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We mapped and characterized changes in the activity of brainstem cell groups

under hypoxia in one-day-old newborn mice, an animal model in which the central

nervous system at birth is particularly immature. The classical biphasic respiratory

response characterized by transient hyperventilation, followed by severe ventilation

decline, was associated with increased c-FOS immunoreactivity in brainstem cell

groups: the nucleus of the solitary tract, ventral reticular nucleus of the medulla,

retrotrapezoid/parafacial region, parapyramidal group, raphe magnus nucleus, lateral,

and medial parabrachial nucleus, and dorsal subcoeruleus nucleus. In contrast, the

hypoglossal nucleus displayed decreased c-FOS immunoreactivity. There were fewer or

no activated catecholaminergic cells activated in the medulla oblongata, whereas ∼45%

of the c-FOS-positive cells in the dorsal subcoeruleus were co-labeled. Approximately

30% of the c-FOS-positive cells in the parapyramidal group were serotoninergic, whereas

only a small portion were labeled for serotonin in the raphe magnus nucleus. None

of the c-FOS-positive cells in the retrotrapezoid/parafacial region were co-labeled for

PHOX2B. Thus, the hypoxia-activated brainstem neuronal network of one-day-old

mice is characterized by (i) the activation of catecholaminergic cells of the dorsal

subcoeruleus nucleus, a structure implicated in the strong depressive pontine influence

previously reported in the fetus but not in newborns, (ii) the weak activation of

catecholaminergic cells of the ventral reticular nucleus of the medulla, an area involved

in hypoxic hyperventilation, and (iii) the absence of PHOX2B-positive cells activated in

the retrotrapezoid/parafacial region. Based on these results, one-day-old mice could

highlight characteristics for modeling the breathing network of premature infants.
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INTRODUCTION

Human infants, particularly premature infants, display frequent
episodes of apnea, and bradypnea, and thus very common
episodes of hypoxia during the postnatal period (Bryan et al.,
1986; Carroll and Agarwal, 2010; Teppema and Dahan, 2010;
Mathew, 2011). In newborn mammals, hypoxia elicits a biphasic
respiratory response, characterized by a transient increase
followed by a severe decline of ventilation called the hypoxic
ventilatory depression (HVD; Neubauer et al., 1990; Gozal and
Gaultier, 2001; Carroll and Agarwal, 2010; Teppema and Dahan,
2010). The hypoxemia resulting from HVD, especially when
frequently repeated, may negatively affect cardiovascular and
neurocognitive functions, neurocognitive outcome, and long-
term quality of life. Dysfunction of the hypoxic ventilatory
response (HVR) is suspected in respiratory diseases such as
Sudden Infant Death Syndrome (SIDS). SIDS victims typically
experience a centrally mediated life-threatening apnea, possibly
related to exaggerated HVD, due to the activation of a defense
mechanism of the fetus that limits its O2 consumption by
stopping the respiratory activity in utero under hypoxemia (Poets
et al., 1999; Hunt, 2001; Kinney et al., 2011; Lavezzi, 2015).

The magnitude of the initial hyperventilation in most
mammalian species increases with maturation, whereas the
magnitude of the late decline is greatest in newborns and
decreases with maturity (Carroll and Agarwal, 2010; Teppema
and Dahan, 2010). Preterm infants with a birth weight <1500 g,
exhibit no initial hyperventilation (Alvaro et al., 1992; Mathew,
2011). Hyperventilation mainly results from the activation
of structures of the medulla oblongata by excitatory inputs
coming from peripheral chemoreceptors (Vizek et al., 1987;
Finley and Katz, 1992; Waldrop and Porter, 1995; Blessing
et al., 1999; Carroll and Agarwal, 2010; Teppema and Dahan,
2010): cells of the commissural and medial parts of the
nucleus of the solitary tract (cNTS and mNTS) and the
ventral reticular nucleus of the medulla (VLM), many of
which are catecholaminergic (Erickson and Millhorn, 1991,
1994; Hirooka et al., 1997). Second order projections transmit
the message to other neuronal populations, such as the CO2-
activated neurons of the retrotrapezoid/parafacial respiratory
group region (RTN/pFRG) shown to be PHOX2B-positive
(Takakura et al., 2006; Guyenet and Bayliss, 2015), and neurons
of the lateral parabrachial nucleus (lPB; Hayward and Felder,
1995). Central mechanisms contribute to a decline in ventilation
in parallel with peripheral chemoreceptor activation; if the

Abbreviations: 5HT, serotonin; A5, A5 region; cNTS, commissural part of the

nucleus of the solitary tract; cVLM, caudal part of the ventrolateral reticular

nucleus of the medulla; dSubC, dorsal part of the subcoeruleus nucleus; f R,

respiratory frequency; HVD, hypoxic ventilatory depression; HVR, hypoxic

ventilatory response; KF, Kölliker-Fuse nucleus; LC, locus coeruleus nucleus, lPB,

lateral parabrachial nucleus; mNTS, medial part of the nucleus of the solitary tract;

mPB, medial parabrachial nucleus; n7, facial nucleus; PP, parapyramidal group;

RMg, raphe magnus nucleus; ROb, raphe obscurus nucleus; RPa, raphe pallidus

nucleus; RTN/pFRG, retrotrapezoid nucleus/parafacial respiratory group region;

rVLM, rostral part of the ventrolateral reticular nucleus of the medulla; SIDS,

Sudden Infant Death Syndrome; TH, tyrosine hydroxylase; V̇E, ventilation minute;

vlNTS, ventrolateral part of the nucleus of the solitary tract; vSubC, ventral part of

the Subcoeruleus nucleus; VT, tidal volume.

initial hyperventilation fails to restore sufficient PO2 in arterial
blood, the central mechanisms reduce the metabolic demand of
the respiratory musculature by lowering ventilation (Neubauer
et al., 1990; Carroll and Agarwal, 2010; Teppema and Dahan,
2010). Various mechanisms underlying the hypoxic decline in
ventilation have been proposed including: (i) hyperperfusion
of medullary CO2-sensitive areas (Neubauer et al., 1990); (ii)
hypometabolism leading to a drop in CO2 production (Mortola,
2004); (iii) release of neuromodulators such as adenosine
(Runold et al., 1989; Neubauer et al., 1990; Kawai et al., 1995) or
serotonin (5-HT) (Herman et al., 1999; Richter et al., 1999); and
(iv) intrinsic activation of cells in themedulla oblonga by low PO2

(Nolan andWaldrop, 1993; Bodineau et al., 2001; Voituron et al.,
2006, 2011).

Here, we examined hypoxia-induced changes in the activity
of brainstem neuronal populations in one-day-old mice to
characterize the neuronal brainstem component of the HVR
encountered under hypoxia in newborn mammals, in particular
in premature mammals. Our working hypothesis was that one-
day-old mice constitute a pertinent model because their central
nervous system at birth is immature relative to other newborn
mammals, such as humans and rats, with respect to their
neuroanatomy, neurogenesis, gliogenesis, myelinisation, and
molecular and biochemical dynamics in telencephalic regions
(Teppema and Dahan, 2010; Darnall et al., 2016; Mallard and
Vexler, 2015). Cats and rats have been used for many years in
studies to identify the underlying mechanisms of the hypoxic
ventilatory response, but much work has focused on mice
over the past decade because of the increasing availability of
genetic mouse models (Gaultier et al., 2003). Cell populations
involved in the HVR of mice, particularly at birth, are not
fully known. Thus, we performed an expanded analysis of
changes in c-FOS expression under hypoxia in brainstem areas
related to respiratory control. Dual labeling allowed us to
characterize various activated c-FOS-positive cell populations by
assessing their catecholaminergic, serotoninergic, or PHOX2B
immunoreactivites.

MATERIALS AND METHODS

All experiments, approved by the Charles Darwin Ethics
Committee for Animal Experimentation (Ce5/2011/05), were
carried out in accordance with Directive 2010/63/EU of the
European Parliament and of the Council of 22 September, 2010
and French law (2013/118). All efforts were made to minimize
the number of animals used and their suffering. Animals were
maintained on a 12-h light-dark cycle with free access to food
and water.

Experiments were performed on 31 newborn C57Bl6J mice
(24.6± 2.6 h old; Charles River Laboratories, l’Arbresle, France).

The Hypoxic Respiratory Response
Recording of Respiratory Variables
Changes in ventilatory variables were non-invasively measured
during the apnea-free period using a home-made whole body
plethysmograph (Bartlett and Tenney, 1970) on 12 newborn
mice. Animals were placed in an experimental chamber (20 ml)
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in which they freely moved. The chamber was connected to a
reference box of the same size equipped with a temperature
sensor (Newport Electronic, Santa Ana, CA, USA) that permits
temperature control. The temperature of the animals was
measured before and after each experiment via an oral probe.
During recording sessions, the chamber was sealed and air
flow to the chamber interrupted for 20 s (2 and 25 min after
the beginning of hypoxia), leading to a change in pressure
because the volume of the chamber was fixed. Between two
recording sessions, the chamber was ventilated either with
a humidified normoxic mixture (21% O2, 79% N2) or a
hypoxic mixture (11% O2, 89% N2) heated to a temperature
of ∼31◦C, the thermoneutral zone (Gordon, 1993), using an
external heat source. The pressure change induced by the
respiratory flowwas assessed by connecting a differential pressure
transducer (Valydine DP 45, Northridge, CA, USA) using
an adaptation of the previously described barometric method
(Bartlett and Tenney, 1970). The pressure signal was digitized
through a Spike 2 data analysis system (Cambridge Electronic
Design, Cambridge, UK). Measurement of the ventilatory
variables was made on this signal i.e., respiratory frequency
(f R), tidal volume (VT), minute ventilation (V̇E), and the
number of apneas per min (a ventilatory pause longer than
twice the duration of the preceding respiratory cycles; Matrot
et al., 2005; Menuet et al., 2011). The VT was calculated
using Drorbaugh and Fenn’s equation (Drorbaugh and Fenn,
1955).

Respiratory Variables Observation
Prior to each experimental session, newborn mice were exposed
to normoxic conditions for 20 min to become habituated to
the chamber. Recordings were made under normoxic conditions
for a further 15 min to define the control values. During the
test period, the chamber was either flushed with the normoxic
mixture (control group; n = 4) or the hypoxic mixture (hypoxic
group; n = 8). Use of the control group ensured that the long
period of retention in the recording chamber did not induce
changes in the respiratory variables. At the end of the test
period, newborn mice were removed from the chamber and the
buccal temperature was taken. The respiratory variables were
measured during the apnea-free periods during the hypoxic test
(2 and 25 min after the beginning of hypoxia) and expressed as
the percentage of control values. For the VT calculation under
hypoxia, the buccal temperature used was that measured before
mice were placed in the recording chamber for the value at 2 min
of hypoxia and that measured immediately at the end of the test
for the value at 25min of hypoxia.

Each recording session lasted ∼20 s; a calibration volume of
100 µl was injected into the plethysmographic chamber with
a Hamilton syringe toward the end of each recording session.
Each newborn mouse was exposed only one time to the protocol.
Recordings were made during 20-s periods when the chamber
was sealed, and not continuously. Values are presented asmean±
standard error of the mean (SEM). D’Agostino-Pearson omnibus
normality test was realized to assess the distribution of the data.
The hypoxic ventilatory response was evaluated by one-way
ANOVA for repeated measures followed by a Tukey’s multiple

comparisons test (GraphPad Prism5 San Diego California USA).
Differences were considered to be significant if p < 0.05.

Analysis of Hypoxia-Responding
Brainstem Areas
Induction of c-FOS
The detection of c-FOS requires minimizing manipulations that
could induce changes of cell activity unrelated to the studied
stimulus and a sufficiently long induction period to induce
detectable changes in c-fos expression (Herdegen and Leah, 1998;
Perrin-Terrin et al., 2016). The protocol used for inducing c-
FOS expression was similar to that used for analyzing the effect
of hypoxia on respiratory variables with two exceptions: (i)
the duration of the test period was 90 min (to facilitate c-
FOS induction as c-FOS protein has a half-life of 90–100 min;
Herdegen and Leah, 1998) and (ii) the absence of a recovery
period to exclude the possibility that changes of neuronal activity
revealed by c-FOS protein detection might be related to post-
hypoxic neuronal mechanisms (Morris et al., 2003). At the end of
the hypoxic period, newborn mice were placed under deep cold
anesthesia (Danneman and Mandrell, 1997) and the brainstems
removed.

Immunohistological Procedures
Immunohistochemical analysis for c-FOS was carried out in
mouse brainstems exposed to either normoxia or hypoxia
(n = 19) to identify hypoxia-induced changes in cell activity.
Brainstems were fixed in 4% paraformaldehyde in 0.1M
phosphate buffer (pH 7.4) for 48 h at 4◦C (Voituron et al.,
2011). They were then cryoprotected for 48 h in 30% sucrose in
0.1M PBS and stored at −20◦C for subsequent use. Standard
immunohistochemical procedures were used to locate c-FOS
on 40 µm-thick coronal free-floating sections obtained using a
cryostat (Leica CM 1510S; Bodineau et al., 2011; Voituron et al.,
2011).

The detection of c-FOS was coupled with that of tyrosine
hydroxylase (TH), 5-HT, or PHOX2B to characterize the cells
displaying changes in activity revealed by c-FOS analysis.

The manufacturer verified the specificity of primary
antibodies in all cases and in addition, control sections were
processed in parallel, but with the omission of the primary or
secondary antibodies; we observed no labeling in the absence of
the primary or secondary antibodies.

c-FOS Immunohistochemistry
Sections were incubated with a rabbit polyclonal antibody
against c-FOS (sc-52; Santa Cruz Biotechnology Inc.,
Santa Cruz, CA, USA; 1:2000) for 48 h at 4◦C. They were
then incubated for 2 h with a biotinylated goat anti-rabbit
immunoglobulin (Vector Laboratories, Burlington, Canada;
1:500) followed by an avidin-biotin-peroxidase complex
(Novostain Super ABC kit, Novocastra Laboratories, Newcastle,
UK; 1:250) for 1 h. Peroxidase activity was detected using
0.02% 3,3′-diaminobenzidine tetrahydrochloride, 0.04% nickel
ammonium sulfate, and 0.01% H2O2 in 0.05 M Tris-HCl buffer
(pH 7.6).

Frontiers in Physiology | www.frontiersin.org 3 December 2016 | Volume 7 | Article 609

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Joubert et al. Brainstem Structures Hypoxia-Activated in One-day-old Mice

Sections were mounted in sequential caudo-rostral order on
silane-treated slides, air-dried, dehydrated with absolute alcohol,
cleared with xylene, and coverslipped using Depex.

Dual Immunohistochemistry for c-FOS/TH and

c-FOS/5-HT
c-FOS was detected using a rabbit polyclonal antibody against
c-FOS (sc-253 Santa Cruz Biotechnology Inc., Santa Cruz, CA,
USA; 1:8000; 48 h; 4◦C) according to the same protocol as
above. The free-floating sections were then incubated with
either a mouse polyclonal antibody against TH (MAB318,
Millipore, 1:4000) or a rabbit polyclonal antibody against 5-HT
(S5545, Sigma–Aldrich, Saint-Quentin Fallavier, France; 1:500;
48 h; 4◦C). Sections were subsequently incubated for 2 h with
biotinylated horse anti-mouse (Vector Laboratories, Burlington,
Canada; 1:500) or goat anti-rabbit (Vector Laboratories,
Burlington, Canada; 1:500) antibodies, and then with an
avidin-biotin-peroxidase complex (1:250). The TH and 5-HT
immunoreactivities were detected by incubation for 3–5 min in
NovaRED (Vector Laboratories, Burlington, Canada).

Sections were mounted in sequential caudo-rostral order
on silane-treated slides as for the single immunohistochemical
detection of c-FOS. They were air-dried, dehydrated with
absolute alcohol, cleared with xylene, and coverslipped using
Entellan R© (VWR International S.A.S).

Dual Immunohistofluorescence for c-FOS/PHOX2B
Sections were first incubated with a primary antibody against
PHOX2B (sc-13226, Santa Cruz biotechnology INC, Santa Cruz,
CA, USA; 1:500; 48 h, 4◦C), then with an Alexa 488-labeled
donkey anti-goat antibody (Molecular Probes, Eugene, OR, 2 h
at room temperature). Sections were then incubated with a c-
FOS rabbit polyclonal antibody against the c-FOS protein (sc-253
Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA; 1:4000;
48 h; 4◦C), and then with an Alexa 555-labeled goat anti-rabbit
antibody concomitantly with DAPI at 1:4000 (Molecular Probes,
Eugene, OR, 2 h at room temperature). Sections were then
washed, mounted in sequential caudo-rostral order on silane-
treated slides, air-dried, and coverslipped using AquaPolyMount
(Biovalley, Marne La Vallée, France).

Quantitative Analysis of the Effect of Hypoxia on the

Number of c-FOS-Positive Cells and Their

Characterization
Sections were examined under a light and fluorescence
microscope (Leica DM 2000, Leica Microsystems, Heidelberg,
Germany). We analyzed c-FOS-positive cells in brainstem
structures related to respiratory control: the A5 region (A5), lPB
and medial parabrachial nucleus (mPB), Kölliker-Fuse nucleus
(KF), locus coeruleus nucleus (LC), subcoeruleus nucleus (SubC;
the dorsal and ventral parts were separated at the level of the
ventral boundary of the trigeminal motor nucleus i.e., dSubC
and vSubC) at the pontine level and the VLM, hypoglossal
nucleus (12N), dorsal motor nucleus of vagus (10N), cNTS,
mNTS, and ventrolateral part of the nucleus of the solitary
tract (vlNTS), raphe magnus, obscurus, and pallidus nuclei (RMg,
ROb, and RPa), facial nucleus (n7), and the ventral medullary
surface. Definitions of boundaries of these structures were made

according to the mouse brain atlas (Paxinos and Franklin, 2001;
Paxinos et al., 2007). The VLM is a neuronal column ventral
to the ambiguus nucleus including the A1C1 group of neurons
and extending from the pyramidal decussation to the caudal
edge of the facial nucleus. We made a distinction between the
caudal part of the VLM (cVLM; from the pyramidal decussation
to the caudal edge of the lateral paragigantocellulaire nucleus)
and the rostral part of the VLM (rVLM; from the caudal edge
of the lateral paragigantocellulaire nucleus to the caudal edge
of the facial nucleus) using standard landmarks as previously
described (Voituron et al., 2011). The pre-Bötzinger complex is
located in the caudal part of the rVLM. We also distinguished
near the ventral surface of the medulla: (i) the lateral and medial
part of the RTN/pFRG i.e., the lateral RTN/pFRG and medial
RTN/pFRG and (ii) a more medial area at the lateral edge of the
pyramidal tract, the parapyramidal group (PP) (Berquin et al.,
2000a; Stornetta et al., 2005; Voituron et al., 2011), based on
previously published data (Voituron et al., 2006, 2011; Huckstepp
et al., 2015). We localized all of these structures with the aid of
numerous ventral, dorsal, and lateral landmarks (such as those
indicated in Figures 2–5) to delimit the entire volume of each
structure.

The distribution of c-FOS cells was plotted onto drawings
with the aid of a drawing tube attached to the microscope
to illustrate their distribution (Figure 2). c-FOS and double-
labeled cells were also photographed with a digital camera (Leica
DFC450C, Leica Microsystems, Heidelberg, Germany). C-FOS
counts were performed by eye using a counting grid in the
eyepiece of the microscope at x400 to count all immunolabeled
cells by varying the micrometer of the microscope, which was
essential for tissue sections of 40 µm. For dual labeling, the
counts were performed either by eye (at x400 except for the locus
coeruleus, the pallidus, and obscurus raphe nuclei where x1000
magnification was used due to the high density of TH and 5-HT
in labeled cells) or using images obtained with a digital camera
(c-FOS/PHOX2B). We compared the total number of cells under
normoxia and hypoxia for each analyzed area (Table 1). We
analyzed the differences between the mean numbers of neurons
obtained under normoxia or hypoxia using GraphPad (GraphPad
Prism5 San Diego California USA) and used the Mann-Whitney
tests to determine significance. Differences were considered to be
significant if p < 0.05.

RESULTS

The mean age of the pups assessed in the study (n = 31) was
24.6 ± 2.6 h and the mean weight 1.42 ± 0.02 g. Their mean f R
was 139.0± 14.4 breaths·min−1, mean VT 25.6± 7.6µl·g−1, and
mean V̇E 3.8± 1.0 ml·g−1·min−1 (n= 12).

Hypoxia Induced the Classical Biphasic
Respiratory Response Observed in
Newborns: An Early and Transient Increase
Followed by a Severe Decline in Ventilation
The respiratory variables of unrestrained one-day-old mice
maintained in the recording chamber under normoxia remained
stable throughout the recording period (n = 4). Baseline values
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were defined after 20 min of adaptation in the chamber and
the following values of the respiratory variables expressed as the
percentage baseline. At the end of the recording period, the mean
f R and mean VT were 106.9± 14.3% and 120.9± 7.6% of control
values, respectively, leading to a mean V̇E of 131.2 ± 12.4%
of control values. This observation shows the stability of the
respiratory variables during the period of retention in the
recording chamber.

The mean f R was 166.1 ± 12.5 breaths·min−1, the mean VT

35.6 ± 9.6 µl·g−1, and the mean V̇E 5.4 ± 1.2ml·g−1·min−1

during the normoxic control period in the unrestrained one-day-
old mice that were subsequently submitted to hypoxia (n = 8).
The mean V̇E tended to peak at 158.1 ± 29.4% of control values
2 min after the onset of hypoxic exposure (Figure 1). It then
decreased significantly dropping below control (p < 0.04) and
below the high values observed at the onset of hypoxia (p < 0.03)
to 68.9 ± 10.0% of control values 25 min after the onset of
hypoxic exposure (Figure 1). Changes in V̇E were related to the
respective effects of hypoxia on both f R and VT. The mean f R was
at 115.4± 19.0% of control values 2min after the onset of hypoxic
exposure and at 86.5 ± 7.5% of control values 25 min after the
onset of the hypoxic test. The mean VT was at 138.8 ± 18.6% of
control values 2 min after the onset of hypoxic exposure and at
73.7 ± 15.8% of control values 25 min after the onset of hypoxic
exposure.

Brainstem Areas that Participate in
Respiratory Control Have a Low Number of
c-FOS-Positive Cells under Normoxic
Conditions
One-day-old mice maintained under normoxic conditions
(control animals) had a relatively small number of c-FOS-positive
cells both in respiratory related areas of the medulla oblongata:
NTS, VLM, RTN/pFRG, PP, 10N, 12N, and medullary raphe
nuclei (Table 1; Figures 2A,C,G,I,K), and related respiratory
areas of the pons:. PB, KF, A5, LC, and SubC (Table 1;
Figures 2E,M).

FIGURE 1 | One-day-old mice displayed a ventilatory depression in

response to hypoxia. Average percent change in V̇E from baseline at 2 min

(peak HVR, black bar) and 25 min (white bar) of hypoxic exposure in

one-day-old mice (n = 8). *p < 0.05 vs. baseline, #p < 0.05 vs. peak HVR.

TABLE 1 | Average number of C-FOS-positive cells in brainstem

respiratory areas.

Normoxia Hypoxia

MEDULLA

cNTS 16.0 ± 1.7 39.7 ± 8.0*

P < 0.033

mNTS 35.4 ± 6.4 139.8 ± 17.8**

P < 0.008

vlNTS 42.8 ± 9.6 130.5 ± 19.9*

P < 0.011

ROb 153.4 ± 11.7 87.6 ± 21.1

ns

RPa 107.2 ± 31.6 180.1 ± 44.0

ns

RMg 21.0 ± 2.0 50.2 ± 6.8*

P < 0.023

rVLM 38.2 ± 9.7 66.0 ± 16.7

ns

cVLM 18.6 ± 5.4 81.9 ± 16.4**

P < 0.002

PP 19.4 ± 7.9 80.6 ± 20.9*

P < 0.02

RTN/pFRG 12.5 ± 2.1 30.7 ± 7.2*

P < 0.03

7N 275 ± 8.0 216.6 ± 43.8

ns

10N 6.7 ± 2.4 23.6 ± 5.7

ns

12N 182.1 ± 25.5 122.2 ± 11.31*

P < 0.033

PONS

A5 21.5 ± 6.6 30.3 ± 6.14

ns

LC 37 ± 7.9 41 ± 9.4

ns

dSubC 42.6 ± 9.1 170.1 ± 32.3*

P < 0.048

vSubC 26.4 ± 11.2 56.6 ± 8.5

ns

mPB 7.4 ± 1.4 46.0 ± 12.7**

P < 0.008

lPB 6.8 ± 2.1 27.4 ± 6.35 *

P < 0.037

KF 7.2 ± 2.9 15.8 ± 6.1

ns

Values presented are total number of c-FOS-positive cells ± S.E.M. *P < 0.05, hypoxic

values relative to normoxic values. **P < 0.01, hypoxic values relative to normoxic values.

ns, not significant.

cNTS, commissural part of nucleus of the tractus solitarius; cVLM, caudal part of the

ventrolateral reticular nucleus of the medulla; dSubC, dorsal part of the subcoeruleus

nucleus; KF, Kölliker fuse nucleus; LC, locus coeruleus; lPB, lateral part of the parabrachial

nucleus; mNTS, medial part of nucleus of the tractus solitarius; mPB, medial part of the

parabrachial nucleus; PP, parapyramidal group; RMg, nucleus of the raphe magnus; RPa,

nucleus of the raphe pallidus; ROb, nucleus of the raphe obscurus; rVLM, rostral part

of the ventrolateral reticular nucleus of the medulla; RTN/pFRG, retrotrapezoid/parafacial

region; vlNTS, ventrolateral part of nucleus of the solitary tract; vSubC, ventral part of the

subcoeruleus nucleus.
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FIGURE 2 | c-FOS-positive cells in the medulla oblongata and pons of one-day-old mice under hypoxia. Drawings of representative sections from the

medulla oblongata (A–D) and pons (E,F) under normoxia (A,C,E) and hypoxia (B,D,F). Scale bar = 500 µm. Photomicrographs of c-FOS immunoreactivity in the

mNTS (G,H), the RPa and ROb (I,J), the PP (K,L), and the dSubC (M,N) under normoxia (G,I,K,M) and hypoxia (H,J,L,N). Scale bar = 100 µm. 7N, facial nucleus;

10N, dorsal motor nucleus of the vagus 12N, hypoglossal nucleus; A5, A5 region; Amb: ambiguus nucleus; AP, area postrema; dSubC, dorsal part of the

subcoeruleus nucleus; mNTS, median part of the nucleus of the tractus solitarius; cVLM, caudal part of the ventrolateral medullary reticular nucleus; PP, parapyramidal

group; Py, pyramidal tract; RPa, raphe pallidus nucleus; RMg, raphe magnus nucleus; RTN/pFRG, retrotrapezoid nucleus/parafacial respiratory group; vlNTS,

ventrolateral part of the nucleus of the tractus solitarius; vSubC, ventral part of the subcoeruleus nucleus.

Hypoxia Induces an Increase in c-FOS
Expression in Brainstem Areas that
Participate in Respiratory Control
Medulla Oblongata

Nucleus of the solitary tract
The three analyzed subdivisions of the NTS i.e., cNTS, mNTS,
and vlNTS, especially the mNTS, had significantly more c-
FOS positive cells under hypoxic than normoxic conditions
(Table 1; Figures 2B,H; +148, +235, and +205%, respectively).
Virtually none of the c-FOS-positive cells were immunolabeled
for TH (Figures 3A,D); we observed no dually labeled cells
in the cNTS and vlNTS and only 0.3% in the mNTS. In

addition, some of the c-FOS-positive cells of the cNTS and
mNTS were also immunoreactive for PHOX2B: 18 and 25%,
respectively.

Hypoglossal nucleus
There were slightly, but significantly, fewer c-FOS-positive cells
in the 12N under hypoxia than normoxia (Table 1; Figure 2B;
−33%).

Dorsal motor nucleus of vagus
We observed a higher of number of c-FOS-positive cells in the
10N under hypoxia than normoxia, but the difference was not
significant (Table 1).
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FIGURE 3 | Catecholaminergic character of hypoxic c-FOS-positive cells of one-day-old mice. Drawings illustrating the distribution of cells immunoreactive

for c-FOS (white points) or both c-FOS and TH (black points) in the mNTS, vlNTS (A), VLM (B), and dSubC and vSubC (C) under hypoxic conditions. Scale bar = 100

µm. Photomicrographs of sections double-immunolabeled for c-FOS (gray) and TH (brown) in the mNTS (D), VLM (E), and dSubC (F) corresponding to the regions

outlined by the black rectangles in (A–C), respectively. Scale bar = 100 µm. (G) photomicrograph representing an enlargement of the black rectangle in (F) Scale

bar = 10 µm. Black arrows indicate c-FOS-positive neurons that are also immunoreactive with TH. Amb: ambiguus nucleus; cc: central canal; DMX, dorsal motor

nucleus of vagus; dSubC, dorsal part of the subcoeruleus nucleus; mNTS, median part of the nucleus of the tractus solitarius; Mo5, motor trigeminal nucleus; VLM,

ventrolateral medullary reticular nucleus; vlNTS, ventrolateral part of the nucleus of the tractus solitarius; vSubC, ventral part of the subcoeruleus nucleus.

Ventrolateral reticular nucleus of the medulla
The cVLM, but not the rVLM, which encompasses the pre-
Bötzinger complex, had more c-FOS-positive cells under hypoxic
than normoxic conditions (Table 1; Figures 2A,B;+340%). Only
a few of the hypoxic-c-FOS-positive cells of the cVLM were also
immunoreactive for TH (Figures 3B,E; 5%).

Retrotrapezoid/parafacial region
The RTN/pFRG region also had significantly more c-FOS-
positive cells (∼146%) under hypoxia than normoxia
(Table 1; Figures 3C,D). None of the c-FOS-positive cells
of the RTN/pFRG region were immunolabeled for PHOX2B
(Figure 4).
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FIGURE 4 | Hypoxic c-FOS-positive cells of the RTN/pFRG in

one-day-old mice are not immunolabeled for PHOX2B. Drawing

illustrating the distribution of cells immunoreactive for c-FOS and PHOX2B in

the RTN/pFRG (A). Scale bar = 100 µm. Solid black triangles indicate

neurons that express PHOX2B and white points indicate c-FOS-positive

neurons. Photomicrographs of a section double-immunolabeled for c-FOS (in

red, B,D) and PHOX2B (in green, C,D) in the RTN/pFRG corresponding to the

region outlined by the black rectangle (A). Scale bar = 50 µm. n7, facial

nucleus; RTN/pFRG, retrotrapezoid nucleus/parafacial respiratory group.

Parapyramidal group
The group of cells adjacent to the RTN/pFRG, called the
PP, also had more c-FOS-positive cells under hypoxia than
normoxia (Table 1; Figures 2A–D,K,F; +315%). A substantial
portion of these cells, 30%, were also immunoreactive for 5-HT
(Figures 5A,C,E).

Medullary raphe nuclei
Among medullary raphe nuclei, the RMg displayed more c-FOS-
positive cells under hypoxic than normoxic conditions (Table 1;
Figures 2C,D; +139%). Only a small portion of RMg hypoxic-
c-FOS-positive cells, 15%, were also immunoreactive for 5-HT
(Figures 5B,D,F). In contrast, there were fewer c-FOS-positive
cells under hypoxia than normoxia in the ROb but the difference
was not significant (Table 1; Figures 2A–D,I,J; −43%) and no
change in the number of c-FOS-positive cells in the RPa (Table 1;
Figures 2B,J).

Pons

Parabrachial and Kölliker fuse nuclei
In the PB complex, both the lPB and mPB showed substantially
more c-FOS-positive cells under hypoxia than normoxia
(Table 1; Figures 2E,F; +303 and +522%, respectively). In
contrast, there was no significant difference in the number
of c-FOS-positive cells in the KF under hypoxia (Table 1;
Figures 2E,F).

Locus coeruleus and subcoeruleus nucleus
There were significantly more c-FOS-positive cells in the dSubC
under hypoxic conditions (Table 1; Figures 2E,F,M,N; +299%)
but not in the vSubC (Table 1; Figures 2E,F). Among the
hypoxic-c-FOS-positive cells of the dSubC, 45% were also
immunoreactive for TH (Figures 3C,F,G). Additionally, there
was no difference in the number of c-FOS-positive cells in the
LC (Table 1; Figures 2E,F).

A5 region
We observed no difference in the number of c-FOS-positive
cells in A5 between hypoxic and normoxic conditions (Table 1;
Figures 2E,F).

DISCUSSION

We described and characterized the brainstem neuronal network
activated by hypoxia in one-day-old mice by analyzing c-FOS
protein levels by immunohistochemistry. Our main finding is
that one-day-old mice displayed activation of catecholaminergic
cells of the dSubC, an area implicated in the strong depressive
pontine influence under hypoxia previously reported in the
fetus, but not in newborns or adults of other mammalian
species (Breen et al., 1997; Teppema et al., 1997; Berquin et al.,
2000a,b; Bodineau and Larnicol, 2001). Our results also revealed
that the hypoxia-activated brainstem neuronal network of one-
day-old mice is characterized by weak or absent activation
of cells in areas involved in hypoxic hyperventilation i.e.,
catecholaminergic neurons of the VLM and PHOX2B cells of the
retrotrapezoid/parafacial region (Erickson and Millhorn, 1991,
1994; Takakura et al., 2006) as suggested by the scarcity or

Frontiers in Physiology | www.frontiersin.org 8 December 2016 | Volume 7 | Article 609

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Joubert et al. Brainstem Structures Hypoxia-Activated in One-day-old Mice

FIGURE 5 | Serotoninergic character of hypoxic c-FOS-positive cells of one-day-old mice. Drawings illustrating the distribution of cells immunoreactive for

c-FOS (white points) or both c-FOS and 5-HT (black points) in the PP (A) and RMg (B) under hypoxic conditions. Scale bar = 100 µm. Photomicrographs of sections

double-immunolabeled for c-FOS (gray) and 5-HT (brown) in the PP (C) and RMg (D) corresponding to the regions outlined by the black rectangles of (A,B),

respectively. Scale bar = 100 µm. (E,F) photomicrographs representing an enlargement of the black rectangles in (C,D), respectively. Scale bar = 50 µm. Black

arrows indicate c-FOS-positive neurons that are also immunoreactive for 5-HT. RPa, raphe pallidus nucleus; RMg, raphe magnus nucleus; PP, parapyramidal group;

Py, pyramidal tract.

absence of TH-positive or PHOX2B-positive cells among the
c-FOS-positive-cells.

Whole Body Flow Barometric
Plethysmography in One-day-old Mice
We measured respiratory variables using whole-body flow
barometric plethysmography in freely moving newborn mice
to limit confinement-related stress. This is a commonly used
technique to measure pulmonary ventilation in unrestrained
and non-anesthetized animals that consists of recording the
changes of pressure in a chamber caused by breathing (Tree
et al., 2014). As the inspired gas is warmed and humidified
from the ambient to the pulmonary values, the total pressure
in the recording chamber increases; the opposite occurs during
expiration. The accuracy of VT calculations based on whole-
body plethysmography data of small animals has been questioned
(Enhorning et al., 1998; Mortola and Frappell, 1998). The
body temperature, humidity, and temperature of the recording
chamber are difficult to control due to the small size of the devices
used for such small animals, leading to highly variable absolute
VT and V̇E values. These values should thus be viewed with
caution. This has led researchers to base their analysis on the
changing values of VT and V̇E as a percentage of control values.
Furthermore, small mammals, particularly newborns, develop
hypoxic hypothermia due to hypometabolism and increased
heat loss. In our experiments, the temperature of the animal
was evaluated before and after each experiment via an oral
probe because of the difficulty to measure body temperature
continuously with our home-made plethysmograph. Thus, our
plethysmographic data should be taken with caution. Indeed,
the plethysmography was used primarily to simply assure the

presence of a biphasic respiratory response in one day old mice,
as classically described in other newborns (Simakajornboon et al.,
2004; Bairam et al., 2013).

In addition to these considerations, the pups were isolated
from their mother for a long time during the plethysmographic
recordings. We observed no significant modification of the
respiratory variables in animals maintained under normoxia
despite this long separation that may have led to physiological
changes. This indicates that changes in the respiratory variables
developed by newborn mice submitted to hypoxic conditions
are effectively due to the reduction in O2, and not their long
retention.

Neurons of the Subcoeruleus Nucleus, an
Area Implicated in the Strong Depressive
Pontine Influence under Hypoxia in the
Fetus, Are Activated by Hypoxia in
One-day-old Mice
Analysis of c-FOS protein revealed increased activity in neurons
of the mPB and dSubC. Such an increase has not been reported
in other newborn rodents (see the Figure 3 in Berquin et al.,
2000b). In the fetus of sheep, the participation of cells located
in the dorsolateral part of the pons to HVD, more precisely
those in the mPB, KF, and SubC, has already been discussed
in the literature (Gluckman and Johnston, 1987; Walker, 1995;
Breen et al., 1997; Nitsos and Walker, 1999; Walker et al., 2000;
Teppema and Dahan, 2010). Hypoxia induces an increase in c-
FOS expression in neurons of the mPB and SubC in fetal, but not
newborn, sheep (Breen et al., 1997; Nitsos and Walker, 1999).
The hypoxia-activated cells of the SubC have been proposed to
be O2 sensors and to strongly inhibit breathing in fetal sheep,
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but to lose this effect after birth because of their inhibition
by peripheral chemoreceptors (Breen et al., 1997). The present
observed increase in c-FOS-positive cells in the dSubC, of which
a significant portion are catecholaminergic, may be indicative of
activated cells with similar properties to those identified in the
fetus by Walker and collaborators (Walker, 1995; Breen et al.,
1997; Nitsos and Walker, 1999). In such a model, they may be
involved in HVD in one-day-old mice and constitute a non-
inhibited fetal mechanism at birth different from that of other
studied newborn mammals, such as newborn rats, which are
more mature at birth than mice (Gauda, 2006). This feature
of one-day-old mice may make this model particularly suitable
for mechanistic studies on the occurrence of excessive HVD
in premature newborns or even on the occurrence of SIDS.
Indeed, SIDS has been hypothesized to result from the awakening
of a defense mechanism of the fetus consisting of a strong
depressive response to hypoxemia that limits O2 consumption
(Lavezzi, 2015). A recent publication by Lavezzi and collaborators
emphasized hypoplasia and neurochemical alterations of KF
neurons underlying the pathogenetic mechanisms of SIDS
(Lavezzi, 2015). Our present data and previously published work
in fetal and newborn sheep (Breen et al., 1997) underscore the
interest in searching for possible alterations in the integrity of
dSubC neurons in the brainstems of infants who died of SIDS.

In rats, SubC and mPB have been shown to contain pre-
motoneurons that innervate hypoglossal motoneurons involved
in maintaining upper airway patency during breathing (Dobbins
and Feldman, 1995; Fay and Norgren, 1997). The presently
observed decrease in c-FOS protein levels in the hypoglossal
nucleus cells may be linked to an inhibitory drive coming from
the dSubC and mPB during hypoxia. This hypothetic inhibitory
pathway may contribute to HVD by reducing the airway opening
when activated under hypoxia. Noradrenergic cells of the dSubC
innervate the hypoglossal nucleus, of which the motoneurons are
activated by noradrenalin (Aldes et al., 1992; Fenik et al., 2008;
Funk et al., 2011). If dSubC cells are involved in the decrease in
the expression of c-FOS in the hypoglossal nucleus, they would
not be those immunoreactive for TH. Further experiments are
necessary to determine the pharmacological phenotype of the
c-FOS-positive, but TH-negative, cells of the dSubC.

Hypoxia in One-day-old Mice Induces an
Increase in the Number of C-FOS-Positive
Cells in the Nucleus Raphe Magnus, an
Area Previously Described as Having a
Hypoxic Respiratory Depressive Influence
We observed a large increase in the number of c-FOS-positive
cells under hypoxia in the RMg. Such an increase has not
been reported in newborns of other species (Breen et al., 1997;
Teppema et al., 1997; Horn et al., 2000; Berquin et al., 2000b) or
adults subjected to moderate hypoxia (Berquin et al., 2000a), but
has been reported in adults under severe hypoxia (Erickson and
Millhorn, 1994). Based on data from the literature, we suggest
that hypoxia-activated RMg neurons contribute to HVD. Indeed,
activation of RMg neurons attenuate the activation of NTS
neurons by peripheral chemoreceptors (Perez and Ruiz, 1995)

and RMg neurons exert a moderating influence on the VT under
hypoxic conditions (Gargaglioni et al., 2003). Thus, activation of
RMg neurons in one-day-old mice may participate in the HVD.
With the exception of a few cells, the hypoxic c-FOS-positive
cells that we observed were not serotoninergic. In addition to
serotoninergic neurons, the RMg contains GABAergic neurons
that could be involved in HVD. This is supported by the fact that
iv administration of bicuculline, a GABAA antagonist, reduces
the respiratory inhibition that occurs after electrical stimulation
of the RMg (Cao et al., 2006).

Hypoxia Induces an Increase in c-FOS
Expression in NTS and VLM, Two
Structures that Participate in Hypoxic
Hyperventilation, but There Is Little or No
c-FOS Protein in Catecholaminergic
Neurons
Hypoxia induced an increase in the number of c-FOS-
positive cells in areas recognized to be involved in early
hypoxic hyperventilation triggered by stimulation of peripheral
chemoreceptors (see for revue Teppema and Dahan, 2010) i.e.,
the cNTS, mNTS, and lPB. The cNTS and mNTS constitute the
major central site for the integration of inputs from peripheral
chemoreceptors whereas only few afferents from peripheral
chemoreceptors project toward the VLM (Finley and Katz, 1992).
The two subnuclei of the NTS are the first relay between
peripheral afferences and the VLM and lPB (Nunez-Abades
et al., 1993; Hayward and Felder, 1995). All of these connections
conceivably provide a common basis for the hypoxic increase in
c-FOS expression that we observed in these structures in one-
day-old mice and that has been observed in other species at
several stages of development (Teppema et al., 1997; Berquin
et al., 2000b).

The dual detection of c-FOS and TH revealed that no, or
only very few, neurons activated by hypoxia in the cNTS, mNTS,
and VLM were catecholaminergic. Previous data about the
catecholaminergic character of c-FOS-positive hypoxia-activated
cells in these structures made in adult mammals have showed
that no, or very few, c-FOS hypoxia-activated neurons in the
NTS are also catecholaminergic, whereas a large portion of c-FOS
hypoxia-activated neurons in the VLM are also immunoreactive
for TH (Erickson and Millhorn, 1994; Soulier et al., 1997;
Teppema et al., 1997). The only data from the literature
concerning this issue in newborn animals is the study of c-
FOS expression in newborn rats under high-altitude conditions
showing that an altitude of 8000m induces an increase in the
number of c-FOS positive cells in the NTS and VLM with a
large portion of them in the VLM also immunoreactive for
TH (Kaur et al., 2001). Taking into account these data, our
results suggest that the effect of hypoxia on the VLM differed
in one-day-old mice from other studied newborn or adult
mammals. This difference may depend on the maturation state
of either VLM neurons or brainstem connections. The absence
of VLM catecholaminergic neuron activation in one-day-old
mice could conceivably participate in HVD, and even strengthen
it in this model, as they have been associated with hypoxic
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hyperventilation (Erickson and Millhorn, 1994; Soulier et al.,
1997; Teppema et al., 1997). If this observation is likely due to the
degree of immaturity of the central nervous system of the one-
day-old mice as we assume (Teppema et al., 1997; Gauda, 2006;
Mallard and Vexler, 2015), a similar mechanismmay be involved
in exacerbating the respiratory problems encountered at birth in
premature infants.

The Ventral Medullary Surface Displays
Increased c-FOS Expression in
One-day-old mice in Serotonin- but Not
PHOX2B-Positive Neurons
We observed an increase in the number of c-FOS-positive
cells in the RTN/pFRG. The RTN/pFRG is involved in the
respiratory adaptation to both hypercapnia (Teppema et al.,
1997; Nattie, 2001; Okada et al., 2002; Guyenet et al., 2005;
Stornetta et al., 2006; Teppema and Dahan, 2010; Guyenet
and Bayliss, 2015) and hypoxia (Bodineau et al., 2000a, 2001;
Bodineau and Larnicol, 2001; Takakura et al., 2006; Voituron
et al., 2006, 2011; Teppema and Dahan, 2010). The RTN/pFRG
contains both CO2 and O2 sensor cells (Guyenet et al., 2005;
Voituron et al., 2006, 2011; Onimaru et al., 2008; Lazarenko
et al., 2009; Guyenet and Mulkey, 2010) and also integrates
chemosensory inputs from peripheral chemoreceptors (Berquin
et al., 2000a; Bodineau et al., 2000b; Takakura et al., 2006). The
well-identified CO2-sensor cells of the RTN/pFRG (Lazarenko
et al., 2009; Guyenet andMulkey, 2010) are derived from neurons
that express Phox2b, Atoh-1, and Egr-2, and are characterized
by the presence of PHOX2B, NK1 receptors, VGLUT2, TASK-
2, GPR4, and GALANIN (Weston et al., 2004; Stornetta et al.,
2006; Onimaru et al., 2008; Dubreuil et al., 2009; Rose et al.,
2009; Guyenet and Mulkey, 2010; Guyenet and Bayliss, 2015;
Ruffault et al., 2015). In the present work, none of the c-FOS
positive cells of the RTN/pFRG were PHOX2B-positive. This
suggests that although the one-day-old mice displayed severe
hypoventilation under hypoxia, hypoventilation may not entail
an increase in CO2 that should have been detected by the
PHOX2B cells of the RTN/pFRG. Regardless of the mechanisms
responsible for HVD, the concomitant hypometabolism that
maintains isocapnia, which constitutes a feature of the newborn
response to hypoxia (Mortola, 2004), appears to be extremely
effective in one-day-old mice. The activation of PHOX2B-
negative RTN/pFRG cells may depend on intrinsic O2-sensing
properties that we previously demonstrated by measuring c-FOS
expression in brainstem spinal cord preparations from newborn
rodents (Voituron et al., 2006, 2011). It is unlikely that the
increase in the number of c-FOS-positive/PHOX2B-negative
cells in RTN/pFRG depends on peripheral chemoreceptor inputs.
Takakura and collaborators have shown that such indirect
activation implicates cNTS glutamatergic neurons projecting
to PHOX2B RTN/pFRG cells (Takakura et al., 2006). This
suggests possible immaturity of the connection between cNTS
cells activated by peripheral chemoreceptors and RTN/pFRG
PHOX2B-positive cells.

We observed a greater increase in c-FOS expression in the
more medial group, called PP, with 30% of the c-FOS-positive

cells containing 5-HT, than for the RTN/pFRG. This group
of cells has been suggested to be the positional homolog of
the human medullary arcuate nucleus (Filiano and Kinney,
1992), a structure in which abnormalities have been reported in
infants who died of SIDS (Filiano and Kinney, 1992; Paterson
et al., 2006; Kinney et al., 2011). The increase in c-FOS protein
levels induced by hypoxia in the PP is of particular interest
given the possible involvement of both the arcuate nucleus and
abnormalities in the respiratory response to hypoxia in SIDS
(Paterson et al., 2006; Kinney et al., 2011). The PP contains
GABAergic and serotoninergic neurons (Stornetta and Guyenet,
1999; Weston et al., 2004; Stornetta et al., 2005) and displays
multiple sites of projections including the pre-Bötzinger complex
and intermediolateral column (Holtman et al., 1990; Jansen
et al., 1995). Functionally, the PP has been reported to be
involved in autonomic regulation under hypoxia. Darnall and
collaborators reported that the destruction of 5-HT medullary
neurons, including those of the ROb and PP increase the arousal
latency from sleep induced by hypoxia in newborn rats (Darnall
et al., 2016). In the relatively immature one-day-old mouse
(Gauda, 2006), we only observed an increase in c-FOS- and
5-HT-positive cells in the PP, but not in the ROb, where the
number of c-FOS-positive cells tended to decrease. Thus, our
results suggest that 5-HT PP neurons must have a critical role
in arousal from sleep under hypoxia in immature newborn
mammals. Our results combined with the fact that hypoplasia
of this region has been shown in newborn death due to SIDS,
suggests that the dysfunction of 5-HT neurons of the PP in
infants, and particularly in premature infants, could result in
a high risk situation due to the decrease of arousal from sleep
during hypoxia.

CONCLUSION

This study significantly contributes to the knowledge of key
brainstem cell populations, for which the activity is modulated
during hypoxia using an animal model characterized by its
immaturity relative to other mammals, the one-day-old mouse
(Gauda, 2006; Gaultier et al., 2006; Teppema and Dahan, 2010;
Darnall et al., 2016; Mallard and Vexler, 2015). Our results
highlight changes in the activity of cell populations that may
participate in the respiratory depression of this animal model i.e.,
the activation of catecholaminergic cells of the dSubC, an area
previously implicated in a strong depressive pontine influence
in the fetus but not in newborns. Also, we did not observe
an increase in the number of c-FOS-positive cells commonly
associated with the development of hypoxic hyperventilation,
catecholaminergic cells of VLM, and PHOX2B-postive neurons
of the RTN/pFRG. This was suggested by the scarcity or absence
of TH-positive or PHOX2B-positive cells among the c-FOS-
positive-cells. Finally, our results suggest that 5-HT neurons
of the PP, shown to be involved in arousal from sleep, are
the only serotoninergic medullary neurons activated by hypoxia
in immature mammals. Some physiopathological conditions in
which depressant and arousing mechanisms would be more or
less potent might lead to life-threatening situations, especially
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in premature infants. In conclusion, one-day-old mice highlight
characteristics to model dysfunction of the breathing network
in premature infants. In the absence of data in the literature,
future experiments to explore c-FOS expression in older mice,
displaying a mature hypoxic ventilatory response, would help
to exclude the possibility that the pattern of c-FOS expression
observed in one-day-old mice is simply species specific and not
due to their relative immaturity.
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