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The mixed-derivative skewness Suθ of a passive scalar field in high Reynolds and Prandtl numbers decaying
homogeneous isotropic turbulence is studied numerically using eddy-damped quasi-normal markovian closure,
for Reλ ≥ 103 up to Pr = 105. A convergence of Suθ for Pr ≥ 103 is observed for any high enough Reynolds
number. This asymptotic high Pr regime can be interpreted as a saturation of the mixing properties of the
flow at small scales. The decay of the derivative skewnesses from high to low Reynolds numbers and the
influence of large scales initial conditions are investigated as well.
Vol. 28 (8) 081703

The complete understanding of passive scalar mixing in turbulent flows is a challenging topic of great interest for
theoretical and practical considerations. Even in the classical framework of homogeneous isotropic turbulence (HIT),
there are still open questions regarding the influence of the Prandtl number Pr (or Schmidt number Sc), which is
the ratio of the kinematic viscosity ν to the thermal (molecular) diffusivity νθ, on the scalar dynamics. Indeed, the
Prandtl number strongly affects the small and very small scales of the scalar variance spectrum Eθ(k, t), as discovered
by Batchelor1 pioneering work. In recent studies2,3, the impacts of the Prandtl number on both the passive scalar
decay and on the scalar spectrum small scales have been studied. The main conclusion was that whatever the Prandtl
number is, it has no major impact on the scalar decay laws provided by the Comte-Bellot and Corrsin4 theory, which
relies on dimensional analysis. However, third-order statistics were not studied, which motivates the present work.

The case Pr � 1 is of particular interest for various reasons. It specifically corresponds to the framework of biological
fluids5 (low temperature dissolved oxygen where Sc ' 1000, crucial for marine ecosystems), of chemical reactions
(reduction of ferricyanide for instance, where Sc can exceed 104) and of experiments with tracers (such as disodium
fluorescein where Sc ' 2000, or sulforhodamine 101 where Sc ' 5000). Beyond these practical considerations, the
case of weakly diffusive passive scalars is challenging as it presents some difficulties in direct numerical simulations
(DNS) when it comes to solve the very small scales of the scalar field beyond the Kolmogorov wavenumber kη. These

small scales experience friction by the Kolmogorov scale velocity field, up to the Batchelor wavenumber kB =
√
Prkη.

This continuous friction creates the viscous-convective range1, where the scalar variance spectrum Eθ(k, t) scales as

Eθ(k, t) =
K0

3
εθ

√
ν

ε
k−1, kη < k < kB , (1)

where ε and εθ are the kinetic energy and scalar variance dissipation rates, and K0 ' 1.4 is the Kolmogorov constant.
The framework of HIT (with or without a mean scalar gradient) with Pr � 1 has already received some attention,
especially numerically6–9, and the k−1 viscous-convective range has been assessed numerous times. However in DNS,
with an increasing Pr comes a diminishing Reynolds number based on the Taylor micro-scale Reλ. Furthermore, at
moderate Reynolds numbers, the spatial resolution beyond the Kolmogorov wavenumber can be questioned. Notably,
it has been pointed out in a recent work10 of forced isotropic turbulence, that both the Reynolds number and the
resolution are of great importance: especially, at a given Reynolds number, a better spatial resolution, of order k−1B ,
improves local isotropy. The same conclusion is made at constant resolution for an increasing Reλ. A scalar field
with a low diffusivity has also been studied experimentally11–13 (often with dye, where Sc ∼ 103) at higher Reynolds
numbers, but the framework is hardly homogeneous and isotropic (jets, shear flows, ...).

Therefore, the present study is performed in HIT with the eddy-damped quasi-normal markovian (EDQNM)
closure14, which permits to reach both large Reynolds and Prandtl numbers. Moreover, EDQNM has been used
recently15,16 to study third-order moments of the velocity field, especially the velocity derivative skewness S. Here,
the emphasis is put on the mixed-derivative skewness Suθ, which is of great theoretical interest since it directly appears
in the passive scalar equations18. The main evolution equations are firstly recalled along with the spectral definitions
of the third-order moments of the flow. EDQNM simulations are then briefly assessed by comparison of skewnesses S
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and Suθ to experimental results at Pr ' 1. Then, for Pr � 1, the k−1 scaling of the scalar spectrum Eθ is recovered.
The influence of an increasing Prandtl number on the mixed-derivative skewness is investigated along with large scales
initial conditions, and finally, numerical evidence is given for a Re−1λ scaling of both S and Suθ.

In the framework of homogeneous isotropic turbulence, where a passive scalar θ is convected by a turbulent velocity
field ui, the starting point is the exact Lin equation

∂E(θ)

∂t
+ 2ν(θ)k

2E(θ)(k, t) = T(θ)(k, t). (2)

The subscript ()(θ) refers to the scalar field. E and Eθ are the kinetic energy and scalar variance spectra, k is the

wavenumber, and T and Tθ are the non-linear isotropic transfers which are explicitly computed by EDQNM (see Ref14

for details on the closure). The turbulent kinetic energy and scalar variance, and their respective dissipation rates
are defined as K(θ)(t) =

∫∞
0
E(θ)(k, t)dk and ε(θ)(t) = 2ν(θ)

∫∞
0
k2E(θ)(k, t)dk. The evolution equations of the kinetic

and scalar dissipation rates can be obtained by multiplying (2) by 2ν(θ)k
2 and then integrating over k

∂ε(θ)

∂t
= 2ν(θ)

∫ ∞
0

k2T(θ)(k, t)dk − 4ν2(θ)

∫ ∞
0

k4E(θ)(k, t)dk. (3)

Using the turbulent Reynolds number ReT = K2/(νε) = 3Re2λ/20, and the Reynolds number Reλ based on the Taylor

microscale λ =
√

10Kν/ε, classical algebraic derivation18,19 yields

∂ε

∂t
= −

(
7

3
√

15
S(t)

√
ReT +

7

15
G(t)

)
ε2

K
= − 7

15

(
1

2
S(t)Reλ +G(t)

)
ε2

K
, (4)

where S(t) and G(t) are the velocity derivative skewness and palinstrophy respectively

S(t) =
< (∂u/∂x)3 >

< (∂u/∂x)2 >3/2
= −3

√
30

14

∫∞
0
k2T (k, t)dk(∫∞

0
k2E(k, t)dk

)3/2 , (5)

G(t) =< u2 >
< (∂2u/∂x2)2 >

< (∂u/∂x)2 >2
=

30ν

7

K

ε

∫∞
0
k4E(k, t)dk∫∞

0
k2E(k, t)dk

, (6)

where u is the component of the velocity field along the x axis. Similarly, for the passive scalar field, one gets

∂εθ
∂t

= −

(√
5

3
Suθ(t)

√
ReT + r

5

9
Gθ(t)

)
εεθ
K

= −
(

1

2
Suθ(t)Reλ + r

5

9
Gθ(t)

)
εεθ
K
, (7)

where r is the kinetic to scalar time scales ratio r = (K εθ)/(Kθ ε). These evolution equations (4) and (7) have already
been obtained in previous works16–18 in a similar manner. This numerical study focuses on the mixed-derivative
skewness

Suθ(t) =
< (∂u/∂x)(∂θ/∂x)2 >√

< (∂u/∂x)2 > < (∂θ/∂x)2 >
= −

√
3

10

∫∞
0
k2Tθ(k, t)dk√∫∞

0
k2E(k, t)dk

( ∫∞
0
k2Eθ(k, t)dk

) , (8)

which directly appears in equation (7). Note that we obtain a factor
√

3/10, instead of 2/
√

15 proposed by Antonia
and Orlandi20. The scalar palinstrophy reads

Gθ(t) =< θ2 >
< (∂2θ/∂x2)2 >

< (∂θ/∂x)2 >2
=

18νθ
5

Kθ

εθ

∫∞
0
k4Eθ(k, t)dk∫∞

0
k2Eθ(k, t)dk

. (9)

The kinetic and scalar palinstrophy G and Gθ can be interpreted as the dissipation of the gradients of the velocity
and scalar fields respectively19, and more specifically, G represents the dissipation of enstrophy < ω2 >= ε/ν.

Now that the theoretical aspects have been recalled, numerical results are presented at various Prandtl and Reynolds
numbers. The wavenumber space is discretized using a logarithmic mesh, ki+1 = 101/fki, where f = 17 points per
decade. This mesh spans from kmin = 10−6kL(0) to kmax = 10kB . The use of EDQNM to study third-order statistics
is validated by comparisons with moderate Reλ experiment17 in Figure 1a and with DNS of forced HIT21 at higher
Reλ in Figure 4b. In the experiment, Reλ ∼ 50 and the decay exponents K ∼ tα and Kθ ∼ tαθ are α ' αθ ' −1.33.
As a first approximation, this corresponds to infrared exponents σ = σθ = 3 (with E(θ)(k < kL, t) ∼ kσ(θ) , where kL
is the peak of the kinetic energy spectrum): indeed, using the theoretical exponents2 α(θ) = −2(σ(θ) + 1)/(σ+ 3), and
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FIG. 1: (a) Comparison of S and Suθ between EDQNM (lines) and experiment17 (symbols) at Reλ ' 50 and
Pr = 0.7. (b) Review of the different values for |Suθ| obtained in DNS6,19,20 and experiments17: thick lines for

EDQNM at Pr = 1 and Pr = 104. (−−) indicates the asymptotic Pr-state S∞uθ at very large Reλ and Pr. For Ref6,
Yeung 2002 (×): the values of Suθ presented are in the plane perpendicular to the mean scalar gradient, the Prandtl

number is 1 ≤ Pr ≤ 64, and the Pr = 1 results are linked by a dash-dot (−·) line.

the measured values α(θ) ' −1.33, this yields σ(θ) = 2.97. Imposing 2 ≤ σ(θ) ≤ 3 does not change significantly the
results. The comparison between experiment and EDQNM is presented in Figure 1a, where the velocity derivative
and mixed-derivative skewnesses S and Suθ are displayed. The agreement is better for Suθ than for S, whose values
obtained experimentally are more dispersed. An additional satisfactory low Reλ comparison for Suθ can be found in
the Appendix B of our recent study2. At higher Reynolds numbers (38 ≤ Reλ ≤ 460), the agreement for S between
EDQNM and the DNS21 of forced HIT is rather good, as revealed in Figure 4b: the velocity derivative skewness is
quantitatively recovered within 5% on a broad range of Reλ. Finally, Figure 1b gathers various values of Suθ obtained
in DNS and experiments for Pr ≥ 1, and illustrates the noteworthy dispersion, probably due to the different kinds of
forcing, whose consequences are amplified at moderate Reynolds numbers: furthermore, DNS of Kerr19 suffers from
a very low resolution. EDQNM results that will be discussed later in the text are also displayed.

Now, the impact of a high Prandtl number on the mixed-derivative skewness Suθ is investigated with EDQNM.
Such a framework has been studied, notably in DNS. However, this has been done only at moderate (or low) Reynolds
numbers. Indeed, the more Pr increases, the more additional points are necessary to describe the very small scales of
the scalar spectrum which behave as k−1 beyond the Kolmogorov wavenumber kη, up to the Batchelor wavenumber kB .
Thanks to EDQNM closure, it is possible to reach high Reynolds numbers and high Prandtl numbers, as illustrated in
Figure 2a, where the viscous-convective range predicted by Batchelor1 grows in size with increasing Pr and spans on
two decades for Pr = 105. Nevertheless, because of the logarithmic discretization, elongated triads are not taken into
account, as intensively discussed in the past decades14. Consequently, it is necessary to add non-local contributions
TNLθ to the scalar non-linear transfers Tθ of (2). Since numerical simulations show that the non-local expansions for
the velocity field are negligible compared to the local transfers, only scalar non-local expansions are used. The scalar
non-local flux is then

Π+
θ (k, t) =

[
2

15
k

(
2Eθ(k)− k∂Eθ

∂k

)∫ ak

0

θTkkqq
2E(q)dq +

1

4
E(k)

∫ ak

0

θTkkqq
3E(q)dq − 1

4

E(k)Eθ(k)

k2

∫ ak

0

θTkkqq
5dq

]

−

[
4

3

∫ k

0

k′2Eθ(k
′)
( ∞∫
sup(k,k′/a)

θTk′ppE(p)dp
)
dk′ +

4

3

∫ k

0

k′4
( ∞∫
sup(k,k′/a)

θk′pp
Eθ(p)E(p)

p2
dp
)
dk′

]
, (10)

where time-dependence is omitted in the right hand side for the sake of clarity, θTkpq is the characteristic damping time

of the scalar third-order correlations which contains the eddy-damping factors2,14, and k, p, q are the modulus of the
wavectors k, p, q which are such that k+p+q = 0. The interactions are non-local when inf(k, p, q)/ sup(k, p, q) ≤ a,
where a = 101/f − 1 is called the nonlocality parameter14. The first bracket is dominant and yields the k−1 viscous-
range for Pr � 1: it corresponds to a non-local flux from very large to very small scales, where q/k � 1, and
the second bracket to a non-local flux in the opposite direction where k/p � 1. The non-local transfer is then

T
(NL)
θ = −∂kΠ

(NL)
θ . The impact of the non-local scalar flux is illustrated in Figure 2b at Pr = 105: it brings energy
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FIG. 2: (a): scalar spectrum Eθ(k, t) for various Prandtl numbers Pr = 1, 103 and 105. The inertial convective
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wavenumbers kL, kη and kB for Pr = 105. (b): normalized scalar flux Πθ(k, t)/εθ for Pr = 105. Πθ (−) corresponds
to the local scalar flux, and Πtot

θ = Πθ + ΠNL
θ (−−) to the total scalar flux including the non local part. Both at

Reλ = 103 in Saffman turbulence (σ = σθ = 2).

beyond the Kolmogorov wavenumber kη and sustains the viscous-convective range. The resulting total scalar flux
Πtot
θ = Πθ + ΠNL

θ is still conservative, since Πtot
θ (k = 0) = Πtot

θ (k > kB) = 0.
The Pr-dependence of the mixed-derivative skewness Suθ is investigated in Figure 3 in the high Reynolds numbers

regime to avoid transitional effects towards low Reynolds numbers. It is revealed that |Suθ| increases from Pr = 1
to a critical Prandtl number Prc = 10 and then slightly decreases up to Pr = 103. Such variations of |Suθ| for
1 ≤ Pr ≤ 103 have already been observed in DNS6,8. The latter works, at moderate Reynolds numbers, indicate that
the decrease of |Suθ| happens from Prc ' 1, which is smaller than in our high Reynolds numbers simulations where
the decrease starts around Prc ' 10. Consequently, these observations suggest that the decay threshold for |Suθ| is
Reynolds dependent, with Prc ∈ [1, 10].

The remarkable feature is that for Pr ≥ 103 at high Reynolds numbers, the mixed-derivative skewness saturates
to a constant value |S∞uθ| ' 0.435, which does not depend on the Prandtl number anymore. The ∞ symbol refers
to the saturated Pr-state Pr ≥ 103. DNS performed at higher values of Pr would be useful to confirm (or not) the
saturation of Suθ from Pr ∼ 103. It is worth noting that in HIT, when the scalar field is forced with a mean scalar
gradient, values of S⊥uθ (in the direction perpendicular to the gradient) are close to the present S∞uθ = −0.435: values
of Ref6 are gathered in Figure 1b, and one can note that at Pr = 1, S⊥uθ increases with Reλ (− · × line) similarly to
the present EDQNM results.

Physically, this saturation of the mixed-derivative skewness means that the statistical mixing properties of the flow
do not evolve anymore at a sufficiently high Prandtl number, for high Reynolds numbers. This can be interpreted in
terms of small scales equilibrium (k > kη), if one considers the spectral definition (8) of the mixed-derivative skewness
Suθ. Indeed, considering a given Reynolds number, or equivalently a given dissipation rate ε of kinetic energy,
increasing Pr leads to an indefinite extension of the viscous-convective range of Eθ toward small scales, whereas its
inertial-convective range remains unchanged. Therefore, the variations of Suθ when Pr increases are mainly due to
the variations of the two functions appearing in the scalar integrated terms of Suθ: k2Tθ(k, t) and k2Eθ(k, t) for
k ∈ [kη; kB ]. These quantities represent respectively the production rate of mean-square temperature gradients and
scalar dissipation at wavenumber k. Moreover, Figure 2b shows that the production is mainly a non-local mechanism
unlike the scalar dissipation. For a sufficiently high Prandtl number, Pr ≥ 103, these two integrals evolve similarly so
that they balance each other. Therefore, for high Reynolds numbers, the convergence of Suθ to a constant value S∞uθ
for increasing Prandtl numbers, reflects an equilibrium, occurring in the viscous-convective range, between non-local
production of mean-square temperature gradients and scalar dissipation by diffusion.

A similar independence with regard to Pr can be found for the scalar palinstrophy Gθ: injecting classical scaling
for Eθ in the spectral definition (9) of Gθ, and assuming that Reλ � 1 and Pr � 1, yield rGθ ∼ Reλ. Such a
result was also found by Ristorcelli18. Numerical simulations and experiments have shown that r ∼ αθ/α is a relevant
approximation for the time scale ratio when the turbulence decay is algebraic. Therefore, one has r ' 1 when the
kinetic energy and scalar variance decay similarly, i.e. when σ = σθ for the initial spectra considered here: this is
relevant since it has been shown in a precedent work2 that Pr does not affect the decay of scalar integrated quantities.
Qualitatively, the independence of Gθ with regard to Pr provides the same physical information as our numerical
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results on Suθ: there is an asymptotic convergence of the mixing properties of the passive scalar field only for a
sufficiently high Pr. As said before, a dependance on Pr for moderate Prandtl numbers, say 1 ≤ Pr ≤ 103, is in
agreement with DNS6,8.
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FIG. 3: Absolute value of the mixed-derivative skewness Suθ for various Prandtl numbers from 1 to 105 in Saffman
turbulence. Because of the high-Pr saturation, the Pr = 104 and Pr = 105 curves are hardly distinguishable.

Finally, the decay of the derivative skewness S(t) and mixed-derivative skewness Suθ(t) from high to low Reynolds
numbers is investigated in Figure 4a for Saffman (σ = σθ = 2) and Batchelor (σ = σθ = 4) turbulence. The
main results are the following ones: (i) Both S and Suθ are constant for high Reynolds and Prandtl numbers, and
independent of large scales initial conditions: indeed, the curves are identical for Saffman and Batchelor turbulence,
except in the transition zone between the high and low Reynolds numbers regimes, where a slight difference is observed.
(ii) The transition toward the low Reynolds numbers regime for the scalar field starts after the one for the velocity
field, which is logical as the Péclet number Peλ = PrReλ is much larger than Reλ in the case Pr � 1. (iii) For very
low Reynolds numbers, both derivative skewnesses S and Suθ are zero, consistent with the fact that for Reλ < 1, the
flow is not turbulent anymore and thus there is no turbulent mixing at all.

One also has to point out that both S and Suθ increase during the decay, i.e. when the Reynolds number decreases,
in agreement with George22. Moreover, it is stated in the latter work that at some point during the decay, S should
behave as Re−1λ according to dimensional considerations. Assuming that the Taylor micro-scale λ is the relevant
similarity length scale, and using self-preserving functions E(k, t) = Es(t)f(η), T (k, t) = T s(t)g(η), and η = kλ, one
obtains

S(t) ∼ λ−4νu2

(λ−2u2)3/2

∫
η2g(η)dη( ∫
η2f(η)dη

)3/2 ∼ Re−1λ . (11)

But this scaling is not always clearly observed. We believe this might be the consequence of too low Reynolds numbers
in DNS. A low Reynolds defect is in agreement with the work of Schumacher et.al.23, where Figure 1 herein clearly
shows that the Re−1λ scaling is achieved for high Reynolds numbers only (102 ≤ Reλ ≤ 103).

In Figure 4b, relevant correlations are presented (with constants determined by least square fit, set to match with
the beginning of the transition) with a clear Re−1λ dependency for both the velocity derivative and mixed-derivative

skewnesses. These correlations S(t) = S∞ + 2.145Re−1λ and Suθ(t) = S∞uθ + 0.735Re−1λ , where S∞ = −0.569 and

S∞uθ = −0.435, capture well the beginning of the transition zone. Hence, the scaling proposed by George S ∼ Re−1λ
seems relevant mainly for high Reynolds numbers.

Moreover, an interesting result, never confirmed previously to our knowledge, is that the mixed-derivative skewness
Suθ scales in Re−1λ as well. This scaling is in agreement with another work of George24 where similarity assumptions
were used for temperature fluctuations: Eθ(k, t) = Esθ(t)fθ(η), Tθ(k, t) = T sθ (t)gθ(η), and ηθ = kλθ. Using a classical

result17,24 linking the ratio of the kinetic and scalar Taylor lengths λ and λθ =
√

6νθKθ/εθ yields(
λ

λθ

)2

=
5

6
rPr, Suθ(t) ∼

νθλ

λ2θu

∫
η2θgθ(ηθ)dηθ√∫

η2f(η)dη
∫
η2θfθ(ηθ)dηθ

∼ rRe−1λ . (12)

In conclusion, the mixed-derivative skewness Suθ has been investigated in the classical framework of decaying
homogeneous isotropic turbulence, at both high Reynolds and Prandtl numbers thanks to the eddy-damped quasi-
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normal markovian (EDQNM) closure. This work extends existing results obtained in direct numerical simulations at
moderate Reynolds numbers and at a maximum of Pr ' 103. The main results of this study are twofold. Firstly,
at high Reynolds numbers and for Pr ≥ 103, Suθ saturates to a constant value S∞uθ = −0.435, independent of the
large scales initial conditions σ and σθ, which means that statistical properties of the scalar mixing are converged,
and can be interpreted as a small scales equilibrium in the viscous-convective range. Moreover, such large values of
the Prandtl (or Schmidt) number correspond to real fluids as pointed out in the introduction, which underlines the
relevance of studying the physics of high Prandtl and high Reynolds numbers flows. Secondly, the Re−1λ scaling for
Suθ (and S), coming from self-similarity theory, was numerically assessed. These numerical and theoretical results
exhibit some robust asymptotic states at very high Reynolds and Prandtl numbers for scalar third-order statistics.
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