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Abstract—The problem considered in this paper is regression
with a constraint on the precision of each prediction in the
framework of data streams subject to concept drifts (when the
hidden distribution which generates the observations can change
over time). Concept drifts can diminish the reliability of the
predictions over time and it might not be possible to output a
prediction which satisfies the constraints on the precision. In this
case, we claim that if the costs associated with a good and with
a bad prediction are known beforehand, the overall prediction
cost can be improved by allowing the regressor to abstain. To
this end, we propose a generic method, compatible with any
regressor, which uses an ensemble of reliability estimators to
estimate whether the constraints on the precision of a given
prediction can be met or not. In the later case, the regressor
is allowed to abstain. Empirical results on 30 datasets including
different types of drifts back our claim.

I. INTRODUCTION

The interest for machine learning algorithms able to learn
on a stream of data has grown very rapidly during the last few
years. Human-machine interactions, autonomous driving or
prediction of stock prices constitute examples of applications
domain where an open-ended stream of data must be processed
by a learning algorithm. However, data streams are often
subject to concept drifts, when the hidden distribution which
generates the data changes over time. As a consequence, the
reliability of the predictions given by algorithms learning on
such streams can be significantly deteriorated. This is an
issue, especially when there is a constraint on the level of
precision expected for each prediction; a scenario which can
appear in cost-sensitive applications of machine learning such
as medicine or financial forecasting.

In this paper, we show in the regression setting that the
overall cost achieved by a predictor learning on a data stream
subject to concept drifts can be significantly improved by
allowing it to abstain. Sometimes, it is not possible to output
a prediction with the desired level of precision and instead of
outputting a wrong prediction; it might be worth allowing the
predictor to abstain. Therefore, we propose a generic method,
compatible with any regressor, which uses an ensemble of
reliability estimators to estimate whether the constraints on
the precision of a given prediction can be met or not. In the
later case, the regressor is allowed to abstain.

The paper is organized as follows: Section II describes the
framework and the proposed method. Section III goes through
the related works and section IV describes the experimental

protocol. The results on the synthetic and real life datasets are
given in sections V and VI respectively. Finally section VII
concludes.

II. FRAMEWORK AND PROPOSED METHOD

In this section, we lay down the framework, introduce
our problem with a real life example and propose a generic
method aimed at improving the performance of any regression
algorithm able to learn on a stream of data subject to concept
drifts. We also discuss the choices made for the parameters
and how we constrain the suitable abstention costs.

A. Framework

In the supervised regression setting, the goal is to learn a
predictor h : X → Y , (with X the input space and Y ∈ R the
output space) capable of generating accurate output predictions
ŷ = h (x) ∈ R for any unlabeled observation x∈ X . Each
observation z ∈ Z (with Z = X × Y) is generated by a
stream which starts emitting observations {zt1 , zt2 , ...} at time
t0. Each observation zt is generated according to a hidden
distribution Dt over Z . The distribution Dt (also referred as
concept) can change over time and we will say that the concept
Dt that the predictor is trying to learn, has drifted at time t if
Dt−1 6= Dt. When the concept is stable, the observations are
assumed to be i.i.d. realizations of a single concept whereas
when the concept is drifting they are only assumed independent
from each other.

The regressor h is further allowed to abstain from predic-
tion, a framework commonly known as selective regression
[5]. In this case, the regressor h is associated with a selection
function g : A → {0, 1} (where the input space A can change
from one selection function to the other) whose meaning is as
follows:

(h, g) (xt) =

{
∅ if g (at) = 0

h (xt) if g (at) = 1

where ∅ denotes an abstention on the unlabeled observation
xt and where at ∈ A.

The problem considered here is to produce a predictor h
(or a predictor associated with a selection function (h, g))
that minimizes the expected cost from prediction on the n
observations received so far: 1

n

∑n
i=1 C (h (xi) , yi) (where



Fig. 1. Target range (left) and payoff function (right) of a Binary Option
Tunnel

C : (Y ∪ ∅)×Y → [0; 1] is a cost function) under the constraint
of a required precision threshold ε. Formally, we define the
ε− tube cost function presented in [6] as:

C0−d−1
ε (ŷ, y) =


0 if |y − ŷ| ≤ ε and g (a) = 1

1 if |y − ŷ| > ε and g (a) = 1

d > 0 if g (a) = 0

where ε is a threshold determined by the problem at hand and
d is the cost associated with an abstention.

Note: The problem considered here shares some simi-
larities with the task of giving predictions intervals [23]. The
difference is that, in the case of a prediction interval, the
goal is to estimate the interval into which the observation
will fall with a given probability in order to quantify the
uncertainty in the point forecasts whereas here, the interval is
constrained by the requirements of the problem at hand. In both
cases though, the performance of the underlying algorithm is
assessed by checking whether the observation falls into the
predicted interval.

B. Real life example

In order to illustrate the problem, we describe the case
of an investor which is betting on a “Binary Tunnel Option”.
A Binary Tunnel Option is a financial product that rewards
the buyer of the product if he manages to accurately forecast
whether the price of the underlying asset will be in a given
range at the maturity date of the option.

For instance, assume that the current price of stock S is
129C (see the left hand side of Fig. 1). Based on his machine
learning algorithm, an investor predicts that the price of stock
S will be ŷ = 132.5C in 20 days. He can then call a broker
and ask him to create a Binary Tunnel Option for which the
thresholds are for instance ŷ − ε = 130C and ŷ + ε = 135C
(thus, in this case, ε = 2.5). If the broker manages to find
another investor willing to sell this option, the first investor
can buy the option for a price p (1C for instance) and will
get a profit (for instance 10C) only if the price of stock S is
within the 130C-135C range at the closing price in 20 days.
Otherwise, if the price of stock S at the maturity date is outside
this range, the investor loses his initial investment (1C). The
payoff of the option in this particular example is shown on the
right hand side of Fig. 1.

Algorithm 1 Generic Method
Inputs: unlabeled observation: xt, predictor learned at
previous step: ht−1, ensemble of reliability estimator:{
RE1, ..., REm

}
, ensemble of confidence thresholds:{

q1, ..., qm
}

, ensemble of inputs specific to each reliability
estimator:

{
Q1, ..., Qm

}
, selection function: g

01: ŷt ← ht−1 (xt)
02: r̂t ← Compute REs

(
RE1, ..., REm, Q1, ..., Qm

)
03: at ← Apply Thresholding

(
r̂t, q

1, ..., qm
)

04: if g (at) = 0 then
05: ∅ ← (h, g) (xt) . Abstain
06: else
07: ŷt ← (h, g) (xt) . Predict
08: end if
09: ht ← Update (ht−1, xt) . Update the learned model

C. Proposed method

The underlying idea of the proposed method is that by
allowing a predictor to abstain, it is possible to achieve better
performances at the cost of a smaller coverage (the proportion
of observations for which a non-empty prediction is given).
Therefore, we propose a generic method which assess whether
the constraint on the required precision can be met. When this
is not the case, the predictor is allowed to abstain in order to
avoid a costly error.

Note: For the rest of this paper, “reliability estimate” is
used to refer to an estimate of the prediction error.

Method: The full method is detailed in Algorithm 1 and is
described here: at time t, upon reception of xt, the predictor
ht−1 learned at time t − 1 outputs an estimated prediction
ŷt. The estimate ŷt is then set aside. A set of m reliability
estimators REi, i = 1, ...,m then associates reliability esti-
mates r̂t =

{
r̂1
t , ..., r̂

m
t

}
∈ (R+)

m to ŷt where small values

of r̂it indicate that the reliability estimator is confident that the
prediction ŷt is close to the target value yt, and large values
of r̂it indicate a lack of confidence.

For each reliability estimator, a confidence threshold qi is
set and if r̂it ≤ qi, the prediction is deemed as reliable ac-
cording to this reliability estimator. The final decision of each
RE
(
at =

{
a1
t , ..., a

m
t

})
is then aggregated through a selection

function g and the prediction ŷt is used if the selection function
assessed the prediction as reliable. Otherwise, ŷt is discarded
and the predictor abstains for this observation.

Indeed concept drifts can diminish the reliability of the
predictions over time and when the reliability of a given
prediction is too small, it might not be possible to output a
prediction which satisfies the constraints on precision required
by the problem at hand. In such cases, abstaining should be
considered as a way to improve the overall expected cost.

One major advantage of this method is that the REs do not
depend on a particular predictor and thus can be used with
any base algorithm, as long as it is able to deal with concept
drift on a stream. There are, however, some constraints on
the REs, as they must be able to operate on-line, use limited



memory, have a low processing time and be able to cope with
non-stationary distribution.

Another advantage of our approach is it relies on an
ensemble of REs: Previous empirical evaluations of existing
reliability estimates showed that the best RE depends on the
regressor and on the dataset [8][9][15]. These results are of
particular interest in the framework of concept drift, where
the characteristics of the dataset can evolve over time. To
tackle this issue, several studies have been carried showing
the interest of ensemble approaches [8][9] for the estimation of
the reliability of individual prediction. We proposed here to use
a simple majority vote but a different aggregating technique
could have been used [16]. Rather than the choice of a specific
ensemble method, the emphasis here is put on being able to
reject prediction estimates with low reliability regardless of the
base regressor used and of the characteristics of the dataset
considered.

Building up on these previous findings, the contribution
of the proposed method is to show the necessity to allow
abstention when learning on a data stream subject to concept
drifts.

Note: At this point, it should be emphasized that the
generic method previously proposed has no impact on the
update of the hypothesis h. Whether the selection function g
choses to abstain or predict, the hypothesis h learned after
update with the latest observation, is the same as the one
obtained without the selection function.

D. Setting the values of the parameters associated with the
proposed method

Many of the REs used require to set some parameters. In
the framework of concept drift, setting an appropriate value
for the parameter of an algorithm is a difficult task as a given
parameter would only be optimal at a given time [21], for a
given concept, on a given dataset and for a given algorithm.
Consequently, we chose to use non optimized parameters
which are set to default values regardless of the datasets or
the base learner and the task of optimally setting parameters
is left for future work.

We also applied the same principle for the numerical
confidence threshold q of each RE. As previously stated, each
RE is an estimate of the prediction error and thus, because
they evaluate the same value, the same threshold q was used
for all the linear REs (ŷ − y) whereas q2 was used for the REs
with a quadratic form (ŷ − y)

2. Finally, a value also had to
be given to the confidence threshold q which also depends on
the problem at hand. Because each RE is an estimate of the
prediction error, we chose to set ε = q for all the experiments.

Indeed, when ε is small, the problem considered requires
a lot of precision and thus the requirement for being confident
on a particular observation should be tougher. On the other
hand, if ε gets larger, the need for precision decreases and thus
the requirements on the confidence estimators should also be
looser.

E. Defining which abstention costs are suitable

Ultimately, the value of d depends on the problem at hand,
however, for the remainder of this paper, we will set d = 1

2

which is the “worst” abstention cost that we will consider.
Indeed, regardless of the algorithm considered, if d ∈

[
0; 1

2

]
,

there exist some cases where abstaining can improve the
performances. Conversely, if d > 1

2 , there are some algorithms
for which abstaining will never improve the performances. For
this reason, we restrict our framework to d ∈

[
0; 1

2

]
and we

will choose to never abstain if d > 1
2 .

Proof: The use of the ε−tube cost function transforms
a regression problem into a binary classification problem
where the goal at each observation is to predict ŷ ∈ A :=
[y − ε; y + ε].

In the binary classification setting, regardless of the prob-
lem at hand, the Bayes rule equipped with the true posterior
probabilities, will always minimize the probability of mis-
classification [22]. For instance, on a given observation x, if
the true posterior probabilities are P (Y = A/X = x) = 0.6
and P

(
Y = Ā/X = x

)
= 0.4 then, the Bayes rule will

always predict the class associated with the highest posterior
probability. In this particular example, the expected cost from
prediction is 0.6× 0 + 0.4× 1 = 0.4 and abstaining should be
considered only if d ≤ 0.4 (the expected cost from abstaining
is always known and is equal to d). More generally, the worst
expected prediction cost is achieved if P (Y = A/X = x) =
P
(
Y = Ā/X = x

)
and is 0.5. Thus, regardless of the dataset

considered, if d > 1
2 then the Bayes rule should never abstain.

Because any algorithm will have a worse misclassification
rate than the Bayes rule with the true posterior rule, the cases
where abstaining improves the expected prediction cost of the
Bayes rule will also improve the expected prediction cost of
any other algorithm. For this reason, we restrict our framework
to d ∈

[
0; 1

2

]
and more particularly to the “worst” case d = 1

2 .

F. Choosing a selection function

For the choice of selection function g, we used a simple
majority vote which chooses to use the initial prediction ŷ
only if an absolute majority of reliability estimators marked
the prediction as reliable. Here again, the performances can
be enhanced by a wiser choice of selection function.

III. RELATED WORK

We start this section by reviewing state of the art regression
algorithms, able to adapt to concepts change, process obser-
vations upon reception and use limited computer memory. We
then review regression algorithms which can abstain when a
prediction is deemed unreliable. Finally, we discuss why these
algorithms are not suitable to tackle our problem.

A. Regression algorithms for data stream subject to concept
drift

The overwhelming majority of the algorithms able to
handle drifting concepts have been designed to predict in the
classification setting. However, a few algorithms have been
devised for the regression setting.

Shaker and Hullermeier [11] proposed IBLStreams, an
instance-based algorithm able to learn under the classification
and regression settings. The algorithm is able to autonomously
optimize the composition and the size of the case base. The



latest observation is first added to the case base and then, the
algorithm checks whether some of the past observations should
be removed, either because they have become redundant, either
because they are outliers. The recent observations, however, are
excluded from removal.

Ikonomovska et al. [1] developed FIMT-DD, an incremen-
tal algorithm for learning regression trees from data streams.
The algorithm is equipped with mechanisms for adaptation
and drift detection which allow the local update of the tree if
necessary. In order to constrain the consumption of memory,
a method for disabling bad split points is included.

In [2], Almeida et al. devised AMRules, a rule learning
algorithm for regression problems on data streams where each
rule is created as a linear combination of attribute values.
Each rule uses the Page-Hinkley test [20] to detect changes
and model adaptation happens by pruning the rule set. The
algorithm also allows to differentiating the importance of the
training observation by the use of weights.

Duarte and Gama [3] proposed Random AMRules, an on-
line ensemble method that combines a set of rules created
by the AMRules algorithm. A mechanism prevents the base
models from being correlated by randomly choosing the set of
attributes considered for each base rule. The final prediction
of the model is a simple linear combination of the predictions
produced by the base models where the weight of each model
can be set either uniformly, either according to the performance
of the base model.

Note: These 4 algorithms are used as a baseline later
in the experimental section.

B. Regression with a reject option

The issue of selective prediction has been abundantly
addressed in the classification setting, however, similarly to
the algorithms developed for data streams, only a few models
were devised for the regression setting.

El-Yaniv and Wiener [5] developed a strategy for learn-
ing selective regressors which are guaranteed to achieve
ε−pointwise optimality (when the regressor is able to achieve
results which are arbitrarily close the optimal regressor in
hindsight, on the set of observations for which a prediction
is given) under the assumption that the observations are i.i.d.
realizations of a static concept D.

Kegl [6] devised MedBoost, a boosting algorithm for
regression that uses the weighted median of base regressors
as final regressor. The special case where the base regressors
as well as the final decision abstain is briefly considered.

In [4], a special type of on-line linear regression (Know
What It Knows Linear Regression) is introduced by Strehl
and Littman. The authors devised 2 uncertainty measures for
the least-squares estimate and allow the algorithm to abstain
from prediction when the confidence in this estimate is not
high enough. Unfortunately, despite its on-line learning ability,
the algorithm isn’t suited to deal with drifting concepts as it
assumes that the concept doesn’t change over time.

The case for abstention in the regression setting also
appears within the framework of conformal prediction [7][14].

In this framework, it is possible to give guarantees on the accu-
racy of an algorithm under the assumption that the observations
are i.i.d. realizations of a static concept D. Unfortunately, this
assumption doesn’t hold in the framework of concept drifts.

C. Shortfalls of the related works

On the one hand, the existing regressors suited to learn
on a data stream subject to concept drift never abstain from
prediction in their current form. On the other hand, the state
of the art algorithms for regression with a reject option
have not been devised to operate under a stream of data
subject to concept drifts. Therefore, we propose to improve the
performances of drift handling algorithms by allowing them to
abstain.

IV. EXPERIMENTAL PROTOCOL

In this section, we describe the reliability estimators used,
characterize the types of concept drifts reproduced in the
synthetics datasets, describe the experimental protocol as well
as the success metrics.

A. Description of the On-line Reliability Estimators

We chose to implement 7 of the reliability estimators
(REs) presented in the work of Rodrigues et al. [10] as
they are well suited for data streams. Here, rather than the
particular reliability estimates used, the emphasis is on creating
a diversified set of REs, suited to operate on a data stream
subject to concept drifts. A brief description of the reliability
estimators is given below the interested reader is referred to
the original paper for further details.

• Similarity-based reliability estimate: The underlying
idea of this estimate is to use temporal similarity: Given
the ordered arrival of observations, it can be argued that
the latest observation xt should be more similar to the “re-
cent” observations {xt−1, xt−2, ..., xt−k} than the older ones
{xt−k−1, xt−k−2, ...}. Thus, if the mean squared error has
been low on a sliding window of recent observations, the RE
is confident that the prediction error at time t will also be low.
Formally, the RE is defined as follows:

RMSE =
∑
t∈B(ŷt−yt)2

|B| , where B is the set of the |B| = k
most recent observations.

• Local Sensitivity: The principle of this RE is to perturb
the label associated with the latest observation and assess
to which extent the prediction of the algorithm learned with
the perturbed observation is modified. If there is little differ-
ence in the prediction, the RE is confident that the initial
prediction is good. Formally: at time t, upon reception of
an unlabeled observation xt, the algorithm outputs an initial
prediction ht−1 (xt) = ŷ0. Two artificial observations are
then created by modifying the estimated label by a value
δ1 > 0: {(xt, ŷ0 + δ1) , (xt, ŷ0 − δ1)}. Two copies h1

t−1 and
h2
t−1 of the algorithm ht−1 are then created. The first copy is

trained with the first artificial observation whereas the second
uses the second one. Then each copy computes a prediction
ŷδ1 = h1

t−1 (xt) and ŷ−δ1 = h2
t−1 (xt) for the unlabeled

observation xt initially received. This process is repeated k
times with different values of δ, resulting in a set of 2k



TABLE I. PARAMETERS USED FOR THE RELIABILITY ESTIMATORS

k δ

RMSE 10 -
RLSA 5 δ ∼ N (0, 0.1)
RDPC 10 ∀i, j : δi,j ∼ N (0, 0.1)
RBAG 10 -

predictions A = {ŷδ1 , ŷ−δ1 , ..., ŷδk , ŷ−δk}. The 2 REs derived
from these predictions are:

R1
LSA =

∑k
i=1(ŷδi−ŷ−δi)

k and R2
LSA =

∑
j∈A ŷj

2k − ŷ0

• Dual Perturb and Combine: Conversely to Local Sen-
sitivity Analysis, the idea is to perturb the attribute values of
the latest observation and assess to which extent the prediction
of the algorithm changes. Formally: the algorithm outputs an
initial prediction ht−1 (xt) = ŷ0. A set of k artificial unlabeled
observations is then created: ∀i = 1, ..., k : xit = xt+ δi with
δi the vector of modifiers δij , one for each attribute dimension
j and with δij ∼ N

(
0, σ2

j

)
. A prediction ŷi is then generated

for each artificial observation by computing ht−1

(
xit
)

= ŷi.
The 2 REs derived from these predictions are:

R1
DPC =

∑k
i=1(ŷi−ȳ)2

k where ȳ is the average of all
the perturbed predictions ŷi, i = 1, ..., k and the original
prediction ŷ0.

R2
DPC =

∑k
i=1(ŷi−ŷ0)

k .

• On-line Bagging Sensitivity: Here, the idea is to com-
pare the prediction of the base model trained with all the
observations to the predictions of k multiple versions of the
base model trained with different subsets of the observations
seen so far.

R1
BAG =

∑k
i=1(ŷi−ȳ)2

k where ȳ is the average of all the
predictions ŷi, i = 1, ..., k given by the k models and ŷ0 is
the prediction obtained with the base model.

R2
BAG =

∑k
i=1(ŷi−ŷ0)

k .

Values of k and δ: As explained in section II-D, we chose
to use a fixed set of parameters, regardless of the base learner
or the dataset. The chosen values are roughly in line with the
values used in the paper of Rodrigues et al. Table I summarizes
the choices made for each parameter.

B. Characterizing concept drifts

For the remainder of this paper, we will use the recent drifts
characterization of Webb et al. [13] that we briefly summarize
thereafter.

We start by defining the magnitude of a drift between times
t− 1 and t as: Magnitude := H (Dt−1,Dt) where H (., .) ∈
[0; 1] is the Hellinger distance [12] between Dt−1 and Dt.
H = 0 indicates that the 2 distributions are identical whereas
H = 1 is achieved when Dt−1 assigns probability 0 to every
set to which Dt assigns a positive probability and vice versa.

Let zDQtstart be the first observation received and z
DQ
tend

be
the last observation received of the Qth stable concept in the
stream (a concept DQ is deemed as stable if tDQend−t

DQ
start ≥ 2).

Let {DA,DB, ...} be the succession of stable concepts encoun-
tered since the stream started to emit observations at t0.

We will say that an abrupt drift occurred if: tDRstart−t
DQ
end =

1 (where DQ and DR are 2 consecutive stable concepts).
Conversely, we will say that a gradual drift occurred if:
tDRstart − t

DQ
end > 1. In other words, a gradual drift is a drift

that last more than one observation.

We will say that a local drift occurred if the distribution D
changes only over a constrained region of Z and that a global
drift occurred if D changed on the whole region Z .

C. Experimental protocol

We used the Java platform MOA [18] which provides
an environment for running experiments in the framework of
data streams subject to concept drifts. We used 4 regressors
(described in section III-A) which were already implemented
in the platform (with the exception of IBLStream which was
developed as an add-on1). The confidence estimators were
directly implemented in MOA2.

Similarly to the parameters of the reliability estimates, we
chose to use the default values (set in MOA) of the parameters
of each regressor, regardless of the dataset. The underlying
idea remains the same: as we are not allowed to make any
kind of assumption regarding the type of drift encountered,
there would be little point in optimizing a set of parameters
that would only be relevant at a given time, on a particular
dataset and for a particular concept.

In the case of ε (the value associated with the tube cost
function), it was previously stated that ε is a threshold set
before the algorithm is ran and which depends on the problem
at hand. Therefore, in order to simulate different requirements
on the precision level, 2 thresholds were tested on the synthetic
datasets:

• The first threshold was assumed to be “low” (i.e. a good
prediction is hard to achieve as the ε−tube is small).

• The second threshold was assumed to be “high” (i.e. it
is easier to output a prediction which is within the ε−tube
considered).

The 2 thresholds for ε were determined with hindsight by
computing the variance of the target variable on the whole
dataset and using a different multiple of this number for each
threshold.

D. Success Metrics

In order to assess the benefits from abstention, we have
computed the percentage of improvement in the overall cost
between each regressor and its abstaining version. Formally,
for a given dataset with n observations, we started by com-
puting the absolute difference between the 2 overall costs
achieved: abs diff =

n∑
i=1

[
C0−d−1
ε (hbase (xi) , yi)− ˆC0−d−1

ε [(h, g) (xi) , yi]
]

1The code for their add-on can be recovered from this link: https://www.uni-
marburg.de/fb12/kebi/research/software/iblstreams

2The code used as well as the results of the
experiments are available at the following link:
https://www.dropbox.com/s/wip3lyk5hs2u5k7/Supplementary%20Material.zip?dl=0



where hbase is the base version (without a selection func-
tion) of the algorithm that predicts all the time, (h, g) is the ab-
staining version of the algorithm described in section II-C and

ˆC0−d−1
ε [(h, g) (xi) , yi] = 1

10

∑10
j=1 C

0−d−1
ε

[
(h, g)j (xi) , yi

]
is used to denote the average cost achieved by the 10 copies
of the abstaining regressor (this point is explained thereafter)
on the particular observation (xi, yi).

Recall that both abstaining and base versions of the al-
gorithm are updated in the same way and will thus result in
the same hypothesis h learned, regardless of the output of the
selection function g. Thus, the 10 copies of the abstaining
regressor will have learned exactly the same hypothesis h but
might output different predictions from each other. This is the
case because there is an element of randomness associated with
some of the reliability estimators which we chose to overcome
by averaging the results of the 10 copies.

The percentage of improvement from the fully predicting
version to the abstaining version was then computed as:

improvement = − abs diff× 100∑n
i=1 C

0−d−1
ε (hbase (xi) , yi)

Thus, on each dataset, a negative value (e.g. -10.3) indicates
that the algorithm that was allowed to abstain managed to
achieve an overall cost which is lower (in this case 10.3%
lower) than the base algorithm. Conversely, a positive number
indicates that the base algorithm managed to over-perform the
abstaining version.

Note: Because we are comparing the difference of
performance of one base algorithm to his abstaining version,
we are guaranteed that this difference can only be attributed
to the decision to abstain (or not) and not by the underlying
ability of a particular algorithm to learn on a given dataset.

V. SYNTHETIC DATASETS

We start by presenting each synthetic dataset and explain
why it was used. We then present and discuss the results
achieved. Synthetic datasets are useful to experiment in an
environment where the type of drift can be controlled.

A. Presentation of the synthetic datasets

• Drifts of controlled magnitude: 2 batches of 10 datasets
have been created to assess the effects of drifts with gradually
increasing magnitudes and to “force” local drifts on the fea-
ture’s joint density (commonly known as covariate shift). For
each dataset, the dimension of the feature space was set to 2
and the number of observations generated to 1000. A unique
drift was introduced at time t501.

For the first batch, we generated 10 datasets for which
H (Dt500 ,Dt501) = {0.12, 0.2, ..., 0.99} respectively. This was
achieved by randomly generating 10 000 pairs of multivariate
normal distributions, computing the Hellinger distance for
each pair and retaining the 10 pairs which had the closest
value to the desired magnitudes. The first multivariate normal
distribution was then used to generate the first 500 observations
whereas the second one was used for the rest of the dataset.

For the second batch, we generated 10 datasets such as
H (ft500 (X) , ft501 (X)) = {0.1, 0.2, ..., 0.98}, with ft (X)

the joint density of the features at time t. This was done
by generating a random multivariate normal distribution as
the joint law of (X,Y ) before the drift and deducing the
laws3 of X and (Y/X). We then randomly generated another
multivariate normal distribution for the law of X after the drift
and the Hellinger distance was computed between the laws of
X before and after the drift. This process was also repeated
10 000 times and the 10 pairs which had the closest value to
the desired magnitudes were kept. We then obtained the joint
density4 of (X,Y ) after the drift by multiplying the original
conditional density Y/X with the new joint density of X. The
observations after the drift were then generated with a simple
rejection sampling algorithm.

• Drifts of controlled type, frequency and area of
effect: In comparison to the 2 batches of datasets described
previously, these 3 datasets (based on the Friedman’s function
[19]) are useful to assess the effect on the performances of
different types of drifts (gradual, abrupt, local and global) and
of different drift frequencies (several drifts appear on the same
dataset).

In this case, there are 10 continuous attributes and their
values are independently distributed with uniform distribution
on [0, 1]. The first 5 attributes are used to compute the target
value whereas the last 5 are useless. The basic target value is
computed as follows: y = 10sin (πx1x2) + 20 (x3 − 0.5)

2
+

10x4+5x5+σ with σ ∼ N (0, 1) a random number. 3 datasets
of 1000 observations were implemented, following the work
of Ikonomovska [17]:

Local expending abrupt drift: In this dataset, 3 local
drifts are introduced at times, t251, t501 and t751. From
t1 to t250, the goal is to learn the initial Friedman’s func-
tion. A local drift is then introduced at time t251 such as
∀x ∈ R1 = {x2 < 0.3 ∧ x3 < 0.3 ∧ x4 > 0.7 ∧ x5 < 0.3},
yR1 = 10x1x2 + 20 (x3 − 0.5) + 10x4 + 5x5 + σ. If x /∈
R1, the target value is unchanged. At time t501, a second
local drift is introduced on R2, such as ∀x ∈ R2 =
{x2 > 0.7 ∧ x3 > 0.7 ∧ x4 < 0.3}, yR2

= 10cos (x1x2) +
20 (x3 − 0.5) + ex4 + 5x2

5 + σ and R1 is further expended
by removing the last inequality from its definition (x5 < 0.3).
Finally, at time t751, a third local drift is introduced by further
expending R1 and R2. In both cases, the last inequalities from
their modified definitions are removed (x4 > 0.7 and x4 < 0.3
respectively).

Global reoccurring abrupt drift: In this dataset, the drifts
appear over the whole input space X . There are 2 drifts at
times, t501 and t751. The new target function after the first drift
is ygl = 10sin (πx4x5) + 20 (x2 − 0.5)

2
+ 10x1 + 5x3 + σ

whereas it reverts to the initial target function after the second
drift.

Global and slow gradual drift: Here, two gradual drifts
are introduced at times t501 and t751. In order to simulate
a gradual drift, the observations are generated in parallel
according to 2 different concepts and the sigmoid function
is used for the probability of selecting one concept over
the other. At time t501, a new target function is introduced

3In this case, X is also a multivariate normal distribution.
4Note that in this case, the joint density (X,Y ) is not necessarily a

multivariate normal distribution. Consequently, there is more diversity in the
set of joint densities considered than in the first batch.



TABLE II. VALUES USED FOR THE ε-TUBE COST AND THE
CONFIDENCE THRESHOLDS ON EACH DATASETS

Low ε High ε Size # Drifts
0.1-(X); ... ; 0.99-(X,Y) 0.1 0.75 1000 1
Hyperplane Regression 0.02 0.08 1000 1
Fried Local Expending Abrupt 1 3 1000 3
Fried Global Slow Gradual 1 3 1000 2
Fried Global Reoccurring Abrupt 1 3 1000 2
S&P 500 0.0005 N/A 6692 N/A
CAC 40 0.0004 N/A 6637 N/A
Apple 0.005 N/A 8927 N/A
EUR/USD 0.00005 N/A 2295 N/A
Gold 0.001 N/A 1565 N/A
Hyperplane Regression No Drifts 0.02 0.08 1000 0

yglr1 = 10sin (πx4x5) + 20 (x2 − 0.5)
2

+ 10x1 + 5x3 + σ
and the examples are slowly shifting from the initial target
function to yglr1 such as, at time t750, the probability of
selecting the new target function is 1. The same principle
apply after the second drift where the target function yglr2 =
10sin (πx2x5) + 20 (x4 − 0.5)

2
+ 10x3 + 5x1 + σ gradually

replaces yglr1 .

• Comparison between stable and drifting concept: Here
the goal was to assess which performances could be achieved
when the concept remains stable and to compare the difference
in performance when a drift is introduced on this same dataset.

To this end, 2 datasets based on the regression version of
the hyperplane generator (Shaker and Hullermeier [11]) have
been created. This generator randomly creates a d-dimensional
hyperplane in a unit hyper-cube. The goal here is to predict the
distance of each observation received to the hyperplane. In our
experiment, both datasets have a feature space of dimension 8
and holds 1000 observations.

The first dataset has been generated according to a single
stable concept whereas the second one is strictly identical (i.e.
it has exactly the same observations), up to time t501 where a
single abrupt drift is introduced. The drift was introduced by
generating another random hyperplane in the hypercube.

B. Results achieved on the synthetic datasets

The improvements (as defined in section IV-D) achieved
on each dataset and by each learner are presented in Fig. 2.
As previously stated, a negative value indicates that globally
the performances of the learners were improved by abstaining
whereas a positive value indicates that the performances of the
base versions were better. The values used for the ε-tube cost
function, the confidence thresholds, the size of each dataset
and the number of drifts included in them are given in table
II.

• Influence of the drift’s type on the performances:
Despite the large variety of drifts (global, local, abrupt, grad-
ual, different magnitudes ...) reproduced, the results of the
experiments globally indicate that the proposed method is able
to significantly improve the performances of the underlying
algorithm (up to -43% on the hyperplane dataset) regardless
of the type of the drift. This further indicates that abstaining
should be considered when dealing with data streams subject
to concept drifts.

Mixed results were achieved when there was no drift at all
(on the hyperplane dataset with no drift), with 3 learners out

Fig. 2. Percentage of reduction in the overall cost gained by allowing the
algorithm to abstain. The upper plot is for a low ε whereas the lower plot is
for a high ε.

of 4 for which the performance was significantly improved in
the case of a small ε and only 2 learners out of 4 had better
results when ε was high.

• Analysis of the results against the learner used:
The improvement in the overall performance can change
widely from one learner to the other (when the dataset and
ε are fixed), especially for a small ε. For instance, on the
hyperplane dataset with one drift, for a small ε, the abstaining
version of IBLStream managed to improve the performances
by 43% whereas the performances were only improved by 3%
for AMRulesRegressor. Overall, despite their drift handling
capabilities, the proposed method managed to improve the
performances of the 4 algorithms by allowing them to abstain.
The algorithm which in general, benefited the most from
abstention was IBLStream whereas the one that benefited the
least was RandomRules.

• Analysis of the results against the value of ε used:
Intuitively, when ε is small, it is harder for the learner to predict
within the ε−tube and thus the number of wrong predictions



Fig. 3. Comparison of the average percentage of reduction in the overall cost
as a function of the value of ε. Error bars indicate the performance achieved
with the best (respectively worst) copy of the abstaining algorithm.

increases. The results suggest that in this case, the REs globally
managed to filter some of the predictions that would not have
met the precision constrain as the abstaining version over-
performed the fully predicting version on most of the datasets
(an overall increase in the cost would have suggested that the
predictions filtered by the REs met the precision constrain).
On the other hand, when ε is large, the confidence threshold
increases and most of the predictions are not filtered by the
REs anymore. This leads to overall performances which are
globally equal to the performances obtained when predicting
all the time.

In order to further assess the effect that the required
precision threshold ε has on the performance of the proposed
method, we have conducted an in depth analysis on the Hyper-
plane Regression dataset with one drift using different thresh-
olds (ε = {0.02, 0.04, 0.06, 0.08, 0.1, 0.15, 0.2, 0.3}). For each
ε, the improvement (defined in section IV-D) was computed.
We also added the best (respectively worst) improvement for
each learner, which was computed using the abstaining copy of
the learner which achieved the smallest (respectively largest)
overall cost with hindsight. In other words, when computing
the value of abs diff (defined in IV-D), ˆC0−d−1

ε [(h, g) (xi) , yi]

was replaced by C0−d−1
ε

[
(h, g)j (xi) , yi

]
where the jth copy

verifies: ∀k ∈ {1, ..., 10} :

n∑
i=1

C0−d−1
ε

[
(h, g)j (xi) , yi

]
≤

n∑
i=1

C0−d−1
ε [(h, g)k (xi) , yi]

(respectively ≥).

The shape of the curves obtained in Fig. 3, further proves
that the interest for abstaining is correlated to the value of ε.
The results also show that for half of the tested algorithms,
abstaining never led to worse performances (regardless of
the value of ε) whereas for the other half, there is only

a limited range of ε values for which the averaged overall
cost increased (the worst case is 3.78% for ε = 0.1 with
IBLStream). Finally, apart from AMRulesRegressor for which
the variability between the abstaining copies was the largest
(for ε = 0.02, the best abstaining copy reduced the overall cost
by 9.9% whereas the worst copy increased the overall cost by
8%), the variability observed within the abstaining versions of
the other learners remained globally limited.

• Evolution of the improvement over time: We also
studied the evolution of the difference in performances over
time between the base and the abstaining version of an
algorithm. Because of the lack of space, we only show here
the evolution of the results in the case of the RandomRules
algorithm on the 0.9-(X) and Fried Global Reoccurring Abrupt
Drift datasets (respectively upper and lower plot of Fig. 4) with
a small ε.

To obtain these plots, we started by computing the summed
costs of each version of the algorithm on a rolling (but non
overlapping) window of 10 observations. In the case of the
abstaining version, we further averaged the sum. Formally:
sbasek :=

∑k×10
i=(k−1)×10+1 C

0−d−1
ε (hbase (xi) , yi) and ˆsabsk :=

1
10

∑10
j=1 s

abs
k,j , with k = {1, 2, ..., 100}, sabsk,j the summed cost

of the jth copy of the abstaining algorithm on the observations
{(k − 1)× 10 + 1, ..., k × 10}. The values shown on each
plot are sbasek − ˆsabsk . Thus, a positive number indicates that
the cost of the abstaining algorithm is lower than the base
version whereas a negative number indicates that the base over-
performed the abstaining version.

The plots show that there are periods of time where
abstaining clearly improves the performance and periods of
time where it makes no difference.

Each RE has its own strengths and weaknesses and is
designed to estimate a particular aspect of what makes a
prediction reliable. For instance, the similarity-based reliability
estimate will efficiently discard observations leading to a
large prediction error when the recent observations also had
a large prediction error whereas the local sensitivity reliability
estimate will use the estimated “flatness” of the values taken
by target variable on a small area to decide whether to abstain
or not. Thus, periods of over-performance of the abstaining
algorithm are difficult to explain because they are the result
of a combination of factors that led the ensemble of REs
to accurately filter the predictions that would have led to a
prediction error larger than the ε-tube.

These factors can appear under a stationary concept (for
instance, between t250 and t400 on the 0.9-X dataset5) and
will not necessarily appear because the concept has drifted (for
instance, on the Fried G.R.A. dataset, the gradual drift intro-
duced at t501 left the performances of the base and abstaining
version exactly similar up to t650). However, the plots back
our claim that when the concept drifts, allowing the algorithm
to abstain can improve the performances and therefore that it
should be considered as a performance enhancing technique.

5Remember that this dataset has an unique and abrupt drift at time t500
and that the concept is stable before and after.



Fig. 4. Evolution of the improvement in performance over time of the
RandomRules algorithm on the 0.9-(X) and Fried G.R.A. datasets (upper and
lower plot respectively) computed on a rolling (and non-overlapping) window
of 10 observations. Positive values indicate that the abstaining version over-
performed the base version of the algorithm.

VI. REAL LIFE DATASETS WITH CONCEPT DRIFTS

Following up on our introductory real life example pre-
sented in section II-B, we ran a batch of experiments on several
financial datasets. These datasets were chosen because they
provide real life examples of streams subject to concept drifts.

A. Presentation of the real datasets

Each dataset is based on a particular financial asset (a stock,
an index of stocks, a precious metal an exchange rate between
2 currencies) and has 7 attributes. The first 5 attributes are
based on the observation of the opening price, highest price,
lowest price, closing price and volume of transaction for that
asset on a given day. For the last 2 attributes, we have added
the average as well as the variance computed with the closing
prices of the last 10 days.

Our framework assumes that the observations are indepen-
dent realizations of a single hidden concept (when the concept
is stable) or independent realizations of a set of concepts

Fig. 5. Percentage of reduction in the overall cost gained by allowing the
algorithm to abstain. The plot was obtained with a lowε

(when the concept drift). In both cases, the observations are
assumed to be independent from each other. Unfortunately,
this assumption clearly doesn’t hold in the case of time series
where the value of an observation at time t depends on its
value at time t− 1. Therefore, we chose to transform the time
series of the 7 attributes into series of returns which can be
assumed to be independent from each other.

The transformation was done as follows: for a given
time series {pt1 , ..., ptn}, we have computed the return:
rt = pt−pt−1

pt−1
for each time t ∈ {t2, ..., tn}, where

pt is the value of the time series at time t. Thus,
at time t, the learner receives an observation xt ={
rOpent , rHight , rLowt , rCloset , rV olumet , rAveraget , rV ariancet

}
and must predict the target variable yt = rCloset+1 .

B. Results achieved on the real datasets

We give the results achieved on the real life datasets with a
small ε (see Fig. 5) which is in line with the goal of the investor
(the narrower the tube, the larger the expected payout of the
option). All the results indicate that allowing abstention led to
an improvement of the performances and tend to confirm what
was observed on synthetic datasets. This good performance is
explained by the increased difficulty to accurately predict on
extremely noisy datasets subject to a wide range of drifts.

In order to concretely describe what these results mean
for our investor, we calculate the amount of money that he
would have saved by allowing his machine learning algorithm
(IBLStream) to abstain on the stock of Apple. To this end, we
chose to use a cost function which attributes fixed values to
the price and the payout of the created binary tunnel option
as well as the cost of abstaining. In real life, the true price
of such option would be calculated with complicated formulas
which depends on many factors (such as the volatility and price
of the underlying asset, the time until expiration, the selected
boundaries, ...) and which we omit for the sake of simplicity.

Therefore and without loss of generality, assume that the
investor has an initial capital of 10 000C, that the price of the



option is always equal to 1C (the amount of money lost if the
prediction is wrong), that the payout (i.e. the amount of money
received if the prediction is correct) is always 1C and that if
the investor chooses to abstain, he will leave the money at the
bank which will charge him a fixed 0.1C overnight. Thus, the
cost function is then given by:

Cε (ŷ, y) =


1 if |y − ŷ| ≤ ε and g (a) = 1

−1 if |y − ŷ| > ε and g (a) = 1

−0.1 if g (a) = 0

In this case the version of the algorithm which predicts all
the time managed to output 1483 good predictions and 7437
wrong predictions. This results in a final capital of 4046C. On
the other hand, the abstaining version of the algorithm gave
533 wrong predictions, 162 good predictions and abstained on
8225 observations resulting in a final capital of 8806.5C. Thus,
by allowing its algorithm to abstain, the investor managed to
save almost 50% of its initial capital (note that the performance
is better than the -37.4% achieved in the experiment because
the cost of abstention in this illustration is smaller).

VII. CONCLUSION

Learning on a data stream subject to concept drifts is a
challenging task. Drifting concepts can significantly diminish
the performance of a learner over time and undermine the
confidence in the outputted predictions. This is an issue,
especially in the regression setting when there are requirements
on the expected precision level associated with each prediction.

In this paper, we claim that when costs can be associated
with good and bad predictions, allowing a predictor to abstain
must be considered in order to reduce the overall prediction
cost. To this end, we propose a generic method which can be
used with any regressor and which filters the predictions that
would not have met the precision constraint.

We experimented this strategy on 30 datasets including dif-
ferent types of drifts, with 4 state of the art algorithms and with
2 levels of expected precision. We assessed the performance
of our method by comparing the overall prediction cost of the
base version of an algorithm (which predicts all the time) to the
performance of the same algorithm equiped with the proposed
method (which allows it to abstain when the confidence is
not high enough). Globally, the results indicate that when the
need for precision is high, allowing the algorithm to abstain
significantly improves the overall prediction cost whereas
when the need for precision is low, the overall prediction cost
is the same as the one achieved by predicting all the time.

Furthermore, the evolution of the difference in performance
over time between the base version and the abstaining version
of each regressor showed that, concept drifts can be the cause
of an over-performance of the abstaining version and therefore
that abstaining must be considered as an enhancing method to
reduce the overall prediction cost. Indeed, when the required
precision level cannot be achieved, allowing the algorithm to
abstain based on an ensemble of reliability estimators acts as
an automatic way to “disconnect” the algorithm during some
of these adverse periods.

In future works we will investigate whether the perfor-
mances can be further improved by abstaining to update the

learned model with the observations for which the prediction
has been rejected.
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[16] Bosnić, Z., & Kononenko, I. (2010). Automatic selection of reliability
estimates for individual regression predictions. Data and Knowledge
Engineering, 25(1), 27–47.

[17] Ikonomovska, E. (2012). Algorithms for Learning Regression Trees and
Ensembles on Evolving Data Streams, PhD thesis.

[18] Albert Bifet, Geoff Holmes, Richard Kirkby, Bernhard Pfahringer
(2010); MOA: Massive Online Analysis; Journal of Machine Learning
Research 11: 1601-1604

[19] Friedman, J. H. Multivariate Adaptive Regression Splines, The Annals
of Statistics 19, 1–67 (1991).

[20] E. S. Page. Continuous inspection schemes. Biometrika,
41(1/2):100–115, 1954.

[21] Georg Krempl et al, Open Challenges for Data Stream Mining Research
- in SIGKDD Explorations (Special Issue on Big Data), 2014

[22] Devroye, L., Gyorfi, L. & Lugosi, G. (1996). A probabilistic theory of
pattern recognition. Springer.

[23] Khosravi, A., Nahavandi, S., Creighton, D., & Atiya, A. F. (2011).
Comprehensive review of neural network-based prediction intervals
and new advances. IEEE Transactions on Neural Networks, 22(9),
1341–1356.


