Dual matter-wave inertial sensors in weightlessness

Abstract : Quantum technology based on cold-atom interferometers is showing great promise for fields such as inertial sensing and fundamental physics. However, the finite free-fall time of the atoms limits the precision achievable on Earth, while in space interrogation times of many seconds will lead to unprecedented sensitivity. Here we realize simultaneous 87 Rb– 39 K interferometers capable of operating in the weightless environment produced during parabolic flight. Large vibration levels (10 À 2 g Hz À 1/2), variations in acceleration (0–1.8 g) and rotation rates (5° s À 1) onboard the aircraft present significant challenges. We demonstrate the capability of our correlated quantum system by measuring the Eötvös parameter with systematic-limited uncertainties of 1.1 Â 10 À 3 and 3.0 Â 10 À 4 during standard-and microgravity, respectively. This constitutes a fundamental test of the equivalence principle using quantum sensors in a free-falling vehicle. Our results are applicable to inertial navigation, and can be extended to the trajectory of a satellite for future space missions.
Type de document :
Article dans une revue
Nature Communications, Nature Publishing Group, 2016, 7, pp.13786. 〈10.1038/ncomms13786〉
Liste complète des métadonnées

Littérature citée [40 références]  Voir  Masquer  Télécharger

Contributeur : Gestionnaire Hal-Upmc <>
Soumis le : lundi 9 janvier 2017 - 10:53:33
Dernière modification le : lundi 10 décembre 2018 - 01:25:48
Document(s) archivé(s) le : lundi 10 avril 2017 - 13:13:45


Publication financée par une institution


Distributed under a Creative Commons Paternité 4.0 International License



Brynle Barrett, Laura Antoni-Micollier, Laure Chichet, Baptiste Battelier, Thomas Lévèque, et al.. Dual matter-wave inertial sensors in weightlessness. Nature Communications, Nature Publishing Group, 2016, 7, pp.13786. 〈10.1038/ncomms13786〉. 〈hal-01429804〉



Consultations de la notice


Téléchargements de fichiers