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Abstract 
Microbial production of biosurfactants represents one of the most interesting alternatives to 

classical petrol-based compounds due to their low toxicity, high biodegradability and biological 

production processes from renewable bioresources. However, some of the main drawbacks 

generally encountered are the low productivities and the small number of chemical structures 
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available, which limits widespread application of biosurfactants. Although chemical 

derivatisation of (microbial) biosurfactants offers opportunities to broaden the panel of available 

molecules, direct microbial synthesis is still the preferred option and the use of engineered 

strains is becoming a valid alternative. In this multidisciplinary work we show the entire process 

of conception, upscaling of fermentation (150 L) and sustainable purification (filtration), 

application (foaming, solubilization, antibacterial) and life cycle analysis of acetylated acidic 

sophorolipids, directly produced by the Starmerella bombicola esterase knock out yeast strain, 

rather than purified using chromatography from the classical, but complex mixture of acidic and 

lactonic sophorolipids.  
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Starmerella bombicola; glycolipids; self-assembly; life cycle analysis; antimicrobial; genetic 

engineering 

 
Introduction 
 Increasing environmental concerns and tightening governing laws have led to increased 

interest in the development and use of biosurfactants as potential alternatives to chemical 

surfactants by many industries.1,2 At present they are commonly considered as being the next 

generation of industrial surfactants, because they meet most of the requirements needed for a 

low environmental impact cradle-to-grave design. Biosurfactants are amphiphilic molecules 

produced by microorganisms (yeasts, bacteria and fungi) from renewable resources like 

carbohydrates and natural oils as a carbon source and are generally considered 

environmentally-friendly due to their high biodegradability and low toxicity. They have effectively 

been used for some time in a wide range of applications such as oil recovery, bioremediation, oil 

mobilisation, skin care preparations, cleaning product formulations and, emulsifying agents 

production among many others.3 Four major groups are generally considered: lipopeptides and 

lipoproteins, like surfactin; polymers, like emulsan; particulate, like vesicles and fimbriae; and 

lipid containing amphiphilic molecules. The latter category can be further divided into various 

sub-categories according to the nature of the hydrophilic headgroup (glycolipids, phospholipids, 

fatty acids, etc.). The reader is addressed towards more general reviews on the synthesis, 

classification, properties and applications of biosurfactants.4,5 

 Glycolipids are among the largest and most interesting and investigated groups of 

biosurfactants, because of the higher fermentation yields and versatility in applications. A lot of 

work has been carried out on rhamnolipids, mannosylerythritol lipids and sophorolipids, just to 
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cite the most important compounds in the field. Recent reports of antimicrobial and anti-cancer 

properties,6 pH-dependent self-assembly7 and, above all, up-scaling,8,9 are undoubtedly some 

of the main reasons behind the success of these compounds both in fundamental and industrial 

research efforts.10 Among these, sophorolipids, produced by the yeast Starmerella bombicola 

(previously known as Candida bombicola), are probably the most promising family of biobased 

amphiphiles. Sophorolipids are constituted of a sophorose head group (2-O-β-D-

glucopyranosyl-D-glucopyranose) attached to a (sub)terminal hydroxylated C18 or C16 fatty acid 

by a glycosidic linkage between the anomeric C-atom of the sugar and the hydroxyl group of the 

fatty acid. Their added value with respect to all other compounds combine  high production 

yields (averagely 200 g/L), a congeners mixture of limited complexity compared to others and 

the knowledge of the Starmerella bombicola biosynthetic pathway as well as the S. bombicola 

genome map.11  

Sophorolipids are typically produced by fermentation in the presence of a hydrophobic 

carbon source and are always constituted of a mixture of structurally related molecules with 

variation in lactonization between the carboxyl end of the fatty acid and the C4'' atom of the 

sophorose group resulting in a lactonic sophorolipid (Figure S1a) or absence of this 

lactonization resulting in an open acidic sophorolipid (Figure S1b). Other modifications are the 

presence (Figure S1c) or absence of acetyl groups at C6' and/or C6'' atoms of sophorose, 

degree of fatty acid saturation (saturated, mono-unsaturated or di-unsaturated, Figure S1d,e) 

fatty acid chain length and (ω) or (ω-1) hydroxylation of the fatty acid (Figure S1f).12 

Due to this structural variation, sophorolipids show many interesting applications in a 

wide range of industrial fields.13 Since the structural composition is reflected in the physico-

chemical properties, the industrial sector is particularly interested in specific structural variants. 

Lactonic sophorolipids have different biological and physicochemical properties as compared to 

the acidic form.14 In general, lactonic sophorolipids have better surface tension lowering and 

antimicrobial activity, whereas the acidic ones display better foam producing ability and 

solubility.15 However, lactonic sophorolipids are poorly water soluble, compared to acidic 

sophorolipids, which are fully soluble in water. While it is possible to obtain 100% acidic 

sophorolipids from a natural sophorolipid mixture by a simple alkaline hydrolysis step, it is not 

possible to obtain the (di-)acetylated acidic congener. In fact, the alkaline hydrolysis will 

systematically remove all acetyl groups. Meanwhile, up to today, it is impossible to efficiently 

produce 100 % acetylated acidic sophorolipids by a direct fermentation process with S. 

bombicola. 
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 In this paper, we present a one-step biological process for the production and 

purification of acetylated acidic sophorolipids (aSL-COOH) using a strain knocked-out in the 

lactone esterase gene (Δsble); a gene mediating lactonization being the last step of the 

sophorolipid biosynthetic pathway (Figure 1). The major part of sophorolipid biosynthesis takes 

place intracellularly, in the cytoplasmic environment where acidic non-, mono- and diacetylated 

sophorolipids are formed. These molecules are subject to active transport by a specific ABC-

transporter and once in the extracellular environment, the molecules are exposed to the 

possible action of the secreted lactone esterase enzyme.11,16 In order to fully explore the 

potential of these novel molecules by specific application testing in view of future real-life usage, 

sufficient material has to be available and, in addition, at a level of purity suitable for the specific 

application. A dedicated production process suitable for scale up should also be made available. 

For this reason, we stepped away from the traditional academic solvent mediated extraction 

processes15 and scaled up a product recovery process, which was developed in this project. 

This approach allowed us to meet the specific requirements for each application field described 

in this paper. Indeed, the molecules were evaluated in a broad spectrum addressing both basic 

properties such as aquatic toxicity and physico-chemical behaviour, as well as their possible 

usefulness in cosmetic applications and as biological agents.  

Four very important features characterize this work, compared to existing works on 

biosurfactants. First of all, we use a fairly pure sophorolipid mixture composed of nearly 88% 

acetylated acidic sophorolipids bearing a C18:1 fatty acid chain. Such a high enrichment of 

acetylated acidic sophorolipids made available at a scale enabling specific and parallel 

application testing is not only unique in the literature for this type of compound, but for 

biosurfactants in general. Secondly, the paper presents quite uniquely the full process pipeline 

in terms of: 1) expression data (proteomics) of biosynthesis conditions; 2) production 

optimization; 3) scale-up processing; 4) physico-chemical properties (emulsification, solubilizing 

properties, foaming, self-assembly); 5) aquatic toxicity; 6) antimicrobial and antibiofilm 

properties. Thirdly, and probably the most important feature in this field, all experiments noted 

from 1) through 6) have been carried on the same sample batch, distributed to all co-authors of 

this work simultaneously. Last but not least a life cycle analysis (LCA) was performed for a 

hand-washing application, which allowed the determination of hot spots and comparison to 

reference products on the market. This cradle-to-grave approach using the same compound 

batch is highly innovative in the field of biosurfactants, where discrepancy among results in the 

literature is often attributable to natural variations in the sample compositions used for the 
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experiments, often combined with poor characterisation, making it difficult to draw reliable 

conclusions. 

 

 
Material and methods 
This section is divided into four separate parts, sophorolipid synthesis, its physico-chemical 

characterization, its biological properties and the prerequisites of LCA analysis. Additional 

material (analysis of sophorolipid mixtures, protein extraction for multi reaction monitoring, LC-

MRM analysis, small angle X-ray scattering and transmission electron microscopy under 

cryogenic conditions) are given in the Supporting Information. 

 

Synthesis of acetylated acidic sophorolipids, batch reference number T21, aSL-COOH 
(T21). 
 
Strain, growth media and fermentation conditions 

 The Starmerella bombicola lactone esterase knock out strain (Δsble) described by 

Ciesielska et al.16 was used for all experiments described in this manuscript. The seed train 

consisted of two steps, using the production medium described by Lang et al 15:. The first seeds 

(50 mL, 48h, 30°C, 200 rpm) were inoculated from cryovial stocks and transferred to 500 mL of 

the same medium (70h, 30°C, 200 rpm) in 2 L flasks. These were inoculated (3 %) in the main 

reactor (150 L, Sartorius DCU-3) containing 60 L of the production medium based on corn steep 

liquor (CSL) instead of YE: 100 g/L glucose.H2O, 5 g/L dried CSL, 1 g/L K2HPO4, 4 g/L 

(NH4)2SO4, 0.5 g/L MgSO4.7H2O and 12 g/L rapeseed oil. Aeration and stirring were set to 20 

slpm and 500 rpm respectively. After 24 hours of batch fermentation the continuous addition of 

rapeseed oil was started (0.8 g/L.h) and regulated if necessary while glucose addition was 

started when its concentration dropped to 40 g/L and subsequently maintained above or equal 

to 30 g/L. Temperature was maintained constant at 25°C, pH at 3.5 by automatic NaOH addition 

after a spontaneous drop during growth and dissolved oxygen concentration was kept above 20 

% by increasing the pressure. 

 

Sophorolipid recovery and purification 

 A 0.65 µm tangential flow filter element (Pall Kleenpak KT6PSM651HG) was used for 

cell removal. Further purification by ultrafiltration was performed on a plate and frame filter (DDS 

Lab-unit, type 20) with 50 kDa (Alfa Laval GR40PP) and 5 kDa (Alfa Laval GR82PP) PES 

membranes. Hexane extractions were performed and evaporation was done using a rotavapor 
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(Buchi, R210/215). The collected sample was given the batch name T21 and used for all tests in 

this work. T21 is composed out of 88 % of the acetylated acidic form of sophorolipids bearing a 

C18:1 fatty acid chain (full composition is given in Table S1) and for this reason it will be 

referred to throughout this work as aSL-COOH (T21). 

 

Physico-chemical characterization of aSL-COOH (T21) 
 
Hydrophilic-Lipophilic Balance (HLB) value 

 A rough estimate of HLB value can be made from the water solubility and dispersibility 

characteristics of non-ionic surface-active agents.17 Their water solubility / dispersibility can also 

be used as a guide of their expected application as emulsifier, wetting agent, detergent or 

solubilizer, based on Griffin‘s classification.18 To get an estimate of aSL-COOH (T21) HLB 

value, the sample was dissolved in water, at room temperature (RT) and at a concentration of 5 

% w/w. The equilibrium pH of aSL-COOH (T21) being below 5, the pH was then raised adjusted 

to 5.5 using a NaOH solution, and the mixture was shaken. The HLB value was estimated 

based on water solubility according to Griffin’s HLB scale and expected applications were 

assigned based on Griffin‘s classification scheme for surface-active agents.  

 

Emulsifying properties 

 The aSL-COOH (T21) emulsifying properties were investigated by assaying the ability of 

aSL-COOH (T21) to emulsify a blend of oil and water. The emulsifier was dissolved in water and 

then added to a biphasic system of oil with water, so as that the respective final concentrations 

of all components was 3 % w/w emulsifier, 82 % w/w water and 15 % w/w oil. Oils having a 

range of required HLB (rHLB) values (caprylic capric triglyceride (rHLB= 5), dimethicone (rHLB= 

5), olive oil (rHLB= 7), mineral oil (rHLB= 10), isopropyl palmitate (rHLB= 11-12), were also used 

in the investigation. The pH was fixed to 5.0-6.6. The mixtures were manually mixed vigorously. 

Two series of experiments were run, either at room temperature, or after heating the oil and the 

water phase to 82 °C. Control emulsions using a commercial emulsifier of similar HLB value 

(Hostaphat KL340D (Trilaureth-4 Phosphate, HLB= 13-14), or Hostacerin DGL (PEG-10 

Polyglyceryl-2-Laurate, HLB= 14-15)) were prepared in parallel. The emulsion stability was 

visually assessed, following phase separation in the mixture with time. The general 

microstructure of the emulsion (coarse or fine emulsion and droplet coalescence with time) was 

also examined at the optical microscope (DIGIMAX model, CETI, Medline Scientific, Oxon, UK) 

(40x), to assess emulsion quality. A second series of experiments was performed where 
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mixtures were homogenised at RT using a homogeniser (Silverson L5M-A, MA, USA). In this 

set of experiments, emulsion stability was assessed visually following phase separation in the 

mixture under standard centrifugation conditions (5000 rpm during 10 min). The emulsions were 

also examined using optical microscopy. 

 

Foaming properties  
 Foaming of aSL-COOH (T21) was assessed in aqueous solutions. A 12 % w/w aqueous 

solution of a mixture containing the aSL-COOH (T21) and a second surfactant (Cocamidopropyl 

Betaine), at a weight ratio of actives of 3 aSL-COOH (T21): 1 Cocamidopropyl Betaine, was 

prepared. As control, a solution containing 12 % w/w of a mixture of a surfactant with excellent 

foaming properties (sodium lauryl ether sulfate (SLES)) and Cocamidopropyl Betaine, at a 3:1 

weight ratio of actives, was used. Additional samples were prepared having the same 

composition as before, plus sunflower oil at two different final concentrations, 1 % w/w and 3 % 

w/w, to assess foaming properties in the presence of different concentrations of oils. Each 

sample was shaken in a comparable way. The tubes were visually observed to assess foaming, 

comparing foam height of aSL-COOH (T21)-containing mixtures to SLES-containing mixtures, in 

the presence or absence of oil. Comparative foam height assessments in each tube were 

carried out immediately after shaking, as well as after 10 min of rest. 

 

Solubilizing properties 
 The aSL-COOH (T21) solubilizing properties were investigated after blending the 

potential solubilizer (0.75% w/w based on active) with a fragrance (Vanilla Peach or Chamomille 

Roman Essential Oil, at 0.25 % w/w) and dissolving the blend in water (99 % w/w) at RT, upon 

vigorous agitation. Azulene (an oil-soluble dye) was used to facilitate visualization of a 

separated oil phase, where poor solubilization occurred. As control surfactants with good 

solubilizing properties, we used Polysorbate 20 (Crillet 1, HLB=16.7), PEG-40 Hydrogenated 

Castor Oil (Croduret 40, HLB= 13-14) and Polysorbate 60 (Crillet 3, HLB= 15), while as control 

surfactant with poor solubilizing properties was used Polyglyceryl-3-polyricinolate (Dermofeel 

PR, HLB= 4-5). A non-surfactant control was also run in parallel. The pH was fixed to 5.0-6.0. 

Fragrance solubilization was assessed visually, following separation of an oil layer, or oil 

droplets, in the mixture. A second series of experiments was also performed using a weight ratio 

(based on actives with solubilizing properties) 5:1 of solubilizer:fragrance. 

 
Self-assembly 
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Samples were prepared by dissolving a given amount of aSL-COOH (T21) in milliQ-grade 

water. We explored the following concentrations, 0.5 w%, 2.5 w% and 5.0 w%, both at 

equilibrium pH (about 4.8, no adjustment after mixing) and pH 2 (adjusted using few µL of 1 M 

HCl). Samples were freshly prepared before SAXS and cryo-TEM analysis, described in more 

detail below. 
 
Biological properties of aSL-COOH (T21) 
 

Aquatic toxicity 

 Acute immobilisation studies were carried out with Daphnia magna according the OECD 

Guideline 202 using DAPHTOX F MAGNA (MicroBioTests Inc). aSL-COOH (T21) was 

compared with two other samples of sophorolipids, a partial hydrolysate (containing 30 % acidic 

and 70 % lactonic sophorolipids) and complete hydrolysate (containing only non-acetylated 

acidic sophorolipids) obtained from Ecover (Malle, Belgium). More information on these samples 

and their synthesis can be found in ref. 19, as described by Develter et al.21  For each sample, 

the Daphnias were exposed to 5 concentrations ranging from 10 mg/L up to 1000 mg/L (1000, 

333, 100, 33 and 10 mg/L) in standard fresh water (Daphtoxkit FTM magna tests obtained from 

MicroBioTests Inc. Belgium). The pH of the solutions was measured and set to near neutral. 

Prior to the test, one vial of Ephippia was hatched in standard fresh water for 3 to 4 days at 

20°C and 6000 lux illumination. Daphnias not older than 24 h can be used for the test. Before 

exposure to the sample solutions, the Daphnias were fed with spirulina powder. The test was 

carried out in a multiwell plate, whereby each row contained 5. wells, the first well was filled with 

standard fresh water and the subsequent 4 wells were filled with 10 mL of the required sample 

solution (the test was carried out in quadruplet for each concentration). In total, the multiwell 

plate had 5 rows for each concentration of the sample. In total for each row, 20 active Daphnias 

are rinsed in the first well, secondly 5 Daphnias are placed in the four remaining wells of that 

row. The plates are incubated at 20°C in the dark. After 24 hours and 48 h dead and immobile 

Daphnias were counted for each concentration, the pH and oxygen concentrations in the 

solution was also measured. For each test concentration the 24h-EC50 and 48h-EC50 values 

were calculated with a 95 % confidence limits.  

 

Measurement of growth rate and biofilm formation 
 Bacterial strains used in the experiments were Enterococcus faecalis (ATCC 29212), 

Pseudomonas aeruginosa (PAO1), and Staphylococcus epidermidis (ATCC 38983). Various 
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concentrations of aSL-COOH (T21) up to a maximum of 2 w% (20 mg/mL) were loaded into 96-

well microtitre plates (Nunc, ThermoFisher, UK), stored at 4°C and used within 5 days of 

preparation.  Each plate contained 6 wells per SL concentration.  Nutrient broth (5 mL) was 

inoculated with a single colony then transferred to a shaking incubator overnight (16-18 h).  

Overnight cultures were adjusted, under sterile conditions, to an optical density (OD) of 0.05 at 

600 nm; then diluted further and added to the prepared SL test plates, such that the final 

concentration of culture per well was 1/100th of the 0.05 OD inoculum in 100 µL total volume.  

Following inoculation, the plates were sealed with Parafilm® and incubated in either a shaking 

or static incubator at 37°C. Optical density measurements (600nm; FluoStar Omega 

spectrophotometer coupled with Omega MARS data analysis software version 2.10 R3, BMG 

LabTech) were recorded for individual plates at each time point for up to 12 h. Following 

recording of spectrophotometric data, each plate was washed five times in distilled water and air 

dried overnight.  Crystal violet solution (0.5% w/v; 125 µL) was added to each well and after 45 

min the plates were washed five times in distilled water and air dried overnight.  Ethanol (95% 

v/v; 150 µL) was added to each well and the plates were incubated at room temperature for 15-

30 minutes with gentle shaking on a shaking stand, before recording the OD at 595 nm of the 

solubilized crystal violet stain in each well. The above procedure was carried out four times in 

total for each bacterial strain tested, starting with overnight cultures of separate colonies for 

each strain. 

 Where appropriate, the data were blank-corrected relative to the mean OD (OD 600 nm 

or OD 595 nm depending on the parameter being measured) for the corresponding blank 

control. Statistical analysis was carried out using GraphPad Prism (v6.01, GraphPad Software, 

Inc.). For the growth and biofilm assays, the baseline (t0) value for each individual well was 

subtracted at each subsequent time point.  The mean ODs for each group were then pooled 

from the separate experiments (n= 4) for statistical analysis.  Optical densities were compared 

between treatment (5-20 mg/ml SL) and control (no SL) groups at each time point (Kruskal-

Wallis test with post-hoc Dunn’s multiple comparison). The minimal effective concentration 

(MEC) was defined as the lowest SL concentration that showed a significant reduction of OD 

compared to control conditions at two consecutive time points.  Subsequently, ODs at each time 

point were compared to the baseline reading (Kruskal-Wallis test with post-hoc Dunn’s multiple 

comparison). 

 

Life cycle analysis (LCA) 
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 The environmental impacts associated with the fermentation and purification process 

described in this paper, but assumed at a larger scale, were calculated according to the LCA 

approach as defined in ISO 14040:2006 and ISO 14044:2006. In the LCA, yeast extract was 

used instead of corn steep liquor (CSL) as nitrogen source, as CSL was associated with 

sterilization and performance problems and would not be taken further along in the 

development. This difference does not affect the general conclusions of the study. The goal of 

the LCA study was to determine environmental hot spots when using the surfactant for hand 

washing (cradle-to-grave), and to compare its total production impacts (cradle-to-gate) to those 

of the following established detergents, the LCA of which can be found in ref. 20, 21 and 22: 

soap (sodium salt of fatty acids), alcohol ethoxylates (AE), esterquat, fatty alcohols, fatty alcohol 

sulfates (FAS), linear alkylbenzene sulphonate (LAS) and alkyl polyglucosides (APG). The 

associated functional units are 1 hand wash (using 2.3 g dry weight detergent and 0.64 L cold 

tap water) and 1 kg surfactant (dry weight), respectively. All material and energetic inputs and 

outputs were included except for capital goods and transport in the foreground system. 

Background data was gathered from the Ecoinvent database23 as applicable for production in 

Belgium. 

The environmental impacts were calculated using the ILCD midpoint v1.04 method and 

the ReCiPe endpoint (Europe H/A) v1.10 method. The first expresses impacts in terms of 

climate change, ozone depletion, human toxicity, particulate matter, ionising radiation, 

photochemical ozone formation, acidification, eutrophication, ecotoxicity, land use and resource 

depletion. The second method determines damage to human health, ecosystems and resources 

based on weighted sums of midpoint impacts. Uncertainty of the modelled data and results were 

determined by use of pedigree matrices and Monte Carlo simulations (1000 runs per result, 

confidence interval of 95%). Results with a coefficient of variation larger than 100% were 

considered to be highly uncertain and were omitted from the results in order to avoid drawing 

false conclusions. 

 
Results 
 
Strain characterization and sophorolipid production. 
 In this work we provide a method for the production of kg-scale of 100 % acidic 

sophorolipids with a high acetylation degree using the Starmerella bombicola lactone esterase 

knock-out strain (Δsble) described by Ciesielska et al.16  as depicted in Figure 1.  
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Figure 1 - Overview of the strain engineering strategy to obtain 100% acetylated acidic SL: (a) genetic make-
up of the Δsble strain; (b) SL biosynthesis for 100 % acidic SLs with a mixed acetylation pattern: non- (SL-
A1), mono- (SL-A2 and SL-A3) and di- (SL-A4) acetylated acidic SLs (mainly C18:1 species) are produced and 
secreted into the extracellular space. (1) cytochrome P450 monooxygenase CYP52M1, (2) glucosyl-
transferase I, (3) glucosyltransferase II, (4) acetyltransferase, (5) SL transporter, (6) lactone esterase. 
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 Genetic engineering of S. bombicola for the production of (new-to-nature) biosurfactants 

sometimes brings along undesired side effects on the involved pathway or even on related 

processes due to inhibition or regulation effects resulting in a drop of the productivity.24 In order 

to verify this for the Δsble strain, we characterized it using the Multi Reaction Monitoring (MRM) 

assay which was recently developed as a molecular tool for S. bombicola to determine 

expression levels of the SL cluster proteins under varying conditions and/or in different strains.25 

In this case the expression levels of the SL cluster proteins of the ∆sble strain were compared 

with those of the S. bombicola wild type (WT) strain. In the MRM assay we target the five 

proteins of the SL biosynthetic gene cluster:11 the SL transporter (MDR), the first UDP- 

glucosyltransferase A1 (UGTA1), the second UDP-glucosyltransferase B1 (UGTB1), the 

acetyltransferase (AT) and the cytochrome P450 (CYP450). It was recently shown that the 

Δsble strain shows similar productivities as the WT strain.14 Here, we confirm that the 

expression level of its SL cluster proteins is similar as to that of the WT. Surprisingly, the UDP-

glucosyltransferase A1 (UGTA1) is more abundant in the Δsble strain (Figure 2), while the other 

protein levels are not significantly different. We have strong indications that high levels of SL 

cluster proteins have a direct connection with high levels of SL productivity (unpublished 

results). 

 
Figure 2 - Relative abundance of SL cluster proteins (MDR-transporter, UGTA1 and UGTB1 

glucosyltransferase, AT-acetyltransferase and CYP450- cytochrome P450) in S. bombicola WT and Δsble 
determined by targeted proteomics (LC-MRM). The plot displays the average normalized area-under-the-
curve for each peptide used as marker for the different proteins. The error bars plot the SD of all replicate 
analyses. Target peptides: EIVS: EIVSGSADVGK, GLTL: GLTAASILNEAIDR (MDR); TGLP:TGLPTVEQIK, 
EAVD:EAVDSIIGNPK (UGTA1); AIPE:AIPEQYDALQTALK, EVLA:EVLATPSYHEK (UGTB1); 
TVVG:TVVGGVPAR, EFNT:EFNTIASESR (AT); FNDF:FNDFGLGAR, LAPV:LAPVLPLNFR (CYP450).  

 

 As mentioned above, thanks to its productivities similar to the WT, this new strain can be 

used for the large scale production of acetylated acidic sophorolipids, which is not possible 
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using the WT, as this will always result in a mixture of acidic and lactonic sophorolipids, 

although the culture conditions and medium composition can influence the ratio of 

lactonic/acidic SLs to a certain extent.13,26 One could also produce 100 % acidic SLs by applying 

alkaline hydrolysis on WT-derived SLs in order to open the lactone structure, yet, this will result 

in acidic SL molecules lacking the acetyl groups, thus generating 100 % non-acetylated acidic 

SLs (Figure 1: SL-A1). Using this method it is thus not possible to selectively attack the lactone 

ester function, while leaving the acetyl ester functions intact.  

 The follow up of important fermentation parameters of the main fermentation (150 L 

scale) are depicted in Figure S2. The run was harvested after 166 h of fermentation and a 

sophorolipid concentration of 138 g/L was obtained, accounting for a total amount of about 10 

kg of a mixture of acetylated sophorolipids. Due to the high foaming ability of the acetylated 

acidic SLs, the stirrer and the air flow rate had to be decreased to 400 rpm and 10 slpm 

respectively after 30 hours of fermentation. To compensate for the resulting lower oxygen 

transfer rate, the pressure inside the fermenter was increased to 1000 mbar. The oil feed rate 

was adjusted from 0.8 g/L.h to 0.25 g/L.h after 100 h and stopped after 142 h of fermentation to 

allow complete consumption of the oil and free fatty acids towards the end of the fermentation, 

glucose addition was also stopped after 142 hours. 

 An overview of the different steps during the recovery and purification of the SLs from 

the fermentation broth is shown in Figure 3. Filtration was described to be a promising 

purification process for the SLs produced with the Δsble strain at the small scale,14 so this 

process was scaled up to purify the SLs derived from this 150 L scale fermentation. The cells 

were removed using filtration (cut off 0.65 µm) and washed to increase the recovery of SLs in 

the filtrate from 75 % to 95 %. Ultrafiltration was subsequently applied on the resulting filtrate to 

purify the SLs using a two-step filtration process with 50 kDa and 5 kDa cut offs proven to be 

successful at the small scale. Diafiltration was performed to increase the recovery (50 kDa 

filtration) and purity (5 kDa filtration) of acetylated acidic sophorolipids. A total recovery of 85 % 

was obtained using these subsequent filtration steps. A total wash water volume equivalent to 

3.5 x the initial cell free broth volume was needed to obtain this value. In an industrial production 

setting this wash water should be reused. Evaporation was subsequently applied to concentrate 

the purified SLs. Although one of the aims of this work was to avoid the use of solvents, after 

this step a necessary hexane extraction step had to be included to remove the remaining oil and 

free fatty acids (FFAs) from the product, as their presence can influence the product properties. 

Although oil feeding was stopped one day before the end of the fermentation, these were not 

completely consumed during the last hours of the fermentation. After this hexane extraction, 
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some FFAs still remained associated with the SL product and could not be removed by 

additional hexane extraction steps, because of strong interaction with the SL product. This 

shows that it is very important to carefully control the fermentation process in order to avoid the 

use of solvents and remaining FFAs in the final product, as the latter will have an influence on 

the properties of the product.  

An extra evaporation step was carried out to remove all hexane traces, giving rise to a 

final concentrated SL product (33% dry mass). Freeze drying to obtain a dry powdery product 

was attempted, but was not possible for aSL-COOH (T21), which stays in an oily state (in 

contrast to non-acetylated SLs or acidic SLs with a lower acetylation degree). The high degree 

of acetylation thus seems to be responsible for the oily physical state of aSL-COOH (T21). The 

final composition and purity of the produced T21 batch composed of acetylated acidic SLs can 

be found in Table S1: 61.1% and 26.8% of the product are respectively composed of the di-

acetylated and mono-acetylated congeners, meaning that about 88% of the acidic sophorolipids 

are acetylated and in the C18:1 form. The remaining 12% is composed of the C18:2 congeners 

(mono- and di-acetylated, about 9.5%); the acetylated acidic fully saturated (C18:0) SL only 

represents 1.2% while the non-acetylated acidic fraction (C18:1 congener) is as low as 1.5%. 

The large amount of T21 produced in this work has been dispatched to all partners 

simultaneously, who independently studied its physico-chemical and biological properties.  
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Figure 3 - Schematic representation for the scaled up DSP route to make acetylated acidic sophorolipids 
produced with the Δsble strain. 

 
 
Physico-chemical properties of aSL-COOH (T21) 
 Macroscopic physico-chemical properties have been evaluated for aSL-COOH (T21) in 

comparison with state-of-the art surface active-agents (see material and method section). 

Based on its good water solubility, the Hydrophilic-Lipophilic Balance (HLB) value was 

estimated as higher than 13 (Figure 4A), thus making this compound a potentially interesting oil-

in-water (O/W) emulsifier, or a solubilizer, according to Griffin’s classification. However, direct 

emulsification tests have shown that O/W emulsions were not stable in the presence of aSL-

COOH (T21) under all conditions tested: significant phase separation was observed within few 

minutes macroscopically, as well as microscopically (droplet coalescence under the optical 

microscope). Phase separation in a control emulsion using Trilaureth-4 Phosphate as emulsifier, 

was retarded for at least a month, even at RT. Its microscopic image showed a finer emulsion 

when compared to the coarse emulsions obtained with aSL-COOH (T21) as emulsifier (Figure 

4B). 
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Figure 4 - A) Image of a 5 % w/w aSL-COOH (T21) solution in water, pH 5.5. The aSL-COOH (T21) solution is 

clear indicating complete water solubility for aSL-COOH (T21) at the concentration tested. B) Optical 
microscope images (40x magnification) of (1) mineral oil in water emulsion prepared at 82 °C , where 3 % w/w 
Trilaureth-4 Phosphate was used as emulsifier and (2) mineral oil in water emulsion prepared at 82 °C, where 

3 % w/w aSL-COOH (T21) (based on actives) was used as emulsifier. 

 

aSL-COOH (T21) foaming performances have also been tested showing a medium foaming 

ability if compared to SLES (Figure 5). Immediately after shaking, aSL-COOH (T21) foam height 

was 71% of the SLES foam height, while after a rest of 10 min it was 82 % of the fast-

collapsing, resting SLES foam height. In the presence of sunflower oil, already at 1.0 % w/w, 

aSL-COOH (T21) foam was seriously suppressed, as opposed to SLES foam. Finally, aSL-

COOH (T21) solubilization properties towards two fragrances (Vanilla Peach and Chamomille 

Roman Essential Oil) were tested. Solubilization trials showed that aSL-COOH (T21) has 

excellent solubilization properties at a 5:1 solubilizer to fragrance ratio. State-of-the art 

solubilizers demonstrated similar performance at a 3:1 solubilizer to fragrance ratio.  
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Figure 5 - Images obtained during foaming experiments where the foam height obtained in the presence of 
SLES and aSL-COOH (T21) was compared without addition of oil (A and D), or in the presence of 1 % w/w oil 

(B) and 3 % w/w oil (C), immediately after vigorous shaking (A, B and C), or after a 10 min rest (D). T18C3 
refers to a different, more impure, batch of aSL-COOH, containing non-acetylated acidic sophorolipids and a 

considerable fraction of hydrophobic impurities as secondary constituents. 

 

 The macroscopic properties described above indicate that aSL-COOH (T21) is an 

interesting hydrophilic compound with a high HLB, thus making it a potential solubilizing agent. 

To better understand this behaviour, we turn our attention to the study of aSL-COOH (T21) self-

aggregation behaviour at a nanoscale level. Considering that an acetylated acidic C18:1 

sophorolipid molecule has a very similar structure to the non-acetylated acidic C18:1 

sophorolipid, one can make the hypothesis that an ideally pure solution of the former has the 

same self-assembly behaviour as the latter, that is it forms nanometer-sized micelles. We will 

study such a hypothesis on the aSL-COOH (T21) compound.  

Predictions of the micellar morphology formed by aSL-COOH (T21) can be done using 

the packing parameter p,27 defined as the ratio of 
c0 la

vp
⋅

=  with, in a first approximation, v the 

volume of the hydrocarbon chain, a0 the surface area of the hydrophilic headgroup and lc the 

length of the hydrocarbon chain. The volume of the hydrocarbon chain v can be estimated with 

v = 13 VCH2 + 2 VCH (where VCH2 is the volume of one CH2 group inside a micelle, 27.5 Å3, and 

VCH is the volume of a CH group, 22.0 Å3) to be v= 401.5 Å3.28 Using the classical Tanford 

formula, v = 27.4 + 26.9*n [Å3], where n is the number of carbon atoms in the aliphatic chain, 

one obtains v = 457.8 Å3 for a C16 chain. Despite the slight disagreement, both values are in the 

same order of magnitude. The length of a C18:1 aliphatic chain can be estimated to be between 

17 Å and 22 Å using the Tanford formula (lc= 1.54 + 1.265*n), the difference depending on the 
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fact if one considers or not the 120° bending angle of the C18:1 moiety. Estimation of a0 is quite 

difficult. Cecutti et al.29 have estimated the maltoside headgroup area in dodecyl maltoside 

micelles to be 87 and 50 Å2, respectively for the micelle/solvent and at hydrophobic core/sugar 

headgroup interface. The non-acetylated C18:1cis sophorose headgroup area was estimated to 

be 104 Å2 at the air-water interface based on SANS data,30 while we have measured between 

70 and 80 Å2 at the dry core/hydrated shell interface of a non-acetylated acidic C18:1 

sophorolipid micelle in water.31 Since these values do not take into account the presence two 

acetyl groups, a0 is in reality probably slightly larger than 80 Å2, probably closer to 100 Å2. The 

calculation of p using average values for v (430 Å3), lc (20 Å) and a0 (100 Å2) gives p= 0.2, that 

is significantly lower than p < 0.3, the upper limit value for spherical micelles to be stable.27 The 

predicted presence of spherical micelles, demonstrated below, could justify the good 

solubilization properties measured above.  

 Small Angle X-ray Scattering (SAXS) can be used to gather information on the self-

assembly behaviour of aSL-COOH (T21) as a function of concentration and pH. The data 

collected at pH 4.8 (obtained after solubilization, with no pH adjustment) are presented in Figure 

6. The log-log representation of the absolute scale intensity, I, versus the scattering vector, q, in 

Figure 6 shows the features of micellar objects in solution, characterized by a typical signal 

between 0.01 < q [Å-1] < 0.30: the micelle/solvent interface is characterized by the q-4 decay at 

about 0.10 Å-1 and the oscillations above 0.10 Å-1. The overall I(q) curve also depicts an intense 

low-q scattering event, most likely due to very large objects in solution simultaneously present 

with the micelles. These assumptions are confirmed by fitting the SAXS data in the q> 0.01 Å-1 

region using the form factor of a core-shell ellipsoid of revolution,32 previously used to 

successfully model the self-assembly behaviour of non-acetylated acidic C18:1 sophorolipid 

micelles.31 The hydrophobic core is assumed to be constituted by the fatty acid tail while we 

assume the hydrophilic shell to be constituted by the acetylated sophorose and possibly the 

carboxylic acid. One should keep in mind that the presence of the acetyl groups most likely 

decreases the hydrophilic character of the sophorose headgroup and a core-single shell model 

is probably an approximation. 
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Figure 6 –Log-log representation of I(q) in SAXS experiments performed on the aSL-COOH (T21) sample at 
three concentrations and at pH 4.8 and pH 2.0. These curves have been fitted with a core-shell (prolate) 
ellipsoid of revolution form factor model (solid lines). The results of the fit are given in Table S2. The core-
shell ellipsoid model is also sketched: shell and core identify, respectively, the hydrophilic (acetylated 
sophorose) and hydrophobic (fatty acid) regions of the micelles; R1 and R2 respectively refer to the semi-
minor and semi-major axes of the core while T identifies the shell thickness, assumed to be uniform and 

homogeneous. ρcore, ρshell and ρsolv are the scattering length densities of the core, shell and solvent (water) 

regions. 

 

Table S2 gives the best fit results for the concentration- and pH-dependent experiments 

presented in Figure 6. At pH 4.8, the hydrophobic core radius, R1, is in the range of 11 Å while 

the hydrophilic shell thickness, T, slightly varies between 15 Å and 18 Å.  R2 is always slightly 

bigger than R1, indicating that micelles are effectively prolate ellipsoids. R2 increases with 

concentration from 21 Å to 40 Å, thus indicating that micelles grow slightly with concentration, a 

common fact and previously found in non-acetylated acidic sophorolipids solutions.31,33 Finally, 

one remarks that at the equilibrium pH, there is no major influence of the concentration on the 

morphology of the objects (the ellipsoid core-shell model fits well all the curves). Upon decrease 

of the pH from 4.8 to 2, the solutions, transparent at pH 4.8, become slightly turbid at 25 and 50 
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mg/mL. The cloudiness is typically related to an increase either of the size of the objects in 

solution and/or of the aggregation.  

The typical SAXS response of the system at pH = 2 is given in Figure 6, and which shows 

a strong increase in the scattering contribution below q= 0.05 Å-1, qualitatively indicating an 

elongation of the micellar aggregates. The fits show that at pH 2.0, R1 and T do not vary 

significantly, while R2 undergoes a very strong increase. Between 5 and 50 mg/mL, R2 

increases from 64 Å to more than 2900 Å (while it was between 21 and 40 Å at pH 4.8), thus 

indicating that micelles are actually long cylindrical objects rather than ellipsoids. The fit results 

at pH 2.0 and 50 mg/mL should be taken examined with caution; in fact, as one can see in Figure 

6 for the corresponding set of data, the fit diverges below q< 0.08 Å-1: it is not possible to fit the 

entire data set using the core shell ellipsoid form factor, used for all other systems. We believe 

that, since the slope between 0.02 < q [Å-1] < 0.08 is nearly -2, that is characteristics for flat 

morphologies, rather than cylindrical ones, the system is actually composed of a mixture of 

micelles and lipid bilayer, possibly vesicles or flat sheets. The heterogeneity of this system is 

confirmed by the fact that any attempt to model the data using a bilayer form factor was also 

unsuccessful. 

 The data in Figure 6 presents another interesting feature. The low-q portion of the 

spectrum shows a strong scattering contribution and a qualitative analysis of the slope can be 

very informative on the nature of the scattering objects. Its value can be estimated to be 

between -3 and -4, values characteristics of surface fractals, that is an aggregate with a rough 

surface.34,35 This hypothesis will be further discussed in the cryo-TEM section. To conclude on 

SAXS analysis, pH strongly influences the length of the micelles of aSL-COOH (T21). The 

SAXS data indicate the presence of micelles coexisting will larger aggregates, which are studied 

in the following using cryo-TEM experiments. 

 In order to confirm SAXS data, cryo-TEM experiments have been performed. Figure S3 

shows images of typical aggregates that have been found at 50 mg/mL and pH 4.8. It should be 

noted that sample observation was not straightforward. First, the amount of sample on the grid 

was often too important and the thick ice layer on top made it very difficult to record clear-cut 

images of the self-assembled objects. Second, as illustrated by the white arrow in Figure S3B, 

organic contamination with, e.g., ethane (used for sample preparation) could easily be mistaken 

with the sample. Less dense areas were of great interest because individual particles could be 

distinguished from the large aggregates. Figure S3A may suggest the presence of elongated 

and/or spherical objects (white circles), the presence of which is also suggested by SAXS. 

However the exact morphology of these objects is difficult to determine based solely on cryo-
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TEM. The scattering curves in the low-q area had a slope between -3 and -4, attributed to 

surface fractals structures. Indeed, the large aggregates inside the white squares in Figure S3 

are compatible with the SAXS predictions. Similar aggregates have been observed on non-

acetylated acidic sophorolipids at basic pH.36  

To conclude on the shapes formed by the acetylated acidic sophorolipids, predictions 

made by the calculation of the packing parameter (p< 0.3) are consistent with the formation of 

micellar objects, the aspect ratio of which strongly increases with lowering the pH, a fact which 

was not observed so far on the non-acetylated acidic form of sophorolipids. The introduction of 

acetyl groups also seem to promote the formation of large aggregated structures, which have 

been seen before on sophorolipids but under different pH conditions, that is in the presence of 

the ionized form of the carboxylic acid end-group. The exact morphology of the structures 

forming the aggregates is not yet clear, yet. 

 

Biological properties of aSL-COOH (T21) 
Biosurfactants are generally known to be biodegradable and of low toxicity. Meanwhile, 

they have been employed as antimicrobial agents, and even anti-cancer properties have been 

described. The acetylated acidic form of sophorolipids can reasonably be presumed poorly 

toxic, like their non-acetylated counterparts, and the validation of this assumption therefore was 

very important for their potential large-scale applications. Table S3 shows the results concerning 

the aquatic toxicity of aSL-COOH (T21), having an EC50 at 24h of 580 mg/L and at 48h of 253 

mg/L; these values indicate that aSL-COOH (T21) was practically nontoxic for the aquatic life 

according to the Hazard Categories related to the aquatic environment.37 In terms of 

comparison, two extra references have been analyzed, a sophorolipid mixture containing 70% 

lactonic and 30% acidic sophorolipids and a non-acetylated acidic sophorolipid sample (the 

latter contains 1% of sodium benzoate as a preservative, however non-toxic at this 

concentration), both obtained from Ecover, and were also found to be non- toxic. Interestingly, 

early aquatic toxicity tests performed previously on sophorolipids obtained from a commercial 

source (Soliance, Pomacle, France) and reported by Renkin38 were found to have a slight acute 

toxicity (EC50 after 48h = 29,2 mg/L, hazard category: acute 3), according to the classification 

of ref. 37. The Soliance sophorolipids is a mixture of different sophorolipid forms, whereby the 

acetylated acidic form with a methyl ester function on the fatty acid chain was the most 

important component, besides the lactonic and deacetylated acidic form.39 The reason for this, 

may be attributable to the impurities present in this particular sample (methyl esters), rather than 

to an effect related to the compound itself.40 
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After testing the aquatic toxicity of aSL-COOH (T21), we have evaluated its antimicrobial 

and antibiofilm formation properties on three bacterial strains, two Gram-positive, Enterococcus 

faecalis and Staphylococcus epidermidis, and one Gram-negative, Pseudomonas aeruginosa. 

For all the strains examined, growth was enhanced in shaking conditions compared to static 

cultures, whilst biofilm formation was greater in static cultures compared to agitated culture 

conditions (data not shown): results are therefore shown for the effects of SL treatment in the 

most optimal conditions for each determination.   

Growth and biofilm formation for all bacterial strains were affected by exposure to < 20 

mg/mL aSL-COOH (T21) solution known to form micellar aggregates (Figure 6). However, 

reduction and inhibition of growth and biofilm formation were most effective in Enterococcus 

faecalis and Staphylococcus epidermidis (Table 1 and Figure 7) with a dose dependent 

response. High levels of inhibition of growth and biofilm formation were observed at 

concentrations of 10 mg/mL and 20 mg/mL. In contrast, growth and biofilm formation were less 

inhibited in Pseudomonas aeruginosa, although there was still some an observable effect. 

 
Table 1 - The minimal concentrations range of aSL-COOH (T21) which reduced minimal effective 
concentration (MEC) bacterial growth in agitated cultures (OD600nm) and biofilm quantification in static 
cultures (OD595nm) (n=4 per bacterial strain). a For Pseudomonas aeruginosa, a brief inhibition of biofilm 
formation was observed between 8 and 10 hours of exposure to 0.5% (5 mg/ml) aSL-COOH (T21) compared to 
control (p< 0.05), however, no significant inhibition of biofilm formation compared to controls was observed 
at any time point following exposure to 10-20 mg/mL aSL-COOH (T21) in this stain.  

Strain Growth (OD600nm) MEC 
Biofilm quantification (OD595nm) 

MEC 

Enterococcus faecalis 0.5-1% 0.5-1% 

Staphylococcus 
epidermidis 

1-2% 0.5-1% 

Pseudomonas aeruginosa 1-2% <1% a 
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Figure 7 - Growth in agitated cultures (OD600nm; left column) and biofilm quantification in static cultures 

(OD595nm; right column) by Enterococcus faecalis, Staphylococcus epidermidis and Pseudomonas 
aeruginosa  treated with ≤ 2% (≤ 20mg/mL) aSL-COOH (T21) (mean ± standard deviation; n= 4).  Shaded data 

points are significantly different to the controls (p< 0.05). 



 24 

The observation of antibacterial activity in aSL-COOH (T21) is in contrast to a previous 

report indicating inactivity;41 however, we have been able to show that the acidic and lactonic 

forms of sophorolipid display markedly different, and possibly antagonistic biological activity 

when used in combination in unpurified preparations (unpublished data).  Joshi-Navare & 

Prabhune42  have reported the inhibitory effects of a mixed sophorolipid preparation on 

Staphylococcus aureus and Escherichia coli, although their reported MIC values for the 

sophorolipid alone, at 400 μg/mL and 1 mg/mL respectively, are lower than the values we report 

here of 5-20 mg/mL for MEC values. This disparity may be due to the use of acidic versus 

mixed lactonic/acidic preparations of sophorolipid since the preparation used by Joshi-Navare & 

Prabhane42 contained only an estimated 25% acidic sophorolipid and were very crude 

preparations with many contaminants, making it impossible to ascribe any effect to the 

sophorolipids. In addition, it is clear that there was considerable variation in response between 

different organisms. Treatment with the aSL-COOH (T21) resulted in clear dose-dependent 

reduction in growth and biofilm formation of Enterococcus faecalis and Staphylococcus 

epidermidis.   

Perhaps the most striking observation is that as great an effect was not apparent for the 

single Gram negative strain tested, Pseudomonas aeruginosa, in comparison with the two Gram 

positive strains.  This effect is perhaps not so surprising, since P. aeruginosa is itself a producer 

of an active glycolipid biosurfactant, rhamnolipid, which has been implicated in a variety of the 

physiological activities of the organism including biofilm maintenance and inhibition.43,44  In this 

case, data indicate a delay in growth and/or biofilm formation processes rather than an 

inhibition, at least at the highest concentration tested. Further experiments should be conducted 

to determine whether different effects of sophorolipids exist between Gram negative and 

positive bacteria, with regard to growth and biofilm formation or antibiotic adjuvant activity. 

 

Life Cycle Analysis of Acetylated Acidic Sophorolipids 
The sophorolipids analyzed in the LCA study are a type of biological surfactant, 

compounds which are used in household detergents as tensides. Although high end or niche 

applications might be identified in the future, detergency only, one of many potential scenarios, 

is considered in this study for aSL-COOH.  

The hot spots of the cradle-to-grave analysis for hand washing with the sophorolipids 

produced following the ultrafiltration pathway are shown in Figure 8. The production phase 

(including sophorolipids and dispenser production) is responsible for most of the impact in every 

category. The use phase has a minimal impact in all categories, while the end-of-life phase has 
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an important impact in some categories, especially climate change and freshwater and marine 

eutrophication. Strikingly 90% of the impact from the production phase is caused by the 

fermentation and even more strikingly it is especially the use of the renewable resources 

rapeseed oil (47%) and glucose (41%) that contributes to this large impact, while only 7% is 

derived from electricity. All other input or output streams each contribute less than 5% of the 

total impact. The remaining impact for the total production (10%) is added bit by bit throughout 

the downstream processing steps, mostly by electricity use.  

 

 
Figure 8 – Cradle-to-grave hot spots for hand-washing application with acidic sophorolipids using 

fermentation and an ultrafiltration purification pathway. 
 

In a second part of the LCA analysis, the acidic sophorolipids were compared to 

industrial reference products. Biobased soap is a tenside that has been used for centuries as a 

household detergent and is therefore considered to be an interesting reference product or 

benchmark to which sophorolipids can be compared. Other, more recently developed tensides 

are also included in the comparison: linear alkylbenzene sulfonate (the only completely fossil 

derived reference product), oleochemicals like ethoxylated alcohol (AE3 and AE7), esterquat, 

fatty alcohol and fatty alcohol sulfate. Another product to which the acidic sophorolipids are 

compared, are alkyl polyglucosides (APG). These are so-called first generation biosurfactants, 

which means that they are produced chemically, but from renewable resources. In contrast to 

soap, this surfactant is used as a self-emulsifier in cosmetics. An overview of the endpoint 

results is shown in Figure 9.  
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Figure 9 - Endpoint comparison to reference products: overview 

 

At the endpoint level, the acidic sophorolipids perform similar to most of the reference 

products. In terms of damage to ecosystems, only linear alkylbenzene sulfonate production 

shows significantly better results, which surprisingly is the only completely fossil derived product 

in the list. APG, soap and esterquats are produced with less impact to resources. The other 

products do not differ significantly (overlapping 95% confidence intervals). 

Most of the damage to ecosystems in the sophorolipids production is caused by the 

production of rapeseed oil and glucose and in particular to the large consumption of water 

during this phase. In terms of resource use, most of the impact is caused by glucose and 

electricity production. Another point which is unfavorable to the LCA of sophorolipids is 

undoubtedly the small volume of produced compound with respect to others, as all data are 

specific to the mass. In the end, use of second generation raw materials and increased 

efficiency in the production and purification process will certainly contribute to reduce the 

hotspots and endpoint scores in the future for this class of materials.  

 

Conclusion 

 Glycolipidic biosurfactants obtained by fermentation offer a worthy alternative to 

petrochemical based surfactants, which are dependent on finite and ever reducing fossil 

resources. Yet, their overall application is to some extent limited by the lack of structural control 

and missing availability of specific congeners in sufficient amounts and purity to allow dedicated 

application tests. In this work we described a scalable (and non-solvent based) method to do so, 

based on applying a modified strain to obtain 100% acidic sophorolipids with a high acetylation 
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degree and free of lactonic sophorolipids using a Starmerella bombicola lactone esterase knock 

out strain (Δsble) which produced 138 g/L sophorolipids which constitutes of aSL-COOH, C18:1 

congener, at about 88% and no lactonic form of sophorolipid. Aliquots of this compound were 

used to study its physico-chemical and biological properties.  

 The aSL-COOH (T21) was found to be non toxic to aquatic environment, yet it can inhibit 

growth and biofilm formation of both Gram positive and negative bacterial strains. This inhibition 

was more prominent for the Gram positive bacterial strains. Knowledge of SL-mediated anti-

bacterial action would be of huge benefits in the field of biosurfactant therapeutics as 

antimicrobial or adjuvant application.  

 Acidic sophorolipids, aSL-COOH (T21), had very poor O/W emulsion stabilising 

properties, a medium foaming ability and excellent solubilization properties. We believe that the 

latter can be explained by the fact that at the equilibrium pH in water (about 4.8), aSL-COOH 

(T21) forms micelles, the size and morphology of which vary with pH: at pH 4.8 the size does 

not significantly vary with concentration while a more acidic pH (of 2.0) promotes the formation 

of large cylindrical objects. However, the SAXS data, combined with  cryo-TEM, do not exclude 

the simultaneous presence of objects with flat morphology. 

.Life cycle analysis was carried out to determine the impact of this new production 

process. The environmental impact was surprisingly rather similar to that of chemical 

surfactants derived from fossil resources. It was concluded that the use of rapeseed oil and 

glucose as substrates is the main reason for this impact, with a combined contribution of 78% of 

the total endpoint score in terms of damage to ecosystems and damage to resources. The 

remaining impact was largely caused by electricity use throughout the chain (15%). Optimization 

of the conversion efficiency and of the glucose:rapeseed oil ratio holds the most important 

improvement potential. 

This work illustrates the importance and impact of a multidisciplinary approach. As 

multiple applications were evaluated, all of them influenced the upstream synthesis and 

purification process in order to obtain the best parameters fitting all needs. The result of this is 

the development of a cradle to grave process which is green, scalable and applicable for 

various industries for the synthesis of well characterized biosurfactants with unique properties. 
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