N

N

AKT QpBM: i?2 S'2/B+iBQM *Qbi Q7 ."B7i
H;:Q Bi?Kb #v #bi BMBM;
SB2 '2@s pB2  GQ2z2H- oBM+2Mi G2K B 2- *? " Bbi
.2IVMB2+FB

hQ +Bi2 i?Bb p2 " bBQM,

SB2 '2@s pB2 GQ2z2H- 0BM+2Mi G2K B 2- *? 'BbiQT?2J 'b H -J "+B
/IB+iBQM *Qbi Q7 ."B7i > M/HBM; H;Q Bi?Kb #v #bi BMBM;X Al111 AM
JBMBM; UA*.J kyReV- .2+ KyRe- " "+2HQM2- aT BMX ? H@yR9kNye3

> G A/, ? H@AYR9KkNye3
?2i1iTb,ff? HXbQ #QMM2@ mMMBp2 bBi2X7 f? HQy!
am#KBii2z/ QM e C M kyRd

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X


https://hal.sorbonne-universite.fr/hal-01429068
https://hal.archives-ouvertes.fr

Improving the Prediction Cost of Drift Handling
Algorithms by Abstaining

Pierre-Xavier Loeffel, Vincent Lemairé, Christophe Marsalaand Marcin Detyniecki

Sorbonne Universis, UPMC Univ Paris 06, CNRS, LIP6 UMR 7606, 4 place Jussieu 75005 Paris.
YPolish Academy of Sciences, IBS PAN, Warsaw, Poland.
ZQrange Labs, 2 avenue Pierre Marzin, 22300 Lannion, France.
Emails: f pierre-xavier.loeffel, christophe.marsala, marcin.detynig@Kip6.fr, vincent.lemaire@orange.com

Abstract—The problem considered in this paper is regression  protocol. The results on the synthetic and real life datasets are
with a constraint on the precision of each prediction in the given in sections V and VI respectively. Finally section VII
framework of data streams subject to concept drifts (when the  concludes.
hidden distribution which generates the observations can change
over time). Concept drifts can diminish the reliability of the
predictions over time and it might not be possible to output a
prediction which satis es the constraints on the precision. In this In this section, we lay down the framework, introduce
case, we claim that if the costs associated with a good and with our problem with a real life example and propose a generic
a bad prediction are known beforehand, the overall prediction method aimed at im . h f H :
cost can be improved by allowing the regressor to abstain. To - proving the performance o any regression
this end, we pPopose aygenericgmethod? compatible with any algorlthm able tollearn on a stream of data subject to concept
regressor, which uses an ensemble of reliability estimators to drifts. We also discuss the choices made for the parameters
estimate whether the constraints on the precision of a given and how we constrain the suitable abstention costs.
prediction can be met or not. In the later case, the regressor
is allowed to abstain. Empirical results on 30 datasets including A. Framework
different types of drifts back our claim.

II. FRAMEWORK AND PROPOSED METHOD

In the supervised regression setting, the goal is to learn a
I. INTRODUCTION predictorh : X 1'Y , (with X the i_nput space and 2 R thg _
. _ _ . output space) capable of generating accurate output predictions
The interest for machine learning algorithms able to learry = h(x) 2 R for any unlabeled observation2 X . Each
on a stream of data has grown very rapidly during the last fevobservationz 2 Z (with Z = X Y ) is generated by a
years. Human-machine interactions, autonomous driving ogtream which starts emitting observatidiss, ; z,; :::g at time
prediction of stock prices constitute examples of applications,. Each observatiorz; is generated according to a hidden
domain where an open-ended stream of data must be process@dtribution D, over Z. The distributionD; (also referred as
by a learning algorithm. However, data streams are ofteoncep} can change over time and we will say that the concept
subject to concept drifts, when the hidden distribution whichD, that the predictor is trying to learn, has drifted at tirié
generates the data changes over time. As a consequence, the ; 6 D,. When the concept is stable, the observations are
reliability of the predictions given by algorithms learning on assumed to be i.i.d. realizations of a single concept whereas

such streams can be signicantly deteriorated. This is amwhen the concept is drifting they are only assumed independent
issue, especially when there is a constraint on the level ofrom each other.

precision expected for each prediction; a scenario which can

appear in cost-sensitive applications of machine learning such The regressoh is further allowed to abstain from predic-
as medicine or nancial forecasting. tion, a framework commonly known aselective regression

] . ) . [5]. In this case, the regresshris associated with aelection
In this paper, we show in the regression setting that theunctiong: A!f 0;1g (where the input spac& can change

overall cost achieved by a predictor learning on a data streafiom one selection function to the other) whose meaning is as
subject to concept drifts can be signicantly improved by follows:

allowing it to abstain. Sometimes, it is not possible to output
a prediction with the desired level of precision and instead of ) it -0
outputting a wrong prediction; it might be worth allowing the (h; ) (x¢) = ! ) g (&)=

predictor to abstain. Therefore, we propose a generic method, h(x;) ifg(a)=1

compatible with any regressor, which uses an ensemble of

reliability estimators to estimate whether the constraints on where; denotes an abstention on the unlabeled observation
the precision of a given prediction can be met or not. In thex; and wherea; 2 A..

later the regr r is allowed t tain. . . .
ater case, the regressor is allowed to absta The problem considered here is to produce a prediator

The paper is organized as follows: Section Il describes théor a predictor associated with a selection functidng))
framework and the proposed method. Section Il goes througthat minimizes the expected gost from prediction on the
the related works and section IV describes the experimentalbservations received so fa;% i”:l C(h(xi);yi) (where



Algorithm 1 Generic Method

\rt fg Inputs: unlabeled observationxx;, predictor learned at

previous step: h; 1, ensemble of reliability estimator:

“ REL;=;RE™ , ensemble of condence thresholds:

qt; ;g™ , ensemble of inputs specic to each reliability
Y estimator: Q1;:::;Q™ , selection functiong
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\J 02:r\ Compute REs RE!;::;RE™; Q%Y ::;Q™
oo 3 03:a;  Apply Thresholding ry;qg*;::; g
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04:if g(a;) =0 then
Fig. 1. Target range (left) and payoff function (right) of a Binary Option 05 ; (h; g) (Xt) - Abstain
Tunnel 06: else
07: v (h;0)(x¢) . Predict
08:end if
C:(Y[;)Y! [O;1]is acostfunction) under the constraint 09:h;  Update(h; 1;Xt) . Update the learned model

of a required precision threshold Formally, we de ne the
tube cost function presented in [6] as:

C. Proposed method

Eo if jy 9% andg(a) =1 The underlying idea of the proposed method is that by
cOdigy)= 1 if jy ¢j> andg (a)=1 allowing a predictor to abstain, it is possible to achieve better
' : . - performances at the cost of a smaller coverage (the proportion
d>0 ifg(a=0 of observations for which a non-empty prediction is given).
where is a threshold determined by the problem at hand and Nerefore, we propose a generic method which assess whether
d is the cost associated with an abstention. the constraint on the required precision can be met. When this
is not the case, the predictor is allowed to abstain in order to
Note: The problem considered here shares some simiavoid a costly error.
larities with the task of givingpredictions intervald23]. The ) S ) )
difference is that, in the case of a prediction interval, the Note: For the rest of this paper, “reliability estimate” is
goal is to estimate the interval into which the observationUsed to refer to an estimate of the prediction error.

i 1 1 ma ot e o ronl . Method The full metod i detaed n Algorim 1.and s
y P ' escribed here: at timg upon reception ok;, the predictor

constrained by the requirements of the problem at hand. In bo " learned at timet 1 outputs an estimated prediction

e e s e " B e estimate s hen set aside. A set o reiablty
y 9 stimatorsRE'; i = 14::;; m then associates reliability esti-

redicted interval.
P matesr} = r’};:::;rfn 2 (R*)™ to yt where small values

B. Real life example of r"t indicate that the reliability estimator is con dent that the

_ ) predictiony} is close to the target valug, and large values
In order to illustrate the problem, we describe the casgy A

: 2T X L . t indicate a lack of con dence.
of an investor which is betting on a “Binary Tunnel Option”.
A Binary Tunnel Option is a nancial product that rewards For each reliability estimator, a con dence thresholdis
the buyer of the product if he manages to accurately forecasfet and ifr’\t o, the prediction is deemed as reliable ac-
whether the price of the underlying asset will be in a givencording to this reliability estimator. The nal decision of each
range at the maturity date of the option. RE a = al;:;a" s then aggregated through a selection

For instance, assume that the current price of stock S ifunctiong and the predictio; is used if the selection function

129€ (see the left hand side of Fig. 1). Based on his machiné‘szeised th; predigtion_ asfreli?]ble.bOther\Aysés discarded
learning algorithm, an investor predicts that the price of stock” the predictor abstains for this observation.

S will be § = 132:5€ in 20 days. He can then call a broker  |yqeeqd concept drifts can diminish the reliability of the
and ask him to create a Binary Tunnel Option for which thepegictions over time and when the reliability of a given
thresholds are for instange = 130€ andy+ =135€  eqiction is too small, it might not be possible to output a
(thus, in this case, = 2:5). If the broker manages to nd nrediction which satis es the constraints on precision required
another investor willing to sell this option, the rst investor by the problem at hand. In such cases, abstaining should be

can buy the op_tion for a pricp (1_€ for in:_;tance) and Wi_" considered as a way to improve the overall expected cost.
get a prot (for instance 1€) only if the price of stock S is

within the 13GE-135€ range at the closing price in 20 days. = One major advantage of this method is that the REs do not
Otherwise, if the price of stock S at the maturity date is outsidelepend on a particular predictor and thus can be used with
this range, the investor loses his initial investmen€Y1The any base algorithm, as long as it is able to deal with concept
payoff of the option in this particular example is shown on thedrift on a stream. There are, however, some constraints on
right hand side of Fig. 1. the REs, as they must be able to operate on-line, use limited



memory, have a low processing time and be able to cope witiwhich is the “worst” abstention cost that we will consider.
non-stationary distribution. Indeed, regardless of the algorithm considered] ¥ 0;% ,
there exist some cases where abstaining can improve the

Another advantage of our approach is it relies on ag)en‘ormances. Conversely,df> % there are some algorithms

en_ser.n.ble Of. REs: Previous empirical evaluations of existin or which abstaining will never improve the performances. For
reliability estimates showed that the best RE depends on tr}%is reason. we restrict our framework do2 0-% and we
’ 12

regressor and on the dataset [8][9][15]. These results are of. PR
particular interest in the framework of concept drift, whereWIII choose to never abstain @ > 3.

the characteristics of the dataset can evolve over time. To Proof: The use of the tube cost function transforms
tackle this issue, several studies have been carried showing regression problem into a binary classication problem
the interest of ensemble approaches [8][9] for the estimation ofvhere the goal at each observation is to pregic2 A =

the reliability of individual prediction. We proposed heretousely  :y+ .

a simple majority vote but a different aggregating technique . o )

could have been used [16]. Rather than the choice of a speci ¢ N the binary classi cation setting, regardiess of the prob-
ensemble method, the emphasis here is put on being able &M at hand, the Bayes rule equipped with the true posterior
reject prediction estimates with low reliability regardless of theProbabilities, will always minimize the probability of mis-

base regressor used and of the characteristics of the data§&SSi cation [22]. For instance, on a given observatignif
considered. the true posterior probabilities arRe (Y = A=X = x) =0:6

and P Y = A=X = x = 0:4 then, the Bayes rule will
Building up on these previous ndings, the contribution always predict the class associated with the highest posterior
of the proposed method is to show the necessity to allovyrobability. In this particular example, the expected cost from
abstention when learning on a data stream subject to conceptediction is0:6 0+0:4 1 =0:4 and abstaining should be
drifts. considered only il 0:4 (the expected cost from abstaining
Note: At this point, it should be emphasized that the IS ways known and is equal t). More generally, the worst
generic method previously proposed has no impact on th§XPected prediction cost is achievedPf(Y = A=X = x) =
update of the hypothesis. Whether the selection functiom Y = A=X =X L and is 0.5. Thus, regardless of the dataset
choses to abstain or predict, the hypothdsitearned after ~considered, id > 5 then the Bayes rule should never abstain.
update with the latest observation, is the same as the one pgecause any algorithm will have a worse misclassi cation
obtained without the selection function. rate than the Bayes rule with the true posterior rule, the cases
] ) ] where abstaining improves the expected prediction cost of the
D. Setting the values of the parameters associated with thgayes rule will also improve the expected prediction cost of
proposed method any other algorithm. For this reason, we restrict our framework

Many of the REs used require to set some parameters. 9 d 2 0;3 and more particularly to the “worst” case= 3.
the framework of concept drift, setting an appropriate value
for the parameter of an algorithm is a dif cult task as a givenF. Choosing a selection function
parameter would only be optimal at a given time [21], for a

given concept, on a given dataset and for a given algorithm, For the choice of selection functiop we used a simple

Consequently, we chose to use non optimized parametefgajority vote which ch_oo_ses to u_se_?he ini_tial predictipn
' Inly if an absolute majority of reliability estimators marked

which are set to default values regardless of the datasets e prediction as reliable. Here again. the performances can
the base learner and the task of optimally setting paramete P . e gain, the p .
e enhanced by a wiser choice of selection function.

is left for future work.

We also applied the same principle for the numerical IIl. RELATED WORK
con dence threshold of each RE. As previously stated, each
RE is an estimate of the prediction error and thus, because We start this section by reviewing state of the art regression
they evaluate the same value, the same thresholds used algorithms, able to adapt to concepts change, process obser-
for all the linear RESY y) whereasy? was used for the REs Vations upon reception and use limited computer memory. We
with a quadratic form(y y)2_ Finally, a value also had to then_reweyv regression alg_onthms_ which can abstain when a
be given to the con dence threshotpwhich also depends on Prediction is deemed unreliable. Finally, we discuss why these
the problem at hand. Because each RE is an estimate of t@dorithms are not suitable to tackle our problem.
prediction error, we chose to set g for all the experiments.

Indeed, when is small, the problem considered requiresﬁr'iﬂRegreSS'on algorithms for data stream subject to concept

a lot of precision and thus the requirement for being con dent

on a particular observation should be tougher. On the other The overwhelming majority of the algorithms able to
hand, if gets larger, the need for precision decreases and thusandle drifting concepts have been designed to predict in the
the requirements on the con dence estimators should also beassi cation setting. However, a few algorithms have been
looser. devised for the regression setting.

Shaker and Hullermeier [11] proposéBLStreams, an
instance-based algorithm able to learn under the classi cation

Ultimately, the value ofl depends on the problem at hand, and regression settings. The algorithm is able to autonomously
however, for the remainder of this paper, we will skt % optimize the composition and the size of the case base. The

E. De ning which abstention costs are suitable



latest observation is rst added to the case base and then, the this framework, it is possible to give guarantees on the accu-
algorithm checks whether some of the past observations shoutdcy of an algorithm under the assumption that the observations
be removed, either because they have become redundant, eitlzee i.i.d. realizations of a static concdpt Unfortunately, this
because they are outliers. The recent observations, however, aesumption doesn't hold in the framework of concept drifts.
excluded from removal.

lkonomovska et al. [1] developgdMT-DD , an incremen-  C. Shortfalls of the related works

tal algorithm for learning regression trees from data streams. o the one hand. the existing regressors suited to learn
The algorithm is equipped with mechanisms for adaptation,, 5 gata stream subject to concept drift never abstain from
and drift detection which aIIow_the local updatg of the tree 'fprediction in their current form. On the other hand, the state
necessary. In order to constrain the consumption of MemMonyt the art algorithms for regression with a reject option
a method for disabling bad split points is included. have not been devised to operate under a stream of data
In [2], Aimeida et al. devisedAMRules, a rule learning subject to concept drifts. Therefore, we propose to improve the

algorithm for regression problems on data streams where ea@§rformances of drift handling algorithms by allowing them to

rule is created as a linear combination of attribute values@Pstain.

Each rule uses the Page-Hinkley test [20] to detect changes

and model adaptation happens by pruning the rule set. The IV. EXPERIMENTAL PROTOCOL
algorithm also allows to differentiating the importance of the

training observation by the use of weights. In this section, we describe the reliability estimators used,

characterize the types of concept drifts reproduced in the
Duarte and Gama [3] propos&hndom AMRules, an on-  synthetics datasets, describe the experimental protocol as well

line ensemble method that combines a set of rules createak the success metrics.

by the AMRules algorithm. A mechanism prevents the base

models from being correlated by randomly choosing the set of Description of the On-line Reliability Estimators

attributes considered for each base rule. The nal prediction

of the model is a simple linear combination of the predictions We chose to implement 7 of the reliability estimators

produced by the base models where the weight of each modéRES) presented in the work of Rodrigues et al. [10] as

can be set either uniformly, either according to the performancthey are well suited for data streams. Here, rather than the

of the base model. particular reliability estimates used, the emphasis is on creating

, ) a diversi ed set of REs, suited to operate on a data stream

, Note: These 4 algorithms are used as a baseline latef hiect to concept drifts. A brief description of the reliability

in the experimental section. estimators is given below the interested reader is referred to

the original paper for further details.

B. Regression with a reject option Similarity-based reliability estimate: The underlying

The issue of selective prediction has been abundantljdea of this estimate is to use temporal similarity: Given
addressed in the classi cation setting, however, similarly tothe ordered arrival of observations, it can be argued that
the algorithms developed for data streams, only a few modelthe latest observatior; should be more similar to the “re-
were devised for the regression setting. cent” observationgx; 1;Xt 2,5 Xt kg than the older ones

] ] fXt k 1;Xt k 2;::0. Thus, if the mean squared error has

El-Yaniv and Wiener [5] developed a strategy for learn-peen low on a sliding window of recent observations, the RE

ing selective regressors which are guaranteed to achievg con dent that the prediction error at tintewill also be low.
pointwise optimality (when the regressor is able to achieve=ormally, the RE is de ned as follows:

results which are arbitrarily close the optimal regressor in p )

hindsight, on the set of observations for which a prediction Ryge = M, whereB is the set of thgBj = k

is given) under the assumption that the observations are i.i.ghost recent obsejrvgtions_

realizations of a static concept. o o ) ]
Local Sensitivity: The principle of this RE is to perturb

Kegl [6] devised MedBoost, a boosting algorithm for the |label associated with the latest observation and assess
regression that uses the weighted median of base regress@gsswhich extent the prediction of the algorithm learned with
as nal regressor. The special case where the base regressefg perturbed observation is modi ed. If there is little differ-
as well as the nal decision abstain is brie y considered.  ence in the prediction, the RE is con dent that the initial
prediction is good. Formally: at timé upon reception of
an unlabeled observatiox, the algorithm outputs an initial

ediction hy 1 (X¢) = 4. Two articial observations are

en created by modifying the estimated label by a value
1> 0 f(x;Yo+ 1):(Xt;%0  1)g. Two copiesh{ ; and
h? ; of the algorithmh, ; are then created. The rst copy is
trained with the rst arti cial observation whereas the second
uses the second one. Then each copy computes a prediction
9, = ht ;(xx) and¢ |, = h? ;(x¢) for the unlabeled

The case for abstention in the regression setting alsobservationx; initially received. This process is repeat&d
appears within the framework of conformal prediction [7][14]. times with different values of , resulting in a set of2k

In [4], a special type of on-line linear regression (Know
What It Knows Linear Regression) is introduced by Strehl
and Littman. The authors devised 2 uncertainty measures f
the least-squares estimate and allow the algorithm to abstal
from prediction when the con dence in this estimate is not
high enough. Unfortunately, despite its on-line learning ability,
the algorithm isn't suited to deal with drifting concepts as it
assumes that the concept doesn't change over time.



TABLE I. PARAMETERS USED FOR THE RELIABILITY ESTIMATORS We will say that arabrupt drift occurred if:tsDtgrt teDn% —
l [ k] l 1 (where Do and Dg are 2 consecutive stable concepts).
F;MSE 150 OO Conversely, we will say that ayradual drift occurred if:
Roce |10 187 = N (@00 tO%,  to9 > 1. In other words, a gradual drift is a drift
Reac 10 - that last more than one observation.

We will say that docal drift occurred if the distributioid
predictionsA = f9 ;¢ ;59 .;¥ g The 2 REs derived changes only over a constrained regiorZoand that aglobal

from these predictions are: drift occurred ifD changed on the whole regiah.
L0 ) 2 N
Risa = —*—5— andR{s, = —5¢ Yo C. Experimental protocol
Dual Perturb and Combine: Conversely to Local Sen- We used the Java platform MOA [18] which provides

sitivity Analysis, the idea is to perturb the attribute values ofan environment for running experiments in the framework of
the latest observation and assess to which extent the predlCtl%ta streams Subject to Concept drifts. We used 4 regressors
of the algorithm changes. Formally: the algorithm outputs andescribed in section 11I-A) which were already implemented
initial predictionh; 1 (Xt) = ¥o. A set ofk arti cial unlabeled in the platform (with the exception of IBLStream which was

observations is then createl: = 1;:::;k @ X; = X¢+ j With  developed as an addn The con dence estimators were
i the vector of modi ers j , one for each attribute dimension djrectly implemented in MOA

jandwith 3 N 0; J-z : A predictiony, is then generated
for each arti cial observation by computing; 1 x} = ;.
The 2 REs derived from these predictions are:

Similarly to the parameters of the reliability estimates, we
chose to use the default values (set in MOA) of the parameters
of each regressor, regardless of the dataset. The underlying

P k 2 . .

Ripe = # where y is the average of all idea remains the same: as we are not allowed to make any
the perturbed predictiongi; i = 1;::;k and the original Kind of assumption regarding the type of drift encountered,
predictiony. there would be little point in optimizing a set of parameters

P, that would only be relevant at a given time, on a particular

R3pc = M dataset and for a particular concept.

On-line Bagging Sensitivity: Here, the idea is to com- In the case of (the value associated with the tube cost

pare the prediction of the base model trained with all thefunction), it was previously stated thatis a threshold set
observations to the predictions &fmultiple versions of the before the algorithm is ran and which depends on the problem
base model trained with different subsets of the observationat hand. Therefore, in order to simulate different requirements

seen so far. on the precision level, 2 thresholds were tested on the synthetic
P . datasets:
Ri = # wherey is the average of all the
predictionsy}; i = 1;:::;k given by thek models andjy is The rst threshold was assumed to be “low” (i.e. a good
the prediction obtained with the base model. prediction is hard to achieve as thetube is small).
P
R3xc = M- The second threshold was assumed to be “high” (i.e. it

] . . is easier to output a prediction which is within the tube
Values of k and : As explained in section II-D, we chose considered).

to use a xed set of parameters, regardless of the base learner ) S
or the dataset. The chosen values are roughly in line with the The 2 thresholds for were determined with hindsight by

values used in the paper of Rodrigues et al. Table | summarizé®mputing the variance of the target variable on the whole
the choices made for each parameter. dataset and using a different multiple of this number for each

threshold.

B. Characterizing concept drifts

For the remainder of this paper, we will use the recent driftsD' Success Metrics

characterization of Webb et al. [13] that we brie y summarize  In order to assess the bene ts from abstention, we have
thereafter. computed the percentage of improvement in the overall cost
. . . , between each regressor and its abstaining version. Formally,
We start by de ning thenagnitudent a drift between times for a given dataset witm observations, we started by com-

t 1andt as:Magnitude = H (D; 1;D¢) whereH (:;:) 2 . .
el ; ; puting the absolute difference between the 2 overall costs
[0;1] is the Hellinger distance [12] betwedd; ; and D;. achieved: abs dife

H =0 indicates that the 2 distributions are identical whereas ,
H =1 is achieved whem; ; assigns probability O to every x 0d 1 _ o™ 1. _ !
set to whichD; assigns a positive probability and vice versa. C (base (xi);yi) € [(h;g) (xi);yi]

i=1
D . .
Let z2° be the rst observation received aref® be
tstart end

the last observation received of t@h stable concept in the 1The code for their add-on can be recovered from this link: https:/Avww.uni-

. . .Do Do marburg.de/fb12/kebi/research/software/iblstreams
stream (a concefidq is deemed .aStablelf teng Ustar 2). 2The code used as well as the results of the
LetfD a;Dg; :::g be the succession of stable concepts encoungyperiments ~ are  available ~ at  the  following link:

tered since the stream started to emit observations. at https://www.dropbox.com/s/wip3lyk5hs2u5k7/Supplementary%20Material. zip?dl=0



wherehyp,se is the base version (without a selection func-the joint density of the features at tinte This was done
tion) of the algorithm that predicts all the tim; g) is the ab- by generating a random multivariate normal distribution as
staining version of the algorghm describeg in section II-G andhe joint law of (X;Y ) before the drift and deducing the
co™ 1 (o) (xi):yil= < 2¢O 9 (hg) (xi);Vi laws® of X and (Y=X). We then randomly generated another
. ’ S A ‘multivariate normal distribution for the law o after the drift
is used to denote the average cost achieved by the 10 coplg]sd the Helli dist ted bet the | f
of the abstaining regressor (this point is explained thereafterinb fe € '(;'g?tr |shan<c:je_fwa_?h<;ompu ed be weer € laws %
on the particular observatiofx;; y; ). efore and after the drift. This process was also repeate
10 000 times and the 10 pairs which had the closest value to
Recall that both abstaining and base versions of the althe desired magnitudes were kept. We then obtained the joint
gorithm are updated in the same way and will thus result irdensity of (X;Y ) after the drift by multiplying the original
the same hypothests learned, regardless of the output of the conditional densityy =X with the new joint density oX. The
selection functiong. Thus, the 10 copies of the abstaining observations after the drift were then generated with a simple
regressor will have learned exactly the same hypothedist  rejection sampling algorithm.
might output different predictions from each other. This is the Drifts of controlled tvpe frequency and area of
case because there is an element of randomness associated V\e/ziHéct ype, q y

some of the reliability estimators which we chose to overcome. . o~ In comparison to the 2 batches of datasets described
by averaging the results of the 10 copies previously, these 3 datasets (based on the Friedman's function

[19]) are useful to assess the effect on the performances of
The percentage of improvement from the fully predicting different types of drifts (gradual, abrupt, local and global) and
version to the abstaining version was then computed as:  of different drift frequencies (several drifts appear on the same

abs diff 100 dataset).
" ?:1 cod?1 (Nbase (Xi) ; Vi) In this case, there are .10_continuc_)us at}ributes a|_’1d t_heir
values are independently distributed with uniform distribution
Thus, on each dataset, a negative value (e.g. -10.3) indicat®8 [0; 1]. The rst 5 attributes are used to compute the target
that the algorithm that was allowed to abstain managed tyalue whereas the last 5 are useless. The basic targ%t value is
achieve an overall cost which is lower (in this case 10.3%computed as followsy = 10sin ( X 1X2) +20(x3 0:5)" +

improvement

lower) than the base algorithm. Conversely, a positive numbek0x4+5xs+  with N (0; 1) a random number. 3 datasets
indicates that the base algorithm managed to over-perform thef 1000 observations were implemented, following the work
abstaining version. of Ikonomovska [17]:

Note: Because we are comparing the difference of Local expending abrupt drift: In this dataset, 3 local
performance of one base algorithm to his abstaining versiordrifts are introduced at timedys;; tsor and tzsy. From
we are guaranteed that this difference can only be attributeti to toso, the goal is to learn the initial Friedman's func-
to the decision to abstain (or not) and not by the underlyingion. A local drift is then introduced at timéys; such as
ability of a particular algorithm to learn on a given dataset. 8Xx 2 R; = fxp < 0:3" x3 < 0:3”" x4 > 0:7" x5 < 0:3g,

Yr, = 10x1Xp + 20(x3 0:5) + 10x4 +5x5+ . If x 2

V. SYNTHETIC DATASETS Ri, the target value is unchanged. At tinig,, a second
. ) local drift is introduced onR,, such as8x 2 R, =
We start by presenting each synthetic dataset and explaify, > 0:71 x5 > 0.7 x, < 0:3g, Yr, = 10C0S(X1X2) +

why it was used. We then present and discuss the resultgy (xs 05)+ e+ +5x2+ andR; is further expended
achieved. Synthetic datasets are useful to experiment in &g removing the last inequality from its de nitiofxs < 0:3).

environment where the type of drift can be controlled. Finally, at timet;s;, a third local drift is introduced by further
] . expendingR; andR». In both cases, the last inequalities from
A. Presentation of the synthetic datasets their modi ed de nitions are removedx > 0:7 andx, < 0:3

Drifts of controlled magnitude: 2 batches of 10 datasets 'eSPectively).
have been created to assess the effects of drifts with gradually Global reoccurring abrupt drift: In this dataset, the drifts

increasing magnitudes and to “force” local drifts on the fea-appear over the whole input spae There are 2 drifts at
ture’s joint density (commonly known amvariate shiff. For  times,tso; andtss;. The new target function after the rst drift
each dataset, the dimension of the feature space was set tq32ygl = 10sin ( X 4X5) + 20(X2  0:5)% + 10x; + 5x3 +

and the number of observations generated to 1000. A uniqughereas it reverts to the initial target function after the second
drift was introduced at timeso; . drift.

For the rst batch, we generated 10 datasets for which  Gjohal and slow gradual drift: Here, two gradual drifts
H (Dtog ; Dtsy ) = £0:12,0:2; 1225 0:99g respectively. This was  are introduced at timesso; and t-s;. In order to simulate
achieved by randomly generating 10 000 pairs of multivariatey gradual drift, the observations are generated in parallel
normal distributions, computing the Hellinger distance foraccording to 2 different concepts and the sigmoid function

each pair and retaining the 10 pairs which had the closes§ ysed for the probability of selecting one concept over
value to the desired magnitudes. The rst multivariate normalpne other. At timetsor, @ new target function is introduced

distribution was then used to generate the rst 500 observations
whereas the second one was used for the rest of the dataset.3in this caseX is also a multivariate normal distribution.

“Note that in this case, the joint densifX;Y ) is not necessarily a
For the second batch, we generated 10 datasets such @giivariate normal distribution. Consequently, there is more diversity in the

H (fio, (X);iTtg, (X)) = £0:1;0:2;:::;0:98g, with f (X) set of joint densities considered than in the rst batch.




TABLE II. V ALUES USED FOR THE -TUBE COST AND THE
CONFIDENCE THRESHOLDS ON EACH DATASETS

[ [[ Low High Size  # Drifts |
0.1-(X); ... ; 0.99-(X,Y) 0.1 0.75 1000 1
Hyperplane Regression 0.02 0.08 1000 1
Fried Local Expending Abrupt 1 3 1000 3
Fried Global Slow Gradual 1 3 1000 2
Fried Global Reoccurring Abrupt 1 3 1000 2
S&P 500 0.0005 N/A 6692 N/A
CAC 40 0.0004 N/A 6637 N/A
Apple 0.005 N/A 8927 N/A
EUR/USD 0.00005 N/A 2295 N/A
Gold 0.001 N/A 1565 N/A
Hyperplane Regression No Drift 0.02 0.08 1000 0

Ygir, = 10sin (X 4Xs5) + 20 (X2 0:5)2 + 10X, + 5x3 +

and the examples are slowly shifting from the initial target
function to ygr, such as, at timetsso, the probability of
selecting the new target function is 1. The same principle
apply after the second drift where the target functygn, =
10sin ( X 2X5) +20(Xs 0:55)% + 10x3 +5x; + gradually
replacesyg, .

Comparison between stable and drifting conceptHere
the goal was to assess which performances could be achieved
when the concept remains stable and to compare the difference
in performance when a drift is introduced on this same dataset.

To this end, 2 datasets based on the regression version of
the hyperplane generator (Shaker and Hullermeier [11]) have
been created. This generator randomly creatksl@nensional
hyperplane in a unit hyper-cube. The goal here is to predict the
distance of each observation received to the hyperplane. In our
experiment, both datasets have a feature space of dimension 8
and holds 1000 observations.

The rst dataset has been generated according to a single
stable concept whereas the second one is strictly identical (i.e.
it has exactly the same observations), up to tigye where a
single abrupt drift is introduced. The drift was introduced by
generating another random hyperplane in the hypercube.  Fig. 2. Percentage of reduction in the overall cost gained by allowing the

algorithm to abstain. The upper plot is for a lowwhereas the lower plot is

. . for a high .
B. Results achieved on the synthetic datasets orang

The improvements (as de ned in section 1V-D) achieved
on each dataset and by each learner are presented in Fig.d.4 for which the performance was signi cantly improved in
As previously stated, a negative value indicates that globalljhe case of a small and only 2 learners out of 4 had better
the performances of the learners were improved by abstaininggsults when was high.
whereas a positive value indicates that the performances of the

e versions were bettr The ylues used or o cost_ghe improvement n the overal performance. can change
and the’number of drifts included i’n them are given in table\"”de'y from one Iegrner to the other (whgn the dataset and
M are xed), espeuall'y for a small. For instance, on .the
hyperplane dataset with one drift, for a smalthe abstaining

In uence of the drift's type on the performances: version of IBLStream managed to improve the performances
Despite the large variety of drifts (global, local, abrupt, grad-by 43% whereas the performances were only improved by 3%
ual, different magnitudes ...) reproduced, the results of théor AMRulesRegressor. Overall, despite their drift handling
experiments globally indicate that the proposed method is ableapabilities, the proposed method managed to improve the
to signi cantly improve the performances of the underlying performances of the 4 algorithms by allowing them to abstain.
algorithm (up to -43% on the hyperplane dataset) regardleskhe algorithm which in general, bene ted the most from
of the type of the drift. This further indicates that abstainingabstention was IBLStream whereas the one that bene ted the
should be considered when dealing with data streams subjelgtast was RandomRules.
to concept drifts.

Analysis of the results against the learner used:

Analysis of the results against the value of used:
Mixed results were achieved when there was no drift at allntuitively, when is small, it is harder for the learner to predict
(on the hyperplane dataset with no drift), with 3 learners outvithin the  tube and thus the number of wrong predictions



a limited range of values for which the averaged overall
cost increased (the worst case is 3.78% for 0:1 with
IBLStream). Finally, apart from AMRulesRegressor for which
the variability between the abstaining copies was the largest
(for =0:02, the best abstaining copy reduced the overall cost
by 9.9% whereas the worst copy increased the overall cost by
8%), the variability observed within the abstaining versions of
the other learners remained globally limited.

Evolution of the improvement over time: We also
studied the evolution of the difference in performances over
time between the base and the abstaining version of an
algorithm. Because of the lack of space, we only show here
the evolution of the results in the case of the RandomRules
algorithm on the 0.9-(X) and Fried Global Reoccurring Abrupt
Drift datasets (respectively upper and lower plot of Fig. 4) with
a small .

To obtain these plots, we started by computing the summed
costs of each version of the algorithm on a rolling (but non
overlapping) window of 10 observations. In the case of the

i ] o abstainir‘,g version, we further averaged the sum. Formally:
Fig. 3. Comparison of the average percentage of reduction in the overall cost .o ._ K 10

0d1 . —
as a function of the value of. Error bars indicate the performance achieved Sk p .- i=(k 1) 10+1 C (Pbase (xi) ;yi) and Sk =
with the best (respectively worst) copy of the abstaining algorithm. % _101 Sﬁbs with k = f1;2;:::;100g sﬁ'?s the summed cost
J = ’J ) ) LR ] L ’J
of thej " copy of the abstaining algorithm on the observations

increases. The results suggest that in this case, the REs globaw( S b 10+lg};"’k 10g. Th'e. values shpwp on each
managed to lter some of the predictions that would not havePlot ares®*¢ s>, Thus, apositive number indicates that
met the precision constrain as the abstaining version ovefl€ cost of the abstaining algorithm is lower than the base
performed the fully predicting version on most of the datasety€rsion whereas aegativenumber indicates that the base over-
(an overall increase in the cost would have suggested that tiR€rformed the abstaining version.

predictions lItered by the REs met the precision constrain). ) )
On the other hand, whenis large, the con dence threshold”  The plots show that there are periods of time where
increases and most of the predictions are not Itered by thétPstaining clearly improves the performance and periods of
REs anymore. This leads to overall performances which arime where it makes no difference.

globally equal to the performances obtained when predicting

all the time. Each RE has its own strengths and weaknesses and is

designed to estimate a particular aspect of what makes a
In order to further assess the effect that the requiregrediction reliable. For instance, the similarity-based reliability
precision threshold has on the performance of the proposedestimate will ef ciently discard observations leading to a
method, we have conducted an in depth analysis on the Hypelarge prediction error when the recent observations also had
plane Regression dataset with one drift using different thresha large prediction error whereas the local sensitivity reliability
olds ( = f0:02 0:04; 0:06; 0:08; 0:1; 0:15; 0:2; 0:3g). For each  estimate will use the estimated “ atness” of the values taken
, the improvement (de ned in section IV-D) was computed. by target variable on a small area to decide whether to abstain
We also added the best (respectively worst) improvement foor not. Thus, periods of over-performance of the abstaining
each learner, which was computed using the abstaining copy a@figorithm are dif cult to explain because they are the result
the learner which achieved the smallest (respectively largestf a combination of factors that led the ensemble of REs
overall cost with hindsight. In other words, when computingto accurately Iter the predictions that would have led to a

the value ofabs diff (de ned in IV-D), COi"d 1[(h;g)(xi);y;]  Prediction error larger than thetube.

was replaced b® ¢ * (h;g); (xi);yi where thg™ copy These factors can appear under a stationary concept (for
veries: 8k 2f1;:::;109 : instance, betweemysy and tsgo on the 0.9-X datasgt and
0 h iy yvill not necessarily appear because the concept has dr_iftgd (for
c® 91 (hig) (%):y: c® 9 1[th;g), (xi):Vi] instance, on the Fried G.R.A. dataset, the gradual drift intro-
et ' Yk ' duced attso; left the performances of the base and abstaining
version exactly similar up tagso). However, the plots back
(respectively ). our claim that when the concept drifts, allowing the algorithm
velo abstain can improve the performances and therefore that it
f Should be considered as a performance enhancing technique.

i=1 i=1

The shape of the curves obtained in Fig. 3, further pro
that the interest for abstaining is correlated to the value. o
The results also show that for half of the tested algorithms,
abstaining never led to worse performances (regardless Ofsgemember that this dataset has an unique and abrupt drift atttime
the value of ) whereas for the other half, there is only and that the concept is stable before and after.




Fig. 5. Percentage of reduction in the overall cost gained by allowing the
algorithm to abstain. The plot was obtained with a low

(when the concept drift). In both cases, the observations are
assumed to be independent from each other. Unfortunately,
this assumption clearly doesn't hold in the case of time series
where the value of an observation at timelepends on its
value at timet 1. Therefore, we chose to transform the time
series of the 7 attributes into series of returns which can be
assumed to be independent from each other.

The transformation was done as follows: for a given
time seriesfpy, ;i p, g we have computed the return:
re = % for each timet 2 ft,;::;tyg, where
p: is the value of the time series at timé Thus,
at time t, the learner receives an observation g =

rOpen . rHigh -rLow . (Close .V olume . rAverage  r Variance
Fig. 4. Evolution of the improvement in performance over time of the ! Tttt e it Tt
RandomRules algorithm on the 0.9-(X) and Fried G.R.A. datasets (upper andnd must predict the target varialje= rS/9se .

lower plot respectively) computed on a rolling (and non-overlapping) window
of 10 observations. Positive values indicate that the abstaining version ove

performed the base version of the algorithm. B. Results achieved on the real datasets
We give the results achieved on the real life datasets with a
small (see Fig. 5) which is in line with the goal of the investor
(the narrower the tube, the larger the expected payout of the
Following up on our introductory real life example pre- OPtion). All the results indicate that allowing abstention led to
sented in section I1-B, we ran a batch of experiments on sever&@" improvement of the performances and tend to con rm what
nancial datasets. These datasets were chosen because th¥gS observed on synthetic datasets. This good performance is

provide real life examples of streams subject to concept driftsSXPlained by the increased dif culty to accurately predict on
extremely noisy datasets subject to a wide range of drifts.

VI. REAL LIFE DATASETS WITH CONCEPT DRIFTS

A. Presentation of the real datasets In order to concretely describe what these results mean
for our investor, we calculate the amount of money that he

Each dataset is based on a particular nancial asset (a stocigould have saved by allowing his machine learning algorithm

an index of stocks, a precious metal an exchange rate betwe@BL Stream) to abstain on the stock of Apple. To this end, we
2 currencies) and has 7 attributes. The rst 5 attributes arghose to use a cost function which attributes xed values to
based on the observation of the opening price, highest pricghe price and the payout of the created binary tunnel option
lowest price, closing price and volume of transaction for thatas well as the cost of abstaining. In real life, the true price
asset on a given day. For the last 2 attributes, we have added such option would be calculated with complicated formulas
the average as well as the variance computed with the closinghich depends on many factors (such as the volatility and price
prices of the last 10 days. of the underlying asset, the time until expiration, the selected

Our framework assumes that the observations are indepertl)punda”es’ -+-) and which we omit for the sake of simplicity.

dent realizations of a single hidden concept (when the concept Therefore and without loss of generality, assume that the
is stable) or independent realizations of a set of conceptimvestor has an initial capital of 10 0€0 that the price of the



option is always equal to€ (the amount of money lost if the learned model with the observations for which the prediction
prediction is wrong), that the payout (i.e. the amount of moneyhas been rejected.

received if the prediction is correct) is alway€ land that if

the investor chooses to abstain, he will leave the money at the
bank which will charge him a xed 0& overnight. Thus, the 1]
cost function is then given by:

8 o .

<1 if jy ¥ andg(@ =1 2]
C@y)=. 1 ifjy 9> andg(a)=1

" 01 ifg(a)=0 al

In this case the version of the algorithm which predicts all
the time managed to output 1483 good predictions and 7437
wrong predictions. This results in a nal capital of 46860n [4]
the other hand, the abstaining version of the algorithm gave
533 wrong predictions, 162 good predictions and abstained on
8225 observations resulting in a nal capital of 8806.5Thus,  [®]
by allowing its algorithm to abstain, the investor managed to
save almost 50% of its initial capital (note that the performance 6]
is better than the -37.4% achieved in the experiment becaus!e
the cost of abstention in this illustration is smaller). 7]

VII.

Learning on a data stream subject to concept drifts is a
challenging task. Drifting concepts can signi cantly diminish
the performance of a learner over time and undermine the[9]
condence in the outputted predictions. This is an issue,
especially in the regression setting when there are requirements
on the expected precision level associated with each predictiohl.o]

CONCLUSION [8]

In this paper, we claim that when costs can be associated
with good and bad predictions, allowing a predictor to abstain
must be considered in order to reduce the overall predictioH‘l]
cost. To this end, we propose a generic method which can be
used with any regressor and which Iters the predictions thahz]
would not have met the precision constraint.

We experimented this strategy on 30 datasets including dif[—13]
ferent types of drifts, with 4 state of the art algorithms and with
2 levels of expected precision. We assessed the performangg,
of our method by comparing the overall prediction cost of the
base version of an algorithm (which predicts all the time) to thqis)
performance of the same algorithm equiped with the proposed
method (which allows it to abstain when the con dence is
not high enough). Globally, the results indicate that when thél6]
need for precision is high, allowing the algorithm to abstain
signi cantly improves the overall prediction cost whereas 17]
when the need for precision is low, the overall prediction cost
is the same as the one achieved by predicting all the time. (18]

Furthermore, the evolution of the difference in performance
over time between the base version and the abstaining versi ﬂa]
of each regressor showed that, concept drifts can be the cause
of an over-performance of the abstaining version and thereforEO]
that abstaining must be considered as an enhancing method to
reduce the overall prediction cost. Indeed, when the requiregy;
precision level cannot be achieved, allowing the algorithm to
abstain based on an ensemble of reliability estimators acts g
an automatic way to “disconnect” the algorithm during some
of these adverse periods. [23]

In future works we will investigate whether the perfor-
mances can be further improved by abstaining to update the
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