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Dual matter-wave inertial sensors
in weightlessness
Brynle Barrett1, Laura Antoni-Micollier1, Laure Chichet1, Baptiste Battelier1, Thomas Lévèque2, Arnaud Landragin3

& Philippe Bouyer1

Quantum technology based on cold-atom interferometers is showing great promise for fields

such as inertial sensing and fundamental physics. However, the finite free-fall time of the

atoms limits the precision achievable on Earth, while in space interrogation times of many

seconds will lead to unprecedented sensitivity. Here we realize simultaneous 87Rb–39K

interferometers capable of operating in the weightless environment produced during

parabolic flight. Large vibration levels (10� 2 g Hz� 1/2), variations in acceleration (0–1.8 g)

and rotation rates (5� s� 1) onboard the aircraft present significant challenges. We

demonstrate the capability of our correlated quantum system by measuring the Eötvös

parameter with systematic-limited uncertainties of 1.1� 10� 3 and 3.0� 10�4 during

standard- and microgravity, respectively. This constitutes a fundamental test of the equiva-

lence principle using quantum sensors in a free-falling vehicle. Our results are applicable to

inertial navigation, and can be extended to the trajectory of a satellite for future space

missions.
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T
he field of quantum physics and atom optics is promising
major leaps forward in technology for many applications,
including communication, computation, memory and

storage, positioning and guidance, geodesy, and tests of
fundamental physics. Among these developments, the coherent
manipulation of atoms with light, which exploits the particle–
wave duality of matter, has led to the development of matter-wave
interferometers exhibiting ground-breaking precision1–4—
particularly for measuring inertial effects such as rotations5–7

and accelerations3,4,8,9. However, the exquisite sensitivity of these
quantum inertial sensors often limits their applicability to very
quiet and well-controlled laboratory settings—despite recent
efforts that have led to major technological simplifications
and the emergence of portable devices3,10,11. The precision of
these instruments becomes particularly relevant when it comes
to fundamental tests of general relativity. For instance, the
universality of free fall (UFF), a cornerstone of general relativity,
which states that a body will undergo an acceleration in a
gravitational field that is independent of its internal structure or
composition, can be probed at the quantum scale12,13. Tests of
the UFF generally involve measuring the relative acceleration
between two different test masses in free fall with the same
gravitational field, and are characterized by the Eötvös parameter

Z ¼ 2
a1� a2

a1þ a2
; ð1Þ

where a1 and a2 are the gravitational accelerations of the two
masses. Presently, the most precise measurement of Z using atom
interferometry has been carried out with the two isotopes of
rubidium at the level of a few 10� 8 (ref. 14)—five orders of
magnitude less precise than the best tests with classical
bodies15,16. This has motivated increasing the sensitivity of
matter-wave interferometers (which scales as the square of the
free-fall time) by circumventing the limits set by the gravitational
free fall on Earth, either by building a large-scale vertical
apparatus1,17,18 or by letting the entire set-up fall in an evacuated
tower19. This is also one of the main goals for space-borne
experiments20,21, where the satellite can be viewed as an ideal
‘Einstein elevator’.

Our experiment, where two matter-wave sensors composed of
rubidium-87 and potassium-39 operate simultaneously in the
weightless environment produced by parabolic flight (Fig. 1),
represents an atom-interferometric test of the UFF in micro-
gravity. We demonstrate measurements of Z with precisions of
10� 3 during steady flight and a few 10� 4 in weightlessness using
a new interferometer geometry optimized for microgravity
operation. Since the aircraft’s trajectory during parabolic flight
closely mimics that of a satellite in an elliptical orbit, but with
residual accelerations of B1% terrestrial gravity, a precise
analysis of its trajectory was necessary to compute the systematic
effects on the interferometer phase. This enabled us to quantify
the present performance of our atomic sensors onboard the
aircraft, and has direct consequences for future implementations
of the strap-down inertial navigation algorithm with matter-wave
interferometers10,22,23. This analysis has also allowed us to put
strict requirements on the satellite trajectory in future space
missions that target precisions of dZC10� 15 (refs 20,21).

Results
Operation during steady flight. When the aircraft is in steady
flight, each of the matter-wave inertial sensors acts as an atom-
based gravimeter3,8,9,24, where counter-propagating light pulses
drive Doppler-sensitive single-diffraction Raman transitions
between two hyperfine ground states 1; pj i and 2; pþ ‘ keff

�� �
,

where p is the momentum of the atoms resonant with the Raman
transition. This creates a superposition of two internal states

separated by the two-photon momentum :keff, where : is the
reduced Planck’s constant and keffC(4p/l)Ez is the effective
wavevector of the Raman light (l¼ 780 nm for rubidium and
767 nm for potassium). Because the Raman beams are retro-
reflected, this transfer can occur along either the upward (� keff)
or downward (þ keff) directions, with an efficiency determined
by the vertical velocity v of the atoms. If the velocity is large
enough (for example, the Doppler shift keff � v is larger than the
spectral width keffsv associated with sample’s velocity spread sv),
a specific momentum transfer direction can be selected by an
appropriate choice of the Raman laser frequency difference.
Changing the sign of the transfer direction allows the rejection of
direction-independent systematics by summing two consecutive,
alternated measurements13,24. For each transfer direction, the
output of the interferometer is given by

P� ¼ P0� C
2

cos F�
� �

; ð2Þ

where P0 is the mean probability of finding the atom in one
interferometer output port, C is the fringe contrast and F±

is the total interferometer phase corresponding to a particular
momentum transfer direction (±:keff). This phase has
contributions from the gravitational acceleration facc¼ keff � aT2

(where a is the relative acceleration between the reference mirror
and the atoms, and T is the free-fall time between light pulses),
vibrations of the reference mirror fvib, the total laser phase
imprinted on the atoms by the Raman beams flas, systematic
effects fsys and a phase corresponding to a potential violation
of the equivalence principle fUFF

K;Rb ¼ keff
K;Rb � ðaK;Rb� aÞT2 for

either atomic species.

Operation during parabolic flight. To operate in weightlessness,
we introduced a new interferometer geometry consisting of two
simultaneous single-diffraction Raman transitions in opposite
directions, which we refer to as double single diffraction (DSD).
In microgravity, the residual Doppler shift is small and the two
opposite Raman transitions are degenerate. Thus, we choose a
fixed Raman detuning d within the spectral width defined by
the atomic velocity distribution that simultaneously selects
two velocity classes of opposite sign: ±v. This results in two
symmetric interferometers of opposite area (Fig. 2), which sum to
yield the output signal for a particular internal state

PDSD ¼ Pþ þ P� ¼ 2P0�C cos �Fð Þcos DFð Þ; ð3Þ
where 2P0, Cr1/2 since the sample is initially split into two
velocity classes by the first p/2-pulse. The DSD interferometer
signal given by equation (3) is a product of two cosines—one
containing the half-sum SF¼ 1

2(Fþ þF� ), which exhibits only
non-inertial contributions (flas, and direction-independent sys-
tematics), and one with the half-difference DF¼ 1

2(Fþ �F� ),
which contains all inertial contributions (facc, fvib and fUFF

K;Rb,
and direction-dependent systematics). Since non-inertial and
inertial contributions are now separated, we fix flas such that the
contrast (2C cos(SF)) is maximized, and the fringes are scanned
by the inertially sensitive phase DF. The DSD interferometer has
the advantage of simultaneously rejecting direction-independent
systematics during each shot of the experiment, since they
affect only the fringe contrast. Hence, the systematic phase shift
per shot is greatly reduced compared to the single-diffraction
configuration.

Correlated atomic sensor measurements. Onboard the aircraft
the dominant source of interferometer phase noise is caused by
vibrations of the reference mirror, which serves as the inertial
phase reference for both 87Rb and 39K sensors. Hence, the atomic
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signal caused by its motion is indistinguishable from motion of
the atoms. To make this distinction, we measured the mirror
motion with a mechanical accelerometer from which we compute
the vibration-induced phase fvib and correlate it with the
normalized output population of each species. We refer to this
process as the fringe reconstruction by accelerometer correlation
(FRAC) method10,24,25. Furthermore, since the two pairs of
Raman beams follow the same optical pathway and operate
simultaneously, the vibration noise is common mode and can be

highly suppressed from the differential phase between
interference fringes.

Figure 3 displays interferometer fringes for both 87Rb and 39K,
recorded during steady flight (1 g) and in weightlessness (0 g)
while undergoing parabolic manoeuvres, for interrogation times
T¼ 1 and 2 ms. Owing to the large Doppler shift induced by the
gravitational acceleration, fringes recorded in 1 g were obtained
with the single-diffraction interferometer along the þ keff

direction. Matter-wave interference in 0 g was realized using the
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z axis of the aircraft. (c) Schematic of the simultaneous dual-species interferometers. Two Mach–Zehnder-type p/2� p� p/2-pulse sequences are centred

about the p-pulse with interrogation times TRb and TK, respectively. These free-fall times are adjusted independently to equilibrate the scale factors of each
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DSD configuration along both ±keff simultaneously, which
requires a Doppler shift close to zero. Least-squares fits to these
fringes yield the FRAC phases fFRAC

Rb;K , which are related to the
gravitational acceleration of each species. From these fits we
measure a maximum signal-to-noise ratio of SNRC8.9, and infer
an acceleration sensitivity of (keffT2 SNR)� 1C1.8� 10� 4 g per
shot. The best performance onboard the aircraft was achieved
with the Rb interferometer at T¼ 5 ms (SNRC7.6), which yielded
3.4� 10� 5 g per shot—more than 1,600 times below the level of
vibration noise during steady flight (B0.055 g).

Correlation between the potassium and rubidium inter-
ferometers is clearly visible when the same data are presented
in parametric form (Fig. 3c,f). We obtain general Lissajous figures
when the acceleration sensitivity of the two species are not
equal25, as shown in Fig. 3c. These shapes collapse into an ellipse
(with an ellipticity determined by the differential phase) only
when the interferometer scale factor ratio kC1 (Fig. 3f). This
configuration is advantageous because both interferometers
respond identically to low-frequency mirror vibrations (that is,
frequencies t1/2T), and the Lissajous shape remains fixed
regardless of the common-mode phase span. We achieve
this condition by ensuring the interrogation times satisfy
TK=TRbð Þ2’ keff

Rb=keff
K .

Tests of the UFF. Using the sensitivity to gravitational accel-
eration along the z axis of the aircraft, we made a direct test of the
UFF in both standard gravity and in weightlessness. The relative
acceleration between potassium and rubidium atoms is measured
by correcting the relative FRAC phase shift for systematic effects
(see Methods), and isolating the differential phase due to a
possible UFF violation

fUFF
d ¼ fUFF

K � kfUFF
Rb ¼ keff

K T2
K aK� aRbð Þ; ð4Þ

where k ’ keff
K T2

K=keff
RbT2

Rb is the ratio of interferometer scale
factors when T is much larger than the Raman pulse durations25.

The Eötvös parameter was then obtained from
Z ¼ fUFF

d =keff
K aeff T2

K, where aeff is the average projection of the
gravitational acceleration vector a along the z axis over the
duration of the measurements. This quantity depends strongly on
the trajectory of the aircraft. For our experiments, we estimate
aeff

1g ’ 9:779 20ð Þm s� 2 and aeff
0g ’ 8:56 98ð Þm s� 2 during 1 g

and 0 g, respectively, where the uncertainty is the 1s variation of
the projection resulting from the aircraft’s orientation. We used
the Earth gravitational model EGM2008 to estimate changes in
local gravity over the range of latitude, longitude and elevation
during the flight and found these effects to be negligible
compared with those caused by the variation in the aircraft’s
roll and slope angles. The fact that aeff

0g is less than g originates
from the large variation in the aircraft’s slope angle over a
parabola (±45�). From the data shown in Fig. 3d–f, we measure
an Eötvös parameter of Z1 g¼ (� 0.5±1.1)� 10� 3 during
steady flight. Here the uncertainty is the combined statistical
(dZstat

1g ¼ 4.9� 10� 5) and systematic (dZsys
1g ¼ 1.1� 10� 3)

error—which was limited primarily by direction-independent
phase shifts due to the quadratic Zeeman effect. Similarly,
in microgravity we measure Z0 g¼ (0.9±3.0)� 10� 4, with
corresponding statistical (dZstat

0g ¼ 1.9� 10� 4) and systematic
(dZsys

0g ¼ 2.3� 10� 4) errors. Here the increased statistical error
is a result of fewer data available in 0 g. However, the systematic
uncertainty improves by a factor of B5 compared with
measurements in standard gravity. This is a direct result of the
reduced sensitivity of the DSD interferometer to direction-
independent systematic effects. Both measurements are consistent
with Z¼ 0.

Discussion
Although the systematic uncertainty was dominated by technical
issues related to time-varying magnetic fields, the sensitivity of
our measurements was primarily limited by two effects related to
the motion of the aircraft—vibrational noise on the retro-
reflection mirror and rotations of the interferometer beams.
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These effects inhibited access to large interrogation times due to a
loss of interference contrast, and are particularly important for
future satellite missions targeting high sensitivities with free-fall
times of many seconds.

In addition to phase noise on the interferometer, large levels of
mirror vibrations cause a loss of interference contrast due to a
Doppler shift of the two-photon resonance. To avoid significant
losses, the Doppler shift must be well bounded by the spectral
width of the Raman transition Oeff during each light pulse.
A model of this effect (Supplementary Note 1) confirms that it is
most significant when the s.d. of mirror vibrations is
svib

a \Oeff=keff T . Figure 4a shows the mean power spectral
density of vibrations onboard the aircraft during 1 g and 0 g. We
use these data to estimate upper limits on T corresponding to a
relative contrast loss of B60%. For our experimental parameters,
we find TmaxC20 and 30 ms for 1 g and 0 g, respectively.
Conversely, for future space missions planning interrogation
times of order T¼ 5 s and OeffC2p� 5 kHz (ref. 20), our model
predicts an upper limit on the vibration noise of svib

a o40mg. One
strategy to mitigate this effect is to suppress high-frequency
vibrations using an active isolation system modified to operate in
microgravity26. However, for inertial navigation applications,
measuring the vibrations is critical to accurate positioning, thus a
hybrid classical-quantum solution may be more viable27.
Onboard the aircraft, a combination of these two solutions will
give access to free-fall times up to B1 s, above which the jerk of
the aircraft will be too large to keep the atoms in the interrogation
region defined by the Raman beams.

During parabolic manoeuvres, the aircraft’s trajectory is
analogous to a Nadir-pointing satellite in an elliptical orbit.
The rotation of the experiment during a parabola causes a
loss of contrast due to the separation of wave-packet trajectories
(Fig. 4c) and the resulting imperfect overlap during the final
p/2-pulse1,28–30. For a rotation vector XT transverse to keff and a
velocity spread sv, the wave-packet displacement can be shown to
produce a relative contrast loss of C ’ e�ðk

effsvTÞ2 OTj jTð Þ2

(Supplementary Note 2). Hence, during a parabola where

|XT|C5� s� 1, the loss of contrast reaches 60% by T¼ 5 ms for
our 87Rb sample and by T¼ 2.8 ms for 39K. Figure 4d,e shows the
measured contrast loss as a function of T for each species during
both steady and parabolic flight. We fit a model to these data,
which includes effects due to both vibrations and rotations.
Using only a vertical scale factor as a free parameter, we find good
agreement with the data. This loss of contrast can be
compensated by counter-rotating the retro-reflection mirror
during the interferometer sequence1,28. In addition, imaging the
atoms on a camera can mitigate this effect, since the rotation-
induced spatial fringes in the atomic density profile can be
measured directly1,31. Using the model we validated with our
experiment, we estimate the rotation limitations of a highly
elliptical orbit such as in STE-QUEST20. In the case of a Nadir-
pointing satellite with an orbital rotation rate near perigee
(700 km) of B2.7� s� 1, we estimate a 60% loss of contrast by
TC73 ms for the experimental parameters proposed in ref. 20.
This justifies the choice of inertial pointing, where the rotation of
the satellite counteracts that of the orbit, to reach the target
sensitivity of 3� 10� 12 m s� 2 per shot at T¼ 5 s. We estimate a
loss of o1% at T¼ 5 s can be achieved if the residual rotation rate
is o6� 10� 5� s� 1.

We have realized simultaneous dual matter-wave inertial
sensors capable of operating onboard a moving vehicle—
enabling us to observe correlated quantum interference between
two chemical species in a weightless environment, and to
demonstrate a UFF test in microgravity at a precision two orders
of magnitude below the level of ambient vibration noise. With the
upcoming launch of experiments in the International Space
Station32,33, and in a sounding rocket34, this work provides
another important test bed for future cold-atom experiments in
weightlessness. In the Zero-G aircraft, even if the limit set by its
motion cannot be overcome, an improvement of more than
four orders of magnitude is expected by cooling the samples to
ultra-cold temperatures, and actively compensating the vibrations
and rotations of the inertial reference mirror. This will approach
the desired conditions for next-generation atom interferometry
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experiments, such as those designed for advanced tests of
gravitation35, gradiometry36 or the detection of gravitational waves37.

Methods
Experimental set-up. Experiments were carried out onboard the Novespace
A310 Zero-G aircraft, where the interferometers operated during more than 100
parabolic manoeuvres, each consisting of B20 s of weightlessness (0 g) and 2–5 min of
standard gravity (1 g). Two laser-cooled atomic samples (87Rb at 4mK, and 39K
at 18mK) were simultaneously interrogated by a p/2�p� p/2 sequence of coherent
velocity-sensitive Raman pulses, separated by free-fall times TRb and TK, respectively
(Fig. 1a), which set the acceleration response of each interferometer. The laser light
used for this manipulation is aligned through the atoms and retro-reflected along the
yaw axis (z axis) of the aircraft (Fig. 1b). A detailed description of our experimental
apparatus, fibre-based laser system and fluorescence detection scheme can be found in
ref. 35. When the aircraft is in steady flight, the Raman beams are vertical—
maximizing the sensitivity to gravitational acceleration. Owing to the high vibration
levels onboard the aircraft, the interferometer fringes are reconstructed using a cor-
relative method10,24,25 with measurements from a three-axis mechanical
accelerometer (Colibrys SF3600) fixed to the rear of the retro-reflecting mirror. These
acceleration measurements were also combined with software to discriminate between
the 0 g, 1 g and 2 g phases of a parabola (Fig. 1a), and to automatically switch the
interferometers between two different operating modes (single diffraction and DSD)
during each manoeuvre. A frequency chirp is applied to the Raman frequency during
1 g to cancel the gravity-induced Doppler shift. The chirp is disabled by software
during parabolic manoeuvres. Interferometer measurements taken during the 2 g
phase were rejected during the data analysis process. Finally, the rotation rates Ox(t)
and Oy(t) are continuously monitored during the flight using a two-axis fibre-optic
gyroscope (KVH DSP-1750). Combined with continuous acceleration measurements,
we integrate the equations of motion in the rotating frame to obtain the trajectory of
the two atomic clouds with respect to the reference mirror for each shot of the
experiment. These trajectories are used to estimate systematic shifts on the
measurement of Z due to the Coriolis effect and the magnetic gradient.

Evaluation of systematic effects. To evaluate the systematic effects on the
measurement of Z, we begin by separating the total interferometer phase F�j
(corresponding to atom j and momentum transfer direction � keff

j ) into five
contributions

F�j ¼ �facc
j �fUFF

j �fvib
j þflas

j þfsys;�
j ; ð5Þ

where facc
j ¼ Sj � a is the phase due to the relative gravitational acceleration

a between the reference mirror and the atoms with scale factor Sj ¼ keff
j ðTjþ tpj Þ

ðTj þ 2tpj =pÞ and p-pulse duration tpj , fUFF
j ¼ Sj � ðaj � aÞ is a phase shift from a

possible UFF violation, fvib
j ¼ keff

j �
R

fj tð Þavib tð Þdt is a random phase caused by
mirror vibrations with corresponding time-dependent acceleration avib(t) and
interferometer response function fj(t)25,38, flas

j ¼ jj 0ð Þ� 2jj Tj
� �
þjj 2Tj

� �
is the

contribution from the Raman laser phase fj(t) at each interferometer pulse and
fsys

j ;� represents the total systematic phase shift. We express the total systematic
phase as the following sum

fsys;�
j ¼

X
i

fsys;�
i;j ¼

X
i

�find
i;j �Dfdep

i;j ; ð6Þ

where i is an index corresponding to a given systematic effect. In general, these
phases can depend on both the magnitude and the sign of keff

j . To simplify the

analysis, we divide fsys;�
i;j into two separate phases labelled �find

i;j for the direction-

independent phase shifts and Dfdep
i;j to denote the direction-dependent shifts

(that is, those proportional to the sign of keff
j ). We isolate these components by

evaluating the sum and the difference between systematics corresponding to each
momentum transfer direction

�find
i;j ¼

1
2

fsys;þ
i;j þfsys;�

i;j

� �
; ð7Þ

Dfdep
i;j ¼

1
2

fsys;þ
i;j �fsys;�

i;j

� �
; ð8Þ

For the specific case of the single-diffraction interferometer used in 1 g along þ keff
j ,

the systematic phase shift is given by fsys;1g
j ¼ fsys;þ

j . In comparison, for the DSD
interferometer, only direction-dependent systematic effects can shift the phase of

the fringes measured as a function of fvib
j . In the ideal case, the sum of Dfdep

i;j is the

sole contribution to the systematic shift of the DSD fringes, since �find
i;j is direction-

independent and thus contributes only to the fringe contrast (Fig. 2). However,
in the more general case, these two phases can indirectly affect the phase of the
DSD interferometer when the two pairs of Raman beams do not excite the selected
velocity classes � vsel

j with the same probability. We denote this contribution fDSD
j ,

thus the total systematic phase for the interferometers used in 0 g is

fsys;0g
j ¼ fDSD

j þ
X

i

Dfdep
i;j : ð9Þ

Table 1 displays a list of the systematic phase shifts affecting the interferometers
operated at TC2 ms onboard the aircraft (Fig. 3d–f).

Phase corrections and g measurements. The raw interferometer phase for each
species is measured directly from fits to the fringes reconstructed using the FRAC
method (Fig. 3). We refer to this quantity as the FRAC phase fFRAC

j . For the
interferometers used in standard gravity, the measured fringes follow equation (2)
with total phase Fþj . Since the vibration phase fvib

j is the quantity used to scan

Fþj , the FRAC phase is related to the sum of all other phase contributions through

facc
j þflas

j þfsys;þ
j þfUFF

j ¼ fFRAC
j þ 2pn2p

j ; ð10Þ

where n2p
j is an integer representing a certain fringe. Assuming that fUFF

j

��� ���op, and

provided the total uncertainty from all other phases is much less than p, the UFF
phase can be isolated from equation (10) by computing the fringe number from
n2p

j ¼ ½ðfacc
j þflas

j þfsys;þ
j Þ=2p�, where the square brackets indicate rounding to

the nearest integer. A similar procedure can be carried out for the DSD fringes
obtained in weightlessness, where the total phase Fþj is replaced with the

half-difference DFj¼ 1
2(Fþj �F�j ). We point out that the laser phase does not

contribute to the DSD interferometer because it is independent of the momentum
transfer direction. Furthermore, since we are interested in only the differential UFF
phase given by equation (4), the contribution due to the gravitational acceleration
cancels facc

K �kfacc
Rb ¼ 0

� �
.

The Eötvös parameter is obtained from

Z ¼ aK � aRb

aeff
¼ fUFF

d

SKaeff
; ð11Þ

where aeff is the effective gravitational acceleration to which the atom
interferometer is sensitive over the duration of a measurement. To estimate aeff,
we first compute the gravitational acceleration along the vertical z0 axis,
a j; l; hð ÞEz0 , over a two-dimensional grid of latitude (j) and longitude (l)

Table 1 | Table of systematic phase shifts for the single-diffraction and DSD interferometers.

Systematic effect þ keff in 1g ±keff in 0g Unit

fsys
Rb fsys

K Dfdep
Rb �find

Rb Dfdep
K �find

K

Quadratic Zeeman 2,127 (48) 30,596 (694) 0 2,127 (34) 0 30,587 (491) mrad
Magnetic gradient 31.9 (8.3) 958 (215) 20.7 (4.1) 0.0096 (19) 745 (116) 1.46 (21) mrad
Coriolis effect �0.551 (18) �0.80 (26) 10.9 (1.5) 0 14.6 (2.1) 0 mrad
One-photon light shift � 2.1 (3.6) � 51 (81) 0 � 2.1 (2.5) 0 � 51 (57) mrad
Two-photon light shift 1.3 (2.8) 16 (68) 1.3 (2.0) 0 16 (48) 0 mrad
Extra laser lines �0.18 (10) 0 0.030 (26) 0.19 (16) 0 0 mrad
FRAC method 0.0 (3.3) 0.0 (3.3) 0.0 (3.3) 0 0.0 (3.3) 0 mrad
Gravity gradient 22 (20)E-6 61 (20)E-6 54 (52)E-9 15 (14)E-6 � 20 (8)E-9 39 (14)E-6 mrad
DSD asymmetry 0 0 � 39 (3) 0 � 29 (30) 0 mrad
Total 2,157 (49) 31,519 (735) � 6.8 (6.6) 2,125 (34) 795 (129) 30,537 (494) mrad

The 1s statistical uncertainties are indicated in parentheses. The corresponding interference fringes are shown in Fig. 3d,e.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms13786

6 NATURE COMMUNICATIONS | 7:13786 | DOI: 10.1038/ncomms13786 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


coordinates at a fixed altitude h using the Earth gravitational model EGM2008
(ref. 39). From these values, we calculate the average projection of the gravitational
acceleration vector on the axis of the Raman beams (Ek). In the Earth frame, the
interferometer axis is defined as Ek ¼ � sin yyEx0 þ sin yxcos yyEy0 þ cos yxcos yyEz0
after rotations about the x0 and y0 axes by roll angle yx and slope angle yy,
respectively. It follows that the effective gravitational acceleration is given by

aeff ¼ a j; l; hð Þh i cosyxcosyy
� �

; ð12Þ

where h?i denotes an average. Table 2 contains the list of corrections applied to
the raw data to obtain Z. We now describe some of the dominant systematic effects
that were specific to our experiment onboard the aircraft.

Coriolis phase shift. During steady flight, if the aircraft is tilted by angles yx and
yy about the x0 and y0 axes, respectively (Fig. 1a), a component of the gravitational
acceleration lies along the axes perpendicular to keff¼ keffEz , thus a rotation about
these axes will cause a phase shift, fO, due to the Coriolis effect. To first order in
the rotation rate X, this shift can be split into two main parts

fO ¼ � 2 keff� v0 þ a0Tð Þ
	 


�XT2 ¼ fO
v0
þfO

a0
; ð13Þ

where first term is due to an atomic velocity v0 at the start of the interferometer and
the second originates from a constant acceleration a0¼ gEz0 þ da. For small angles

yx and yy, it is straightforward to show that

fO
v0
¼ � 2keff v0xOy � v0yOx

� �
T2; ð14Þ

fO
da ¼ � 2keff dax þ gyy

� �
Oy � day � gyx

� �
Ox

	 

T3; ð15Þ

where da is a small shot-to-shot variation due to the motion of the aircraft of order
daj j ’ 0:05g (Fig. 4a), and the initial velocity is related to da via

v0 ¼ vsel
j Ez þ daDt. Here vsel

j is the selected atomic velocity determined by the
frequency difference between Raman beams, and Dt represents the free-fall time
between cloud release and the first p/2-pulse (DtC3 ms in our case).

Table 3 displays the mean value and range of variation of some inertial
parameters during each flight configuration. These data imply that the dominant
contribution to the Coriolis phase during steady flight is the instability in the roll
angle. The corresponding phase shift at T¼ 2 ms is estimated to be fO

1gC0.1(3)
mrad for both 87Rb and 39K. In comparison, during a parabolic trajectory the
atoms are in free-fall and the acceleration relative to the mirror is close to zero,
hence the Coriolis phase shift is much less sensitive to the orientation of the aircraft
relative to g. However, during this phase the aircraft can reach rotation rates of
|X|45� s� 1 (Fig. 4b), which occurs primarily about the y axis (Fig. 1a). This
causes small atomic velocities perpendicular to the direction of keff to produce
significant phase shifts. We estimate fO

0gC� 3.7(3) mrad at T¼ 2 ms for a mean
rotation rate of OyC4.1� s� 1.

These simple estimates, although useful to give an intuitive understanding,
do not include effects due to finite Raman pulse lengths t, time-varying
rotation rates X(t) or time-varying accelerations a(t). Since these effects

Table 2 | Table of phase corrections and final measurements of Z.

þ keff in 1g ±keff in 0g Unit

Rb K Rb K

facc
j 646.442 647.146 �0.356 �0.356 rad

flas
j � 646.905 � 647.132 0 0 rad

fsys
j 2.157 (49) 31.519 (735) �0.0068 (66) 0.795 (129) rad

Sum 1.694 (49) 31.532 (735) �0.363 (66) 0.439 (129) rad

fFRAC
j 3.294 (18) 1.363 (26) 2.855 (72) 3.703 (81) rad

n2p
j 0 5 � 1 � 1

fUFF
j 1.597 (52) 1.246 (735) � 3.065 (73) � 3.020 (152) rad

K� jRb K� jRb

fUFF
d �0.352 (737) 0.049 (169) rad

Z �0.5(1.1)� 10� 3 0.9(3.0)� 10�4

Phase corrections and measurements of Z are given for the single-diffraction interferometer in 1g and the DSD interferometer in 0g. In both cases, TK¼ 2 ms, TRb¼ 2.01 ms, tpRb ¼ 17ms and tpK ¼ 9ms—yielding
scale factors SRb¼ 65.97 rad s2 m� 1 and SK¼ 66.04 rad s2 m� 1, and a ratio of k¼ 1.0011. Values of aeff for both 1g and 0g are given in Table 3. The corresponding data are shown in Fig. 3d,e.

Table 3 | Inertial parameters measured during each flight configuration.

Steady flight Parabolic flight Unit

Mean Range Mean Range

h 6.332 0.025 8.642 0.228 km
s 163 8 82 13 m s� 1

ax �0.196 0.314 0.078 0.069 m s� 2

ay 0.078 0.039 0.039 0.039 m s� 2

az 9.816 0.382 0.098 0.226 m s� 2

yx � 1.2 2.5 � 1.9 2.4 �
yy 0.01 0.35 � 6.0 50.8 �
Ox �0.07 0.24 �0.19 0.90 � s� 1

Oy 0.00 0.15 4.1 1.1 � s� 1

Oz �0.04 0.12 0.00 0.16 � s� 1

hai 9.789 0.002 9.782 0.002 m s� 2

hcosyi 0.999 0.002 0.875 0.100
aeff 9.779 0.020 8.56 0.98 m s� 2

h, altitude; s, air speed; ax, ay, az, accelerations along x, y, z axes of the vehicle; yx, roll angle; yy, slope angle; Ox, Oy, Oz, rotation rates about the x, y, z axes.
Values in the ‘Mean’ columns indicate the average of data recorded over five consecutive parabolas (B800 s of flight time), and the ‘Range’ column gives the interquartile range of the same data—
indicating the typical variation for each parameter. The aircraft’s altitude, air speed, roll and slope angles are courtesy of Novespace. The last three rows give the mean gravitational acceleration hai, the
mean projection factor hcosyi and the effective gravitational acceleration aeff (equation (12)) used to measure the Eötvös parameter shown in Table 2. In these rows, the value in the Range column
corresponds to the 1s uncertainty. Estimates of hai were obtained from the Earth gravity model EGM2008 over the flight region defined by opposite-corner coordinates 6� 440 W, 45� 230 N and 2� 430 W,
48� 370 N at the indicated mean altitude h. The projection factor is based on the variation in the aircraft’s roll and slope angles during the measurements.
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are significant in our case, it was necessary to develop a new expression to
accurately estimate the associated phase shift. The result of these calculations,
which were based on the sensitivity function formalism40, is the following
expression

FO¼ �
Z

wO tð Þ keff�v tð Þ
� �

�X tð Þdt�
ZZ 1

t
wO t0ð Þ keff�a t0ð Þ

� �
�X tð Þdt0dt;

ð16Þ

which describes the Coriolis phase shift due to an atomic trajectory undergoing a
time-dependent rotation X(t) and acceleration a(t). Here wO(t) is a weight function

wO tð Þ ¼ tgs tð Þþ
Z 1

t
gs t0ð Þdt0; ð17Þ

which contains the interferometer sensitivity function gs(t). In the limit of short
pulse lengths, and constant accelerations and rotations, equation (16) reduces to
equation (13).

During the flight, we measure the acceleration of the Raman mirror in the
rotating frame (Fig. 1) using a three-axis mechanical accelerometer, and the
rotation rates Ox(t) and Oy(t) are measured using a two-axis fibre-optic gyroscope.
The rotation rate about the z axis of the aircraft, Oz, does not contribute
significantly to the Coriolis phase (since it is parallel to keff), hence precise
measurements of this quantity using a third gyroscope were not required. We then
integrate the equations of motion in the rotating frame to obtain v(t) relative to the
Raman mirror, and we use equation (16) to obtain the Coriolis phase shift for each
shot of the experiment. The values reported in the third row of Table 1 represent
the average of this phase taken over the coarse of all measurements during a given
flight configuration. For the DSD interferometer used in 0 g, we computed the
Coriolis shift for both upward and downward atomic trajectories and combined the
results as in equation (8).

DSD phase shift. The DSD interferometer that we use in microgravity is sensitive
to an additional systematic shift that is not present in the single-diffraction
interferometer. This phase shift arises from the fact that we cannot distinguish
between the atoms that are diffracted upwards and downwards. For instance,
if there is an asymmetry in the number of atoms diffracted along these two
directions, and the direction-independent phase SFind is non-zero, this will
produce two phase-shifted fringe patterns with different contrasts. Since we
measure the sum of these two fringe patterns, there is an additional phase shift
that depends on the relative contrast e¼C� /Cþ � 1 between the ±keff inter-
ferometers and SFind as follows

fDSD¼ tan� 1 � e=2
1þ e=2

tan �Find

� �
: ð18Þ

For the TC2 ms fringes shown in Fig. 3e, we estimate eC0.05 for both rubidium
and potassium interferometers. Hence, using the total direction-independent
systematics listed in columns 5 and 7 of Table 1, we obtain DSD phase shifts of
fDSD

Rb C� 39(3) mrad and fDSD
K C� 29(30) mrad.

Quadratic Zeeman effect and magnetic gradient. The primary source of
systematic phase shift in this work originated from a time-varying B-field during
the interferometer produced by a large aluminium breadboard near the coils used
to produce a magnetic bias field for the interferometers. Owing to the relatively
large pulsed fields (B1.5 G) required to sufficiently split the magnetically sensitive
transitions in 39K, Eddy currents produced in the aluminium breadboard during
the interferometer significantly shift the resonance frequency of the clock transition
1;mF ¼ 0j i ! 2;mF ¼ 0j i via the quadratic Zeeman effect. We recorded the field

just outside the vacuum system with a flux gate magnetometer (Bartington
MAG-03MCTPB500) and used these data, in conjunction with spectroscopic
calibrations of the field at the location of the atoms, to compute the associated
systematic phase shift for each shot of the experiment.

The second-order (quadratic) Zeeman effect shifts the frequency of the
clock transition as DoB

j ¼ 2pKj Bj j2, where KRb¼ 575.15 Hz G� 2 for 87Rb and
KK¼ 8513.75 Hz G� 2 for 39K (ref. 41). This effect can shift the phase of the
interferometers in three ways: (i) due to a B-field that is non-constant in time

ðfB tð Þ
j Þ; (ii) from a field that is non-constant in space ðfB zð Þ

j Þ; or (iii) via the

force on the atoms from a spatial magnetic gradient ðfb1
j Þ. The total systematic

shift due to magnetic field effects is the sum of these three phases

fsys;B
j ¼ fB tð Þ

j þfB zð Þ
j þfb1

j ; ð19Þ

We model the local magnetic field experienced by the atoms as follows

B z; tð Þ ¼ b0x tð Þþb1z ð20Þ

where b0 is a magnetic bias field, b1¼ qB/qz is a magnetic gradient and x(t) is a
unitless envelope function that can describe the field turn-on, as well as residual
Eddy currents.

The phase shift due to a temporal variation of the B-field ðfB tð Þ
j Þ can be

computed using40

fB tð Þ
j ¼

Z
gs

j tð ÞDoB
j tð Þdt ¼ 2pKj

Z
gs

j tð Þ B z0
j ; t

� ���� ���2dt; ð21Þ

where gs
j tð Þ is the interferometer sensitivity function25,38 and DoB

j ðtÞ ¼
2pKjjBðz0

j ; tÞj
2 is the clock shift at the initial position of the atoms. Similarly, the

phase fB zð Þ
j due to the clock shift from a spatially non-uniform field can be

expressed as

fB zð Þ
j ¼ 2pKj

Z
gs

j tð Þ B �zj tð Þ; t
� ��� ��2 � B z0

j ; t
� ���� ���2

 �
dt; ð22Þ

Here �zj tð Þ ¼ z0
j þ vsel

j � vrec
j =2

� �
tþ at2=2 is the centre-of-mass trajectory of atom j

along the interferometer pathways, z0
j and vsel

j are the initial atomic position and

selected velocity, respectively, vrec
j ¼ ‘ keff

j =Mj is the corresponding recoil velocity
and a is a constant acceleration along the direction of z. We have ignored the
influence of the magnetic gradient force on the atomic trajectory since it is small
compared that of gravity. In equation (22), we have used the difference between the
field experienced by a falling atom and that of a stationary atom at z¼ z0

j to
separate the spatial effect of the field from the temporal one.

To measure |B(z, t)|, we used velocity-insensitive Raman spectroscopy of
magnetically sensitive two-photon transitions 1;mF¼ � 1j i ! 2;mF¼ � 1j ið Þ
and we extracted the resonance frequency as a function of the time in free fall in
standard gravity—yielding a map of |B(z, t)|. However, this method cannot
distinguish between the temporally and spatially varying components of the field.
To isolate the spatial gradient b1, we performed the same spectroscopy experiment
with the bias field on continuously to eliminate the turn-on envelope and to
minimize Eddy currents. The difference between these measurements yielded the
temporally varying component of the field. For typical experimental parameters

during the flight (TjB2 ms, b0B1.5 G), we find fB tð Þ
Rb B2.1 rad and fB tð Þ

K B30.5 rad,
as listed in the first row of Table 1. These relatively large phase shifts are produced
by the large bias required to separate the 1;mF¼ � 1j i states from 1;mF ¼ 0j i, and
a significant variation in the envelope during the interferometer (the field changes
by B0.5 G in 2 ms) produced by the Eddy currents. Similarly, we estimate

fB zð Þ
Rb B0.032 rad and fB zð Þ

K B0.96 rad during 1 g, which arises from a measured
gradient of b1C13 G m� 1, as listed in the second row of Table 1.

The phase shift fb1
j arising from the force on the atoms due to the magnetic

gradient can be computed by evaluating the state-dependent atomic trajectories
and following the formalism of ref. 42. Up to order T4

j and L2
j ¼ hKj/Mj, this phase

can be shown to be

fb1
j ¼ �

2
3

keff
j Ljb1

� �2
vsel

j �
vrec

j

2

 �
Tjþ aT2

j

� �
T2

j ; ð23Þ

where the 8 sign convention corresponds to � keff
j . We emphasize that this phase

scales (LK/LRb)2B33 times more strongly for potassium than rubidium due to its
lighter mass and smaller hyperfine splitting ðKj / 1=oHF

j Þ. However, since the
magnetic gradient force is opposite in sign for F ¼ 1j i and F ¼ 2j i, and the states
are exchanged halfway through the interferometer, this phase shift is generally
much smaller than those produced by shifts of the clock transition. For typical
experimental parameters during steady flight (TjC2 ms, vsel

j C5 cm s� 1,
aC9.8 m s� 2 and b1C13 G m� 1), the phase shift is fb1

K C� 0.12 mrad for 39K
and fb1

RbC� 3.4 mrad for 87Rb. We sum this phase with fB zð Þ
j in the second row of

Table 1.

Data availability. The authors declare that the primary data supporting the
findings of this study are available within the article and its Supplementary
Information file. Additional data are available from the corresponding author on
request.
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