12 is then obtained by finding the maximum of
C(δt), yielding

δt12 =

∑
i N1,iN2,iCi/tp,i × δt12,i∑

i N1,iN2,iCi/tp,i
(14)

so that each individual lag appears in the average with a weight
proportional to N1,iN2,iCi/tp,i. A bright, short or/and spiky pulse
in a complex burst therefore imposes its lag on the whole event.
In practice, the lag of brightest pulse generally dominates; see
Hakkila et al. (2008). The global lag is averaged, however, in
the case of several pulses with comparable weights, which can
increase the dispersion of the LLR when it is generalized from
individual pulses to the whole temporal history.

3.2. Detailed study of spectral lags in individual bursts:
GRB 130427A

In some events, spectral lags have been obtained in several
energy bands making possible a detailed comparison with the
model and an estimate of the magnitude of spectral evolution.
The best example is probably provided by the first pulse in
GRB 130427A (Preece et al. 2014), where the high signal-to-
noise ratio enabled a lag analysis from a few tens of keV to
several MeV. Table 1 summarizes the results (transported in the
burst rest frame). For the six lag value in Table 1 we also give
the corresponding functions f12,X that appear in Eq. (6)2, where
1 represents the low energy band centred at 30 keV and 2 rep-
resents the high energy band (from 100 keV to 5 MeV). From
Preece et al. (2014) we get the spectral parameters at pulse max-
imum in the low energy band (at tobs = 0.5 s): Ep = 650 keV

2 A pure Band spectrum was assumed in this analysis.

Table 1. Spectral lags (in burst rest frame) between a low energy band
centred at 30 keV and six other spectral bands for the first pulse in
GRB 130427A; the corresponding functions f12,X evaluated at pulse
maximum in the low energy band are also given.

Spectral bands Lag (s) f i
12,Ep

f i
12,α f i

12,β

30 keV–100 keV 0.05 0.22 −0.68 0
30 keV–160 keV 0.10 0.36 −0.90 0
30 keV–400 keV 0.16 1. −1.15 0
30 keV–950 keV 0.22 2.27 −1.09 −1.1
30 keV–1600 keV 0.28 2.36 −1.08 −2.3
30 keV–4800 keV 0.35 2.36 −1.08 −4.9

(rest frame), α = −0.57, and β = −3; the value β is not avail-
able for the first pulse and the adopted value corresponds to the
whole event. We then obtain estimates of the three quantities,
xe = δep/Q, xa = δa/Q, and xb = δb/Q, where Q = C1/tp, by
minimizing the difference between the model results given by
Eq. (6) and the observations

∆ =

N∑
1

[
δti −

(
f i
12,Ep

xe + f i
12,α xa + f i

12,β xb

)] 2
, (15)

where the lags δti and the functions f i
12,X are given in Table 1. We

began by considering only the first three lags (N = 3), which do
not depend on β and its evolution since the high energy spectral
band is still in the α part of the Band function. These lags also
have values that are much smaller than the pulse duration, which
allows us to use the linear approach of Eq. (6). We then included
all six lag values (N = 6), which is more constraining but also
possibly less accurate because the lag for the highest energy band
is not much smaller than the pulse duration and the adopted high
energy index β = −3 is just an average over the whole burst
duration. In the first case, the resulting values are xe = 0.087
and xa = −0.065 (xb is not constrained), while in the second
we obtain xe = 0.06, xa = −0.08 and xb = −0.025, showing a
difference of 35% in xe and of 20% in xa. These values are then
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used to obtain the lag-energy relation, which is shown for the
two cases in Fig. 7 together with the data points.

The time-resolved spectral analysis available for the first
pulse partially allows us to test the consistency of the results.
At pulse maximum one finds from the data that δep ' −1 and
δa ' 0.6. Then with tp = 0.5 s/(1+z) ≈ 0.37 s (rest-frame value),
we get xe ' −0.09

(
4

C1

)
and xa ' 0.055

(
4

C1

)
. With C1 = 4, which

seems reasonable even if a highly accurate measure of the cur-
vature is difficult, the results obtained from the first three lags
are in very good agreement with the observed spectral evolution.
When all six lag values are included in the analysis, the agree-
ment is less satisfactory, probably from the combined effects of
using Eq. (6) out of its domain of validity and the uncertainty
in β.

3.3. Monte Carlo approach to the observed lag-luminosity
relation

Ukwatta et al. (2012), Bernardini et al. (2015), and Heussaff
(2015) recently constructed samples of rest-frame lags for long
bursts with known redshift observed with the Swift satellite.
From the 49 (of 70) long GRBs in the Heussaff (2015) sample
(see Table 2), which have a measured peak energy and lumino-
sity, 20 have a positive lag while the error bars for the others only
allow us to fix an upper limit to the lag (in one case, this upper
limit is negative). For comparison with our analytical results, we
developed a simple Monte Carlo approach, in which the spec-
tral and temporal parameters of the generated events are drawn
according to the following distributions3:

– The low energy spectral index α has a normal distribution
centred at α = −1 with a standard deviation σα = 0.25
(Kaneko et al. 2006).

– The high energy spectral index β has a truncated normal
distribution centred at β = −2.3 with the same standard
deviation but truncated to exclude all values of β > −2
(Kaneko et al. 2006).

– The pulse duration also follows a log-normal distribution
with 〈Log tp〉 = 0 and σLogtp = 0.35 (Nakar & Piran 2002).

– The peak energy follows a log-normal distribution with
〈Log Ep〉 = 2.7 (rest frame) and σLogEp = 0.25 (Kaneko et al.
2006; Ghirlanda et al. 2012).

– The luminosity is obtained from the peak energy using the
Yonetoku relation (Eq. (9)) where we added a dispersion of
0.5 in Log L.

The parameters controlling the spectral evolution, δep, δa, and
δb, and the spikiness C , are weakly constrained. We first fix their
values to δep = −0.5, δa = δb = 0, 0.1, or 0.2 and |C | = 3.33
(so that 〈tp〉/|C | ' 0.3 . We then draw the burst parameters ac-
cording to the above rules and get the corresponding lag using
Eq. (6). The slope of the resulting LLR strongly depends on the
adopted value for δa, going from −2.4 for δa = 0 to −5 for
δa = 0.1 and −7.5 for δa = 0.2. These slopes (especially for
δa , 0) appear too steep when compared to the data. One pos-
sible way to solve this discrepancy is to introduce some kind of

3 These distributions, as well as the Yonetoku relation, are deduced
from observed samples and therefore are not free from selection ef-
fects. Consequently the lag-luminosity relation obtained from our
Monte Carlo simulations is not intrinsic as it includes these selection
effects by construction. It should then be compared with data subject to
similar selection effects.

Fig. 7. Lags as a function of energy in GRB 130427A. The six mea-
sured values (Preece et al. 2014) are fitted using our model with Ep =
650 keV, α = −0.57, β = −3 and xe = 0.061, xa = −0.08, xb = −0.025
(full line) and xe = 0.087, xa = 0.065 (dashed line); see text for details.

variability-luminosity relation of the form

〈tp〉
|C |

= 0.3
(

L
1052 erg s−1

)γ
, (16)

with γ ∼ 0.1–0.2, i.e. corresponding to a situation where the
pulses become narrower or/and spikier as their luminosity in-
creases. A few observational studies have suggested these rela-
tions (Reichart et al. 2001; Hakkila et al. 2008), but they would
clearly need further confirmation. Adopting γ = 0.15, the three
slopes are reduced to −0.4, −2.6, and −3.1 for δa = 0, 0.1
and 0.2, respectively. The case with δa = 0.1 is shown in Fig. 8,
where we represented the LLR together with the cumulative and
differential distribution of lags. These lags are compared to the
data from Heussaff (2015). It can be seen that the main differ-
ence comes from observed bursts with negative lags that are not
produced by the simulation.

If we suppose that these negative lags result from measure-
ment uncertainties and can be ignored, the model fits the data
well. Conversely, if the existence of negative lags is confirmed
(see Chen et al. 2005; Roychoudhury et al. 2014 for details) one
simple way to produce them would be to suppose that the time
derivative of the low energy spectral index α at pulse maximum
can be positive (i.e. δa negative in Eq. (6) corresponding to a
soft to hard evolution for α). For example, adopting for δa a nor-
mal distribution centred at 0 with a dispersion of 0.15, 15% of
the lags are negative. The corresponding LLR and distribution
of lags are shown in Fig. 9 (the negative lags do not appear in
the LLR owing to the logarithmic scale) showing an excellent
agreement with the data; a KS test indicates that the difference
of 0.157 between the observed and predicted cumulative distri-
bution functions has a probability of 17% of happening from ran-
dom fluctuations. The above results were obtained with a Band
spectrum (n = 1 in Eq. (4)) but we checked how they are mod-
ified when we adopt (i) a power law with an exponential cut-off
or (ii) a value of n different from unity. In the first case, the ef-
fect is moderate since, for a majority of the simulated spectra,
the two considered spectral bands lie below Ep whose central
value is 500 keV (rest frame) in our simulation. In the second
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Table 2. The 49 bursts with redshift and measured peak energy and luminosity in Heussaff (2015).

GRB name Redshift Liso (1052 erg s−1) Ep (keV) Lag (ms) GRB name Redshift Liso (1052 erg s−1) Ep (keV) Lag (ms)
140419A 3.96 28.35 ± 1.16 1452 +416

−416 13 ± 37 090424 0.54 1.47 ± 0.04 237 +6
−6 29 ± 16

140304A 5.28 8.92 ± 1.05 775 +173
−173 28 ± 48 090423 8.00 16.04 ± 1.89 614 +155

−155 11 ± 57
140213A 1.21 3.31 ± 0.11 191 +8

−8 −40 ± 31 090102 1.55 2.98 ± 0.43 1074 +46
−46 −27 ± 414

131030A 1.29 5.72 ± 0.14 406 +23
−23 36 ± 51 081222 2.77 10.13 ± 0.26 538 +36

−36 39 ± 39
130907A 1.24 9.65 ± 0.19 882 +25

−25 7 ± 3 080721 2.60 52.31 ± 4.51 1747 +241
−213 −21 ± 58

130701A 1.16 2.12 ± 0.09 192 +9
−9 −8 ± 32 080607 3.04 64.50 ± 3.07 1590 +141

−133 2 ± 14
130427A 0.34 11.57 ± 0.16 1112 +7

−7 9 ± 10 080605 1.64 8.53 ± 0.26 768 +198
−198 21 ± 10

121128A 2.20 4.83 ± 0.15 244 +10
−10 1 ± 3 080413B 1.10 1.51 ± 0.06 141 +27

−17 71 ± 31
120811C 2.67 2.44 ± 0.12 204 +20

−20 107 ± 115 080413A 2.43 5.38 ± 0.19 433 +450
−144 −5 ± 15

120119A 1.73 4.87 ± 0.14 500 +22
−22 −1 ± 18 080411 1.03 5.59 ± 0.12 526 +71

−55 24 ± 12
110731A 2.83 25.49 ± 0.70 1223 +75

−75 4 ± 7 080319C 1.95 6.03 ± 0.35 906 +416
−271 91 ± 55

110715A 0.82 2.68 ± 0.05 218 +22
−20 33 ± 10 080319B 0.94 6.90 ± 0.14 1261 +27

−25 7 ± 3
110503A 1.61 0.53 ± 0.02 572 +52

−50 28 ± 42 071117 1.33 2.77 ± 0.10 648 +317
−317 142 ± 39

110422A 1.77 12.06 ± 0.39 421 +14
−14 43 ± 31 071020 2.14 15.81 ± 0.56 1014 +252

−167 9 ± 3
110205A 2.22 2.83 ± 0.16 715 +238

−238 18 ± 101 071010B 0.95 0.49 ± 0.02 88 +8
−14 193 ± 116

100906A 1.73 4.56 ± 0.18 289 +48
−55 37 ± 71 071003 1.10 3.03 ± 0.19 1678 +260

−210 −3 ± 72
100814A 1.44 0.72 ± 0.06 331 +26

−26 94 ± 81 070521 0.55 2.04 ± 0.08 522 +56
−56 19 ± 33

100728B 2.11 2.90 ± 0.41 341 +68
−68 21 ± 171 061121 1.31 8.04 ± 0.18 1402 +208

−167 13 ± 5
100621A 0.54 0.25 ± 0.01 146 +28

−20 436 ± 363 061007 1.26 6.23 ± 0.16 1065 +81
−81 37 ± 14

091208B 1.06 1.67 ± 0.11 255 +41
−40 −16 ± 46 060814 0.84 4.37 ± 0.17 750 +356

−169 113 ± 194
091127 0.49 0.65 ± 0.04 53 +2

−2 86 ± 235 060206 4.04 6.44 ± 0.39 379 +61
−61 53 ± 21

091029 2.75 1.71 ± 0.10 230 +34
−94 −7 ± 48 050922C 2.20 5.35 ± 0.24 417 +163

−86 −4 ± 34
090812 2.45 8.27 ± 0.46 2023 +839

−525 41 ± 37 050525A 0.61 0.75 ± 0.02 135 +3
−3 35 ± 9

090715B 3.00 5.50 ± 0.29 536 +224
−120 14 ± 98 050401 2.90 12.34 ± 1.06 515 +62

−62 66 ± 27
090618 0.54 1.02 ± 0.02 226 +6

−6 4 ± 119

Fig. 8. Lag-luminosity relation, cumulative, and differential distributions of lags for δep = 0.5, δa = δb = 0.1, and 〈tp〉/|C | given by Eq. (15) with
γ = 0.15; left panel: 250 simulated events (red circles) and data points from Heussaff (2015; black dots); middle panel: cumulative distribution of
lags; right panel: differential distribution of lags. In the middle and right panels the observed distribution is binned in interval of 10 ms.

case, we tested the value n = 2, corresponding to an increased
curvature at the peak. It allows us to obtain the same slopes for
the LLR with γ = 0.05 only, i.e. practically without supposing
the variability-luminosity relation of Eq. (15).

4. Conclusions

Based on our previous work (Hafizi & Mochkovitch 2007;
Boçi et al. 2010), we compared the results from a simple ana-
lytical expression of the spectral lags in GRBs to data collected

by the Swift and Fermi satellites. This expression (Eq. (6)) expli-
citly connects the lag of a pulse in the light curve to its spectral
(Ep, α, β, and their time derivatives) and temporal (pulse dura-
tion and curvature at the peak) parameters. We checked the accu-
racy of the analytical expression with a pulse model. It proved to
be accurate within 20% even when the two considered spectral
bands are wide apart. For the two bands [100–150] and [200–
250] keV, we obtained the lag as a function of the peak energy of
the spectrum (Fig. 3). Then, assuming a Yonetoku-like relation
between the peak energy at pulse maximum and the luminosity,
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Fig. 9. Same as Fig. 8 but δa now has a normal distribution with 〈δa〉 = 0 and a dispersion of 0.15.

we derived a theoretical LLR (Fig. 6). When the spectral evo-
lution is limited to variations of the peak energy (α and β stay-
ing constant) the lag is given by a power law, δt ∝ L−ε at high
luminosity, where ε is the exponent of the Yonetoku-like rela-
tion Ep ∝ Lε . If the spectral indices also vary (from hard to soft
within a pulse), the LLR becomes steeper than Lε .

We first tested the relation between lags and energy using
Fermi data for the first pulse in the light curve of GRB 130427A.
The fit of six lag values allows us to constrain the evolution of
both Ep and the spectral indices, and the consistency of the re-
sults can be tested with the time-resolved spectral analysis avail-
able for this event. We then used a Monte Carlo approach where
the spectral and temporal parameters were drawn according to
the observed distributions and the results were compared to the
lag analysis of 49 Swift bursts with known peak energy and lu-
minosity performed by Heussaff (2015). The synthetic LLR ap-
pears steeper than the observed LLR, which can be corrected if
the duration tp or/and curvature C of the pulses are correlated to
the luminosity. We presented results with a moderate correlation
〈tp〉/|C | ∝ L0.15, which are in good agreement with the data ex-
cept for the fact that the synthetic distribution does not show any
negative lag contrary to the observed distribution. If these neg-
ative lags are real, a simple way to produce them in the model
would be to allow the low energy spectral index to evolve from
soft to hard in some cases.

Both the observational and model LLRs show that the lags
globally decrease with increasing luminosity. However the cor-
relation is rather steep and has a large dispersion, which proba-
bly prevents from using lags as an accurate distance indicator. In
Fig. 8, with fixed values of δep, δa, and δb, the typical luminosity
interval for a given lag typically spans one order of magnitude
already. With a dispersion added for δa (Fig. 9, left panel) this
interval rises to 1.5 orders of magnitude. At low luminosity (be-
low 1051 erg s−1, where very limited data is available) a variety
of behaviours are possible, as shown in Fig. 6. If the spectrum
is a genuine or modified Band function, the lag vanishes if the
high energy spectral index does not vary or takes a fixed value
in the opposite (more realistic) case. If the spectrum is a power
law with an exponential cut-off, the lag continuously increases
but the low flux in the high energy band makes it difficult to
measure in practice.

The comparison between our model and the data relied on
a collection bursts mostly observed by Swift. As a result of the

limited spectral coverage of the BAT instrument, the interval
between the spectral bands used to obtain the lags is reduced,
which results in small lag values that are easily affected by un-
certainties. With Fermi and the future Chinese-French SVOM
mission (Cordier et al. 2015) better lag estimates can and will
be obtained using more separated spectral bands that will better
constrain the spectral evolution, as illustrated here in the case of
GRB 130427. In addition, SVOM will be able to provide the lags
and the reshift simultaneously, which will allow for better testing
of the LLR and its value as a distance indicator.
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