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Lorentz symmetry violations can be parametrized by an effective field theory framework that contains
both general relativity and the standard model of particle physics called the standard-model extension
(SME). We present new constraints on pure gravity SME coefficients obtained by analyzing lunar laser
ranging (LLR) observations. We use a new numerical lunar ephemeris computed in the SME framework
and we perform a LLR data analysis using a set of 20 721 normal points covering the period of August,
1969 to December, 2013. We emphasize that linear combination of SME coefficients to which LLR data
are sensitive and not the same as those fitted in previous postfit residuals analysis using LLR observations
and based on theoretical grounds. We found no evidence for Lorentz violation at the level of 10−8 for s̄TX,
10−12 for s̄XY and s̄XZ, 10−11 for s̄XX − s̄YY and s̄XX þ s̄YY − 2s̄ZZ − 4.5s̄YZ, and 10−9 for s̄TY þ 0.43s̄TZ.
We improve previous constraints on SME coefficient by a factor up to 5 and 800 compared to postfit
residuals analysis of respectively binary pulsars and LLR observations.
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Since its establishment in 1915 by Einstein, general
relativity (GR) has survived one century of experimental
and theoretical scrutiny; its foundations have been tested
spanning all scales, from the Solar System to the edge of
the early Universe. Those tests can only be described in an
extended framework parametrizing deviations from GR. In
the past decades, two frameworks were widely used in the
literature at the scale of the Solar System, namely, the
parametrized post-Newtonian (PPN) [1] and the fifth force
formalisms [2]. However, some motivations are given to
look for deviations to GR in other frameworks (see, e.g., [3]
and references therein), for example, the standard-model
extension (SME) framework [4–6]. This framework aims
at systematically parametrizing any hypothetical violation
of the Lorentz symmetry in all sectors of physics from
particles physics to gravity.
Lorentz invariance is one of the fundamental symmetries

of relativity and has profound implications that extend from
particle physics to GR. It states that the outcome of any local
experiment is independent of the velocity and of the direction
of the local freely falling frame in which the experiment is
performed [1]. Considering the broad field of applicability
of this symmetry, searches for Lorentz symmetry breaking
provide a powerful test of fundamental physics. In addition,
many scenarios in the literature expect some Lorentz
violations like, e.g., string theory, loop quantum gravity,
and noncommutative fields theory [7,8]. In this context,
Colladay and Kostelecký have built an effective field theory
making possible confrontations between fundamental theo-
ries and experiments called the SME.
Following from [6,9], a hypothetical breaking of the

Lorentz symmetry in the gravitational sector naturally leads

to an expansion at the level of the gravitational part of the
action, which is given in the minimal SME as

Sg ¼
1

2κ

Z
d4x

ffiffiffiffiffiffi
−g

p ðR − uRþ sμνRT
μν þ tαβμνCαβμνÞ

þ S0½sμν; tαβμν; gμν�; ð1Þ
with κ ¼ 8πGc−4 being the Einstein constant, c being the
speed of light in a vacuum, g being the determinant of the
metric tensor gμν, R being the Ricci scalar, RT

μν being
the trace free Ricci tensor, Cαβμν being the Weyl conformal
tensor, and u, sμν, and tαβμν being the Lorentz violating
fields. S0 contains the dynamical terms governing the
evolution of SME coefficients. Note that Eq. (1) only
contains Lorentz violating terms of the gravitational sector
of the SME. The matter and electromagnetic sectors of the
SME are not discussed here since they are constrained
mainly by laboratory experiments (see [10] for a summary
of all constraints, and e.g., [11] for a discussion of the
relation between the electromagnetic sector of the SME and
previous frameworks like the c2 formalism).
From experimental evidence the violating fields have to

be small quantities. Therefore, it is reasonable to work in
the linearized gravity limit where the metric depends only
on ū and s̄μν, which are the vacuum expectation values of u
and sμν [9]. The coefficient ū is unobservable since it can
be absorbed in a rescaling of the gravitational constant. As
mentioned by [9] the so obtained post-Newtonian metric
differs from the PPN one.
Many studies aimed at constraining the pure gravity

SME coefficients by searching for possible theoretical
signatures in postfit residuals of measurements analyzed
in pure GR. This procedure has been applied to many
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observations: atom interferometry [12], gravity probe B
[13], binary pulsars [14,15], planetary ephemerides
[16,17], cosmic ray observations [18], gravitational wave
detection [19], and even lunar laser ranging (LLR) [20]. In
addition, several suggestions have been made to further
constrain the SME coefficients [17], e.g., using the Cassini
conjunction data [21] to constrain the s̄TT coefficient or to
use the LAGEOS/LARES data that have been successfully
used to detect the frame-dragging effect [22,23].
However, as mentioned in [24] a postfit search for SME

signatures is not fully satisfactory. In that paper, the authors
showed that the uncertainties obtained by a postfit analysis
based on a GR data reduction can be underestimated by up to
2 orders of magnitude. This is mainly due to correlations
between SME coefficients and others global parameters
(masses, positions, and velocities) that are neglected in this
kind of approach. Moreover, the analytical Lorentz violation
signatures that are looked for in this kind of postfit residuals
analysis are always a combination of natural frequencies
appearing in the fundamental problem governing the evo-
lution of the experiment. Consequently, after a fit in pureGR,
signals at the natural frequencies are absorbed in the
redefinition of initial conditions and physical parameters.
Therefore, it could be problematic to look only for main
analytical Lorentz violating signals in postfit residuals since
it could have been absorbed in a redefinition of one or more
physical parameters. Finally, in the case of LLR data
analysis, the oscillating signatures derived in [9] and used
in [20] to determine pseudoconstraints are computed only
accounting for short periodic oscillations, typically at the
order of magnitude of the mean motion of the Moon around
the Earth. For instance, the recession motion of line of
apsides in 8.85 years or the precession motion of the lunar
orbit on the ecliptic plane in 18.6 years are both neglected.
Therefore, this analytic solution remains only valid for a
few years while LLR data span over 45 years (see also the
discussion in footnote 2 from [17]). In a more correct
strategy, theSMEmodelingmust be included in the complete
data analysis and the SME coefficients need to be estimated
in a global fit along with others parameters by taking into
account short and long period terms and also correlations.
This approach has recently been successfully used in a study
using very long baseline interferometry data [24] to improve
the estimation of the s̄TT coefficient. In this Letter, we apply
for the first time the same approach to estimate SME
coefficients from LLR data.
LLR is used to conduct high-precision measurements

of the light travel time of short laser pulses between a
LLR station on Earth (McDonald Observatory in Texas,
Observatoire de la Côte d’Azur in France, Haleakala
Observatory in Hawaii, Apache Point Observatory in
New Mexico, and Matera in Italy) to a corner cube
retroreflector on the lunar surface (Apollo XI, XIV, XV,
and Lunokhod 1, 2) and back to the station receiver. The
change of the round-trip travel time contains a lot of

information about the Earth-Moon system leading to many
different fields of investigations like lunar science, geodesy,
geodynamics, and gravitational physics. In addition, the
determination of physical or gravitational parameters ben-
efits from the 45 years of LLR data span and from the
technology improvement that has led to the current obser-
vational accuracy at the subcentimetric level [25,26]. LLR
data are presented as normal points that combine time series
of measured light travel time of photons, averaged over
several minutes to achieve a higher signal-to-noise ratio
measurement of the lunar range at some characteristic
epoch. Each normal point is characterized by one emission
time, one time delay, and some additional observational
parameters such as laser wavelength, atmospheric temper-
ature and pressure, etc. According to [27], the theoretical
expression of the time delay is defined as

Δtc ¼ ½T3 − ΔτtðT3Þ� − ½T1 − ΔτtðT1Þ�; ð2Þ
with

T3 ¼ T2 þ
∥ro0 ðT3Þ − rrðT2Þ∥

c
þ Δτs þ Δτa ð3aÞ

T2 ¼ T1 þ
∥rrðT2Þ − roðT1Þ∥

c
þ Δτs þ Δτa: ð3bÞ

Δtc is the theoretical round-trip travel time in
international atomic time (TAI), T1, T2, and T3 are
respectively the barycentric dynamical time (TDB) at the
emission, reflection, and reception points, ro and ro0 are
respectively the barycentric position vector at the emitter
and the reception point on Earth, rr is the barycentric
position vector of one of the five lunar retroreflectors, Δτs
is the one-way gravitational time delay correction (i.e., the
Shapiro time delay), Δτa is the one-way tropospheric
correction to the light propagation, and Δτt is a relativistic
time scale correction due to the transformation between
TDB and TAI (see [28] for further details).
In order to analyze LLR data in the SME framework, we

have built a new numerical lunar ephemeris, éphéméride
lunaire Parisienne numérique (ELPN), which computes
numerically orbital and rotational motion of the Moon. In
addition, ELPN computes the angular velocity of theMoon’s
liquid core considering a laminar damping term between the
core and the lunar mantle since tidal and core dissipations
present separable signatures as discussed in [29].
As a validation of our dynamical model, we compare our

GR solution with the DE430 solution from jet propulsion
laboratory [30]. The main differences are the Moon
gravitational potential (modeled until the fifth degree in
ELPN versus sixth degree in DE430) and the number of
accounted asteroids (70 in ELPN versus 343 in DE430).
Moreover, we integrate the partial derivatives of the
observables with respect to all the estimated parameters
by including directly the variational equations in the inte-
gration (representing a total of 6000 integrated equations)
instead of the pure numerical computation method
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implemented in DE430. The most important specificity of
ELPN is the Lorentz violating contributions arising from
the Earth-Moon system, implemented with the associated
partial derivatives. The additional acceleration of the Earth-
Moon vector due to SME is given in [9] [see Eq. (104)] and
is expressed as

aJLV ¼ GNM
r3

�
s̄JKt rK −

3

2
s̄KLt r̂Kr̂LrJ þ 3s̄TKV̂KrJ

− s̄TJV̂KrK − s̄TKV̂JrK þ 3s̄TLV̂Kr̂Kr̂LrJ

þ 2
δm
M

ðs̄TKv̂KrJ − s̄TJv̂KrKÞ
�
; ð4Þ

where GN is the observed Newtonian constant, M is the
mass of the Earth-Moon barycenter, and δm is the differ-
ence between Earth and the lunar masses, r̂J being the unit
position vector of the Moon with respect to Earth, v̂J ¼
vJ=c with vJ being the relative velocity vector of the Moon
with respect to Earth, and V̂J ¼ VJ=c with VJ being the
heliocentric velocity vector of the Earth-Moon barycenter.
Latin indices are used to denote space coordinate (X, Y, Z)
and T represents the time coordinate (TDB) as in Eq. (2)
(see also [9] for the conventions used in SME analyses). In
the last equation, we used the three-dimensional traceless
tensor s̄JKt ¼ s̄JK − 1

3
s̄TTδJK and a rescaled observable

Newtonian constant defined as GN ¼ Gð1þ 5
3
s̄TTÞ [13].

The numerical ephemeris provides the position, velocity,
and orientation of the different bodies and all the associated
partial derivatives. The remaining quantities needed for the
evaluation of Eq. (2) are computed using an existing software
at the Paris Observatory Lunar Analysis Centre based on the
2010 international Earth rotation system conventions [31].
This software has been upgraded in order to take into account
effects from the breaking of the Lorentz symmetry on the
light propagation. More precisely, the SME time delay
formula [see Eq. (24) from [32]] of the pure gravity sector
expressed in standard harmonic gauge has been used for the
computation of Δτs in Eqs. (3). This expression has to take
into account the rescaled Newtonian constant GN defined
previously. The SME gravitational time delay is taken into
account for consistency since it is unobservable considering
the smallness of SME coefficients and the current accuracy
of LLR observations. We finally determine residuals
using LLR data and minimize them with a standard iterative
least-square fit.
First of all, we built a reference solution computed in

pure GR by adjusting a set of 76 parameters including the
geocentric positions of LLR stations, the selenocentric
positions of lunar retroreflectors, the barycentric Earth-
Moon position, and velocity vectors at J2000, the lunar
libration angles with their time derivatives at J2000, and the
rotation vector of the Moon fluid core at J2000. We also
estimated the masses of the Earth-Moon system, the Earth
rotational time lag for diurnal and semidiurnal deformation,

the potential Love number of degrees 2, 3, and 4 of the
Moon, the Moon time lag for solid-body tide of degree 2,
the total moment of inertia of the Moon, the ratio of polar
moment of inertia of core to the mean total moment of
inertia of the Moon, the flattening of the Moon core, and the
damping term between the solid mantle and the fluid core
of the Moon. After this fitting process, the differences
between the ELPN solution and DE430 remain below 5 cm
on the Earth-Moon distance and below 50 cm along the
lunar orbit during the time span of LLR data meaning
that the two ephemerides are very similar. Moreover, the
differences between our estimated values for the different
parameters and the estimated values in DE430 remain
below the 5-sigma uncertainty.
This new lunar solution constituted the starting point of

the analysis that includes Lorentz violation terms. From it,
we built a second solution by adjusting the exact same
parameters together with the SME coefficients. This
analysis reveals that two pairs of SME coefficients are
highly correlated (i.e., the absolute value of their correlation
coefficient is higher than 0.99). This indicates that the data
are sensitive to linear combinations of these parameters
only. An analysis of the partial derivatives and of the
covariance matrix allows us to determine the linear combi-
nations to which the data are sensitive to,

s̄A ¼ s̄XX − s̄YY s̄B ¼ s̄XX þ s̄YY − 2s̄ZZ

s̄C ¼ s̄TY þ 0.43s̄TZ s̄D ¼ s̄B − 4.5s̄YZ: ð5Þ
These linear combinations have to be compared to those of
[17] [cf., Eqs. (16)] where authors used Eqs. (107) in [9]. We
notice that linear combinations involving s̄TJ are similar [see
Eqs. (16c) and (16d)], meaning that oscillating signatures
derived in [9] arewell determined for s̄TJ. However, the other
linear combination is different.Note that in all SMEanalyses,
s̄A and s̄B are used instead of s̄XX, s̄YY , and s̄ZZ. These two
combinations enforce the traceless condition on s̄μν (see also
[9]). A new adjustment using these linear combinations of
SME coefficients provides estimations and statistical uncer-
tainties on the different linear combinations of the SME
coefficients: s̄TX, s̄XY , s̄XZ, s̄A, s̄C, and s̄D. Moreover, in this
new solution, the six fitted linear combinations do not show
high correlations (below 50% between s̄TX and s̄A).
As mentioned by [33], we expect LLR data analysis to

suffer from systematic uncertainties in model parameter
estimates. Such systematics may arise from observations or
from mismodeling, for instance, from neglected correlation
betweenobservationsofeachLLRstation.Asaconsequence,
the standard deviation reported by the least-square fit
(called the statistical uncertainty labeled σstat) underestimates
realistic uncertainty. Therefore, it is essential to quantify the
order of magnitude of such systematics in the data analysis.
In order to assess the impact of potential systematics, we

split our data set into five independent subsets by removing
data related to one of the five LLR stations. We estimated
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the parameters mentioned above with these five subsets.
The top of Fig. 1 shows for illustrative purposes the derived
estimations on two SME coefficients. We can see that the
confidence intervals derived with the different stations do
not overlap. The SME coefficients being universal, this
result is a strong indication of the presence of systematics.
A similar analysis has been performed with the different
lunar reflectors and is presented for illustrative purposes on
the bottom of Fig. 1. For each subsample we have checked
that the new estimations of all parameters (SME coefficient
and others) stay below the 5σstat confidence interval of the
reference solution, meaning that the new solution is valid.
In order to estimate systematic uncertainties, we used a

jackknife resampling method [34,35] (see a similar use of
this resampling technique in the context of asteroid
observations [36] or in the context of cosmology
[37,38]). The idea is to split the data set into n different
independent subsets and to estimate the parameters by
systematically excluding one of the subset. If we denote

by xi the n estimations of a parameter of interest x obtained
by removing one subset of data, an estimate of the
systematic variance is σ2ðxÞ ¼ ðn − 1Þ=nPn

i ðxi − x̄Þ2,
with x̄ being the mean of the n values xi [34]. We applied
this resampling method to the estimates of the SME
parameters for two cases: (i) by splitting our data set with
respect to the different LLR stations (the obtained system-
atic variance is denoted σ2s) and (ii) by splitting our data set
with respect to the different lunar reflectors (the obtained
systematic variance is denoted σ2r). The total variance
estimate is the sum of the statistical and of the two esti-
mated uncertainties obtained with the resampling method,
σ2 ¼ σ2stat þ σ2s þ σ2r . Our estimations of the SME coeffi-
cients and their realistic errors are reported in Table I.
Some of our estimates improved previous constraints

based on postfit analysis by a factor up to 5. More precisely,
the constraints on the s̄TJ coefficients are of the same order
of magnitude as the ones from binary pulsars [15] but
improve the ones from the planetary ephemerides by a
factor 5 [17]. The estimates on s̄XY and s̄XZ improve
previous constraints from binary pulsars by a factor 4–5
and from planetary ephemerides by 1 order of magnitude.
The estimates s̄A and s̄D are improved by a factor 2.5
with respect to binary pulsar analysis and by 1 order of
magnitude with respect to planetary ephemerides. In
addition our results improve a previous postfit analysis
with LLR data [20] by a factor 30 to 800. Nevertheless, we
want to emphasize that the linear combinations fitted in that
paper have been determined in a sensitivity analysis based
on theoretical calculations (see [9]) only accounting for
short periodic oscillations (see discussion above). Our
numerical analysis shows that this approach is not accurate
enough for a full data analysis since the fitted linear
combinations are different.
As mentioned above, our results are mainly dominated

by systematic uncertainty. One way to improve our esti-
mates would be to improve our understanding of these and
to model them carefully. Moreover, some SME coefficients

FIG. 1. Top: estimations of s̄XY and s̄A as a function of data
subsamples by LLR stations. Each station name along the x axis
corresponds to the subsample without data from the correspond-
ing station. Bottom: estimations of s̄XZ and s̄D as a function of
data subsamples by lunar reflectors. L1 and L2 correspond to
subsamples without respectively Lunokhod 1 and 2 data, while
XI, XIV, and XV refer to subsamples without respectively Apollo
XI, XIV, and XV data. The top and bottom error bars are those
provided by the chi-square fit at 1σstat standard deviation and
the red line corresponds to the theoretical values of the SME
coefficients in the GR framework.

TABLE I. Table of estimated values of SME parameters of the
minimal SME with LLR data. Second column: results deduced
from a postfit analysis of binary pulsars observations in [15].
Third column: results from this work obtained performing a
global fitting to LLR data. The quoted uncertainties correspond to
1σ realistic uncertainties based on the statistical and systematic
errors. The linear combinations of the SME coefficients are
defined in Eqs. (5).

SME Other works This work

s̄TX ðþ5.2� 5.3Þ × 10−9 ð−0.9� 1.0Þ × 10−8

s̄XY ð−3.5� 3.6Þ × 10−11 ð−5.7� 7.7Þ × 10−12

s̄XZ ð−2.0� 2.0Þ × 10−11 ð−2.2� 5.9Þ × 10−12

s̄A ð−1.0� 1.0Þ × 10−10 ðþ0.6� 4.2Þ × 10−11

s̄C ð−1.0� 0.9Þ × 10−8 ðþ6.2� 7.9Þ × 10−9

s̄D ð−1.2� 1.2Þ × 10−10 ðþ2.3� 4.5Þ × 10−11
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(mainly s̄A) show slight correlations with parameters
appearing in the rotational motion of the Moon as the
principal moment of inertia (at the level 0.85), the quadru-
pole moment (at the level 0.87), the potential Stockes
coefficient C22 (at the level 0.81), and the polar component
of the velocity vector of the fluid core (at the level 0.85).
Those parameters have an impact on the rotational motion
of the Moon that affects the orbital motion through the
effect of the lunar potential. Consequently, it would be
interesting to produce a joint gravity recovery and interior
laboratory [39,40] and LLR data analysis. We expect this
combined analysis to help in decorrelating the SME
parameters from the lunar potential and therefore to
improve marginalized estimations of the SME coefficients.
In conclusion, we have analyzed a set of 20721 LLR data

spanning 44 years by using ELPN, a new numerical lunar
ephemeris. In this work, the SME modeling has been
included in the complete data modeling and the coefficients
of the minimal SME are estimated simultaneously with other
LLR standard parameters.We show that the data are sensitive
to linear combinations of the SMEcoefficients that have been
determined numerically. We provided an estimation of these
combinations taking into account statistical and systematic
uncertainties. We found no evidence for Lorentz violation at
the 1σ confidence level. Our results improve several con-
straints on the SME coefficients with respect to previous
studies [15,17,20]. In addition previous studies are based on
postfit analysis and therefore neglect all potential correla-
tions (see also the discussion in [24]). For this reason, our
estimates are more robust.

The authors thank P. Wolf and Q. Bailey for useful
comments on a preliminary version of this paper. A. B. and
C. L. P. L. are grateful for the CNRS/GRAM and “Axe
Gphys” of Paris Observatory Scientific Council. Authors
are also grateful to LLR staffs at Côte d'Azur, McDonald and
Apache Point observatories for providing their observations.

[1] C. M.Will, Theory and Experiment in Gravitational Physics
(Cambridge University Press, Cambridge, 1993), p. 396; in
General Relativity and Gravitation: A Centennial Perspec-
tive, edited by A. Ashtekar, B. K. Berger, J. Isenberg, and
M. MacCallum (Cambridge University Press, Cambridge,
2015).

[2] E. Fischbach and C. L. Talmadge, The Search for
Non-Newtonian Gravity (Springer-Verlag, New York,
1999), Vol. XVII, p. 305.

[3] A. Hees, B. Lamine, S. Reynaud, M.-T. Jaekel, C. Le
Poncin-Lafitte, V. Lainey, A. Füzfa, J.-M. Courty,
V. Dehant, and P. Wolf, Classical Quantum Gravity 29,
235027 (2012).

[4] D. Colladay and V. A. Kostelecký, Phys. Rev. D 55, 6760
(1997).

[5] D. Colladay and V. A. Kostelecký, Phys. Rev. D 58, 116002
(1998).

[6] V. A. Kostelecký, Phys. Rev. D 69, 105009 (2004).

[7] J. D. Tasson, Rep. Prog. Phys. 77, 062901 (2014).
[8] D. Mattingly, Living Rev. Relativ. 8, 5 (2005).
[9] Q. G. Bailey and V. A. Kostelecký, Phys. Rev. D 74, 045001

(2006).
[10] V. A. Kostelecký and N. Russell, Rev. Mod. Phys. 83, 11

(2011).
[11] C. M. Will, Living Rev. Relativ. 17, 4 (2014).
[12] K.-Y. Chung, S.-W. Chiow, S. Herrmann, S. Chu, and H.

Müller, Phys. Rev. D 80, 016002 (2009).
[13] Q. G. Bailey, R. D. Everett, and J. M. Overduin, Phys. Rev.

D 88, 102001 (2013).
[14] L. Shao, R. N. Caballero, M. Kramer, N. Wex, D. J.

Champion, and A. Jessner, Classical Quantum Gravity
30, 165019 (2013).

[15] L. Shao, Phys. Rev. Lett. 112, 111103 (2014); Phys. Rev. D
90, 122009 (2014).

[16] L. Iorio, Classical Quantum Gravity 29, 175007 (2012).
[17] A. Hees, Q. G. Bailey, C. Le Poncin-Lafitte, A.

Bourgoin, A. Rivoldini, B. Lamine, F. Meynadier, C.
Guerlin, and P. Wolf, Phys. Rev. D 92, 064049 (2015).

[18] V. A. Kostelecký and J. D. Tasson, Phys. Lett. B 749, 551
(2015).

[19] A. Kostelecky and M. Mewes, Phys. Lett. B 757, 510 (2016).
[20] J. B. R. Battat, J. F. Chandler, and C.W. Stubbs, Phys. Rev.

Lett. 99, 241103 (2007).
[21] B. Bertotti, L. Iess, and P. Tortora, Nature (London) 425,

374 (2003).
[22] I. Ciufolini and E. C. Pavlis, Nature (London) 431, 958

(2004).
[23] I. Ciufolini, A. Paolozzi, E. C. Pavlis, R. Koenig, J. Ries, V.

Gurzadyan, R. Matzner, R. Penrose, G. Sindoni, C. Paris,
H. Khachatryan, and S. Mirzoyan, Eur. Phys. J. direct C 76,
120 (2016).

[24] C. Le Poncin-Lafitte, A. Hees, and S. lambert, arXiv:
1604.01663.

[25] E. Samain, J. F. Mangin, C. Veillet, J. M. Torre, P.
Fridelance, J. E. Chabaudie, D. Feraudy, M. Glentzlin, J.
Pham van, M. Furia, A. Journet, and G. Vigouroux, Astron.
Astrophys. Suppl. Ser. 130, 235 (1998).

[26] T. W. Murphy, Rep. Prog. Phys. 76, 076901 (2013).
[27] J. Chapront, M. Chapront-Touzé, and G. Francou, Astron.

Astrophys. 343, 624 (1999).
[28] M. Soffel, S. A. Klioner, G. Petit, P. Wolf, S. M. Kopeikin,

P. Bretagnon, V. A. Brumberg, N. Capitaine, T. Damour,
T. Fukushima, B. Guinot, T.-Y. Huang, L. Lindegren,
C. Ma, K. Nordtvedt, J. C. Ries, P. K. Seidelmann, D.
Vokrouhlický, C. M. Will, and C. Xu, Astron. J. 126, 2687
(2003).

[29] J. G. Williams, D. H. Boggs, C. F. Yoder, J. T. Ratcliff,
and J. O. Dickey, J. Geophys. Res. 106, 27933 (2001).

[30] W.M. Folkner, J. G. Williams, D. H. Boggs, R. S. Park, and
P. Kuchynka, The Interplanetary Network Progress Report
42, 1 (2014).

[31] G. Petit, B. Luzum et al., IERS Technical Note No. 36
(2010).

[32] Q. G. Bailey, Phys. Rev. D 80, 044004 (2009).
[33] J. G. Williams, X. X. Newhall, and J. O. Dickey, Phys. Rev.

D 53, 6730 (1996).
[34] R. Lupton, Solar-Terrestrial Physics (Solnechno-Zemnaya

Fizika) (Princeton University Press, Princeton, 1993).

PRL 117, 241301 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

9 DECEMBER 2016

241301-5

http://dx.doi.org/10.1088/0264-9381/29/23/235027
http://dx.doi.org/10.1088/0264-9381/29/23/235027
http://dx.doi.org/10.1103/PhysRevD.55.6760
http://dx.doi.org/10.1103/PhysRevD.55.6760
http://dx.doi.org/10.1103/PhysRevD.58.116002
http://dx.doi.org/10.1103/PhysRevD.58.116002
http://dx.doi.org/10.1103/PhysRevD.69.105009
http://dx.doi.org/10.1088/0034-4885/77/6/062901
http://dx.doi.org/10.12942/lrr-2005-5
http://dx.doi.org/10.1103/PhysRevD.74.045001
http://dx.doi.org/10.1103/PhysRevD.74.045001
http://dx.doi.org/10.1103/RevModPhys.83.11
http://dx.doi.org/10.1103/RevModPhys.83.11
http://dx.doi.org/10.12942/lrr-2014-4
http://dx.doi.org/10.1103/PhysRevD.80.016002
http://dx.doi.org/10.1103/PhysRevD.88.102001
http://dx.doi.org/10.1103/PhysRevD.88.102001
http://dx.doi.org/10.1088/0264-9381/30/16/165019
http://dx.doi.org/10.1088/0264-9381/30/16/165019
http://dx.doi.org/10.1103/PhysRevLett.112.111103
http://dx.doi.org/10.1103/PhysRevD.90.122009
http://dx.doi.org/10.1103/PhysRevD.90.122009
http://dx.doi.org/10.1088/0264-9381/29/17/175007
http://dx.doi.org/10.1103/PhysRevD.92.064049
http://dx.doi.org/10.1016/j.physletb.2015.08.060
http://dx.doi.org/10.1016/j.physletb.2015.08.060
http://dx.doi.org/10.1016/j.physletb.2016.04.040
http://dx.doi.org/10.1103/PhysRevLett.99.241103
http://dx.doi.org/10.1103/PhysRevLett.99.241103
http://dx.doi.org/10.1038/nature01997
http://dx.doi.org/10.1038/nature01997
http://dx.doi.org/10.1038/nature03007
http://dx.doi.org/10.1038/nature03007
http://dx.doi.org/10.1140/epjc/s10052-016-3961-8
http://dx.doi.org/10.1140/epjc/s10052-016-3961-8
http://arXiv.org/abs/1604.01663
http://arXiv.org/abs/1604.01663
http://dx.doi.org/10.1051/aas:1998227
http://dx.doi.org/10.1051/aas:1998227
http://dx.doi.org/10.1088/0034-4885/76/7/076901
http://dx.doi.org/10.1086/378162
http://dx.doi.org/10.1086/378162
http://dx.doi.org/10.1029/2000JE001396
http://dx.doi.org/10.1103/PhysRevD.80.044004
http://dx.doi.org/10.1103/PhysRevD.53.6730
http://dx.doi.org/10.1103/PhysRevD.53.6730


[35] A. D. Gottlieb, Ann. Inst. Stat. Math. 55, 555
(2003).

[36] J. Masiero, R. Jedicke, J.Ďurech, S. Gwyn, L. Denneau, and
J. Larsen, Icarus 204, 145 (2009).

[37] A. C. Pope and I. Szapudi, Mon. Not. R. Astron. Soc. 389,
766 (2008).

[38] J. P. Henry, A. E. Evrard, H. Hoekstra, A. Babul, and A.
Mahdavi, Astrophys. J. 691, 1307 (2009).

[39] A. S. Konopliv, R. S. Park, D.-N. Yuan, S. W. Asmar, M. M.
Watkins, J. G. Williams, E. Fahnestock, G. Kruizinga, M.
Paik, D. Strekalov, N. Harvey, D. E. Smith, and M. T. Zuber,
Geophys. Res. Lett. 41, 1452 (2014).

[40] F. G. Lemoine, S. Goossens, T. J. Sabaka, J. B. Nicholas,
E. Mazarico, D. D. Rowlands, B. D. Loomis, D. S. Chinn,
G. A. Neumann, D. E. Smith, and M. T. Zuber, Geophys.
Res. Lett. 41, 3382 (2014).

PRL 117, 241301 (2016) P HY S I CA L R EV I EW LE T T ER S
week ending

9 DECEMBER 2016

241301-6

http://dx.doi.org/10.1007/BF02517807
http://dx.doi.org/10.1007/BF02517807
http://dx.doi.org/10.1016/j.icarus.2009.06.012
http://dx.doi.org/10.1111/j.1365-2966.2008.13561.x
http://dx.doi.org/10.1111/j.1365-2966.2008.13561.x
http://dx.doi.org/10.1088/0004-637X/691/2/1307
http://dx.doi.org/10.1002/2013GL059066
http://dx.doi.org/10.1002/2014GL060027
http://dx.doi.org/10.1002/2014GL060027

